Landslide Susceptibility Mapping in the Vrancea-Buzău Seismic Region, Southeast Romania
Abstract
:1. Introduction
2. Geological, Morphostructural, Seismo-Tectonic and Climatic Context
2.1. Geology and Morpho-Seismo-Tectonics
2.2. Climate
2.3. Landslide Processes
3. Inputs and Methods
3.1. Data
3.2. Methods
3.2.1. Statistical Susceptibility Map
3.2.2. Newmark’s Method
3.2.3. Arias’ Intensity
3.2.4. Evaluation of Model Results
4. Results
4.1. Susceptibility Zonation Maps
4.2. Newmark Displacement Maps
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Classes | Slope (Degrees) | d | Ruggedness | d | Distance to the Hydrographic Network | d | Dominant Formation of the Lithological Class | d | Wetness | d | Topographic Position Index (TPI) | d | Curvature | d | Profile Curvature | d |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source | 0–9.13 | 0.17 | 0–1.87 | 0.17 | 0–166 | 0.33 | Alluvial dep | 0.10 | 0.87–2.46 | 2.03 | (−12.08)–(−1.55) | 1.23 | (−19.14)–(−1.92) | 1.21 | (−14.84)–(−1.23) | 1.57 |
9.13–17.70 | 0.82 | 1.87–3.8 | 0.84 | 166–349 | 1.04 | Sandstones | 1.29 | 2.46–4.37 | 1.64 | (−1.55)–(−0.95) | 1.43 | (−1.92)–(−1.19) | 1.41 | (−1.23)–(−0.75) | 1.55 | |
17.70–26.26 | 1.81 | 3.8–5.74 | 1.87 | 349–533 | 1.69 | Shales/clays | 1.62 | 4.37–6.28 | 0.90 | (−0.95)–(0.36) | 1.28 | (−1.19)–(−0.46) | 1.28 | (−0.75)–(−0.27) | 1.30 | |
26.26–34.83 | 3.04 | 5.74–7.69 | 3.01 | 533–716 | 2.05 | Sands | 0.02 | 6.28–8.18 | 0.29 | (−0.36) –0.23 | 0.80 | (−0.46) –0.27 | 0.81 | (−0.27)–0.19 | 0.83 | |
34.83–66.46 | 3.35 | 7.69–26.73 | 3.37 | 716–1067 | 1.91 | Salt | 0.00 | 8.18–10.09 | 0.13 | 0.23–0.82 | 1.12 | 0.27–1.00 | 1.11 | 0.19–0.67 | 1.12 | |
10.09–14.59 | 0.07 | 0.82–1.42 | 1.42 | 1.00–1.74 | 1.41 | 0.67–14.21 | 1.22 | |||||||||
1.42–20.11 | 1.48 | 1.74–27.89 | 1.46 | |||||||||||||
Runout | 0–9.13 | 0.75 | 0–1.87 | 0.76 | 0–166 | 1.50 | Alluvial dep | 0.41 | 0.87–2.46 | 0.34 | (−12.08)–(−1.55) | 0.85 | (−19.14)–(− 1.92) | 0.85 | (−14.84)–(−1.23) | 0.38 |
9.13–17.70 | 1.34 | 1.87–3.8 | 1.32 | 166–349 | 0.89 | Sandstones | 1.12 | 2.46–4.37 | 0.42 | (−1.55)–(−0.95) | 1.28 | (−1.92) – (−1.19) | 1.25 | (−1.23)–(−0.75) | 0.47 | |
17.70–26.26 | 0.89 | 3.8–5.74 | 0.88 | 349–533 | 0.58 | Shales/clays | 1.99 | 4.37–6.28 | 1.25 | (−0.95)–(−0.36) | 1.50 | (−1.19) – (−0.46) | 1.48 | (−0.75)–(−0.27) | 0.73 | |
26.26–34.83 | 0.65 | 5.74–7.69 | 0.65 | 533–716 | 0.32 | Sands | 0.00 | 6.28–8.18 | 1.57 | (−0.36)–0.23 | 1.02 | (−0.46)–0.27 | 1.03 | (−0.27) –0.19 | 1.01 | |
34.83–66.46 | 0.49 | 7.69–26.73 | 0.51 | 716–1067 | 0.30 | Salt | 0.00 | 8.18–10.09 | 1.51 | 0.23–0.82 | 0.74 | 0.27–1.00 | 0.75 | 0.19–0.67 | 1.27 | |
10.09–14.59 | 0.97 | 0.82–1.42 | 0.46 | 1.00–1.74 | 0.47 | 0.67–14.21 | 1.10 | |||||||||
1.42–20.11 | 0.37 | 1.74–27.89 | 0.38 | |||||||||||||
Classes | Plane Curvature | d | Flow Accumulation | d | Angle of Internal Friction (φ) | d | Cohesion (C) | d | Rock Density (ϒ) | d | Distance to the Faults | d | Distance to the Epicenters | d | Normalized Difference Vegetation Index (NDVI) | d |
Source | (−9.89)–(−1.05) | 1.47 | 0–2 | 0.54 | 20 | 0.04 | 0 | 0.00 | 1.9 | 0.06 | 0 –50 | 1.58 | 0–551 | 2.03 | 0.39–0.64 | 0.60 |
(−1.05)–(−0.64) | 1.58 | 2–6 | 1.39 | 25 | 2.80 | 0.05 | 0.10 | 2 | 0.00 | 50–100 | 1.60 | 551–1185 | 0.52 | 0.64–0.65 | 2.39 | |
(−0.64)–(−0.23) | 1.36 | 6–12 | 1.52 | 28 | 0.91 | 0.1 | 1.01 | 2.3 | 1.45 | 100–500 | 1.72 | 1194–1828 | 0.19 | 0.65–0.65 | 2.42 | |
(−0.23)–0.17 | 0.79 | 12–27 | 1.20 | 32 | 0.01 | 0.2 | 0.00 | 500–1000 | 1.73 | 1819–4441 | 0.03 | 0.65–0.65 | 1.97 | |||
0.17–0.58 | 1.04 | 27–1.7E+17 | 0.69 | 35 | 1.01 | 1 | 2.80 | 1000–32000 | 0.44 | 0.65–0.65 | 2.34 | |||||
0.58–0.99 | 1.31 | 0.65–0.80 | 1.30 | |||||||||||||
0.99–13.04 | 1.35 | |||||||||||||||
Runout | (−9.89)–(−1.05) | 0.93 | 0–2 | 0.43 | 20 | 0.00 | 0 | 0.00 | 1.9 | 0.21 | 0–50 | 2.21 | 0–551 | 2.02 | 0.39–0.64 | 0.70 |
(−1.05)–(−0.64) | 1.36 | 2–6 | 0.90 | 25 | 3.41 | 0.05 | 0.41 | 2 | 0.00 | 50–100 | 2.19 | 551–1185 | 0.55 | 0.64–0.65 | 2.17 | |
(−0.64)–(−0.23) | 1.48 | 6–12 | 1.23 | 28 | 2.90 | 0.1 | 0.88 | 2.3 | 1.38 | 100–500 | 1.85 | 1194–1828 | 0.16 | 0.65–0.65 | 2.28 | |
(−0.23)–0.17 | 0.96 | 12–27 | 1.71 | 32 | 0.13 | 0.2 | 0.00 | 500–1000 | 1.64 | 1819–4441 | 0.02 | 0.65–0.65 | 2.89 | |||
0.17–0.58 | 0.80 | 27–1.7E+17 | 1.89 | 35 | 0.88 | 1 | 3.41 | 1000–32,000 | 0.36 | 0.65–0.65 | 2.46 | |||||
0.58–0.99 | 0.53 | 0.65–0.80 | 1.19 | |||||||||||||
0.99–13.04 | 0.38 |
Physical Parameters | Norm. Diff. Vegetation Index (NDVI) | Ruggedness | Dist. to the Faults | Dist. to Earthquake Epicentres | Slope | Topographic Position Index (TPI) | Cohesion (C) | Curvature | Dist. to the Hydro. Network | Flow Accumulation | Wetness | Rock Density (γ) | Lithology | Angle of Internal Friction (Φ) | Plan Curvature | Profile Curvature |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Norm. Diff. Vegetation Index (NDVI) | 1.0 | 0.3 | 0.5 | 0.3 | 0.3 | 0.2 | 0.4 | 0.2 | 0.1 | 0.0 | 0.3 | 0.5 | 0.5 | 0.4 | 0.2 | 0.2 |
Ruggedness | 0.3 | 1.0 | 0.2 | 0.2 | 1.0 | 0.3 | 0.2 | 0.3 | 0.1 | 0.0 | 0.6 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 |
Dist. to the Faults | 0.5 | 0.2 | 1.0 | 0.2 | 0.2 | 0.2 | 0.4 | 0.2 | 0.0 | 0.0 | 0.2 | 0.5 | 0.5 | 0.4 | 0.2 | 0.2 |
Dist. to Earthquake Epicentres | 0.3 | 0.2 | 0.2 | 1.0 | 0.2 | 0.1 | 0.2 | 0.1 | 0.0 | 0.0 | 0.1 | 0.2 | 0.3 | 0.3 | 0.1 | 0.1 |
Slope | 0.3 | 1.0 | 0.2 | 0.2 | 1.0 | 0.3 | 0.2 | 0.3 | 0.1 | 0.0 | 0.6 | 0.4 | 0.3 | 0.2 | 0.2 | 0.2 |
Topographic Position Index (TPI) | 0.2 | 0.3 | 0.2 | 0.1 | 0.3 | 1.0 | 0.1 | 0.9 | 0.0 | -0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.5 | 0.5 |
Cohesion (C) | 0.4 | 0.2 | 0.4 | 0.2 | 0.2 | 0.1 | 1.0 | 0.1 | 0.1 | 0.0 | 0.2 | 0.5 | 0.8 | 1.0 | 0.1 | 0.1 |
Curvature | 0.2 | 0.3 | 0.2 | 0.1 | 0.3 | 0.9 | 0.1 | 1.0 | 0.0 | −0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.5 | 0.5 |
Dist. to the Hydr. Network | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 1.0 | 0.0 | 0.3 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 |
Flow Accumulation | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | −0.1 | 0.0 | −0.1 | 0.0 | 1.0 | 0.1 | 0.0 | 0.0 | 0.0 | −0.1 | −0.1 |
Wetness | 0.3 | 0.6 | 0.2 | 0.1 | 0.6 | 0.2 | 0.2 | 0.2 | 0.3 | 0.1 | 1.0 | 0.3 | 0.2 | 0.2 | 0.1 | 0.1 |
Rock Density (γ) | 0.5 | 0.4 | 0.5 | 0.2 | 0.4 | 0.2 | 0.5 | 0.2 | 0.1 | 0.0 | 0.3 | 1.0 | 0.7 | 0.5 | 0.2 | 0.2 |
Lithology | 0.5 | 0.3 | 0.5 | 0.3 | 0.3 | 0.2 | 0.8 | 0.2 | 0.1 | 0.0 | 0.2 | 0.7 | 1.0 | 0.8 | 0.2 | 0.2 |
Angle of Internal Friction (Φ) | 0.4 | 0.2 | 0.4 | 0.3 | 0.2 | 0.2 | 1.0 | 0.1 | 0.1 | 0.0 | 0.2 | 0.5 | 0.8 | 1.0 | 0.2 | 0.2 |
Plan Curvature | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.5 | 0.1 | 0.5 | 0.0 | −0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 1.0 | 1.0 |
Profile Curvature | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.5 | 0.1 | 0.5 | 0.0 | −0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 1.0 | 1.0 |
Physical Parameters | Norm. diff. Vegetation Index (NDVI) | Ruggedness | Dist. to the Faults | Dist. to Earthquake Epicentres | Slope | Topographic Position Index (TPI) | Cohesion (C) | Curvature | Dist. to the Hydro. Network | Flow Accumulation | Wetness | Rock Density (γ) | Lithology | Angle of Internal Friction (Φ) | Plan Curvature | Profile Curvature |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Norm. Diff. Vegetation iIndex (NDVI) | 1.0 | 0.1 | 0.3 | 0.1 | 0.1 | 0.0 | −0.2 | 0.2 | 0.0 | 0.0 | −0.2 | 0.4 | 0.2 | 0.2 | 0.0 | 0.0 |
Ruggedness | 0.1 | 1.0 | 0.2 | 0.0 | 0.0 | 0.0 | −0.1 | 0.2 | 0.0 | 0.0 | −0.1 | 0.2 | 0.2 | 0.2 | 0.0 | 0.0 |
Dist. to the Faults | 0.3 | 0.2 | 1.0 | 0.1 | 0.1 | 0.0 | −0.2 | 0.3 | 0.0 | 0.0 | −0.2 | 0.5 | 0.4 | 0.3 | 0.0 | 0.0 |
Dist. to Earthquake Epicentres | 0.1 | 0.0 | 0.1 | 1.0 | 0.9 | 0.0 | 0.0 | 0.1 | 0.0 | −0.1 | −0.3 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 |
Slope | 0.1 | 0.0 | 0.1 | 0.9 | 1.0 | 0.0 | 0.0 | 0.1 | 0.0 | −0.1 | −0.3 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 |
Topographic Position Index (TPI) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.3 | 0.0 | 1.0 | 0.1 | −0.5 | 0.0 | 0.0 | 0.0 | 0.6 | 0.7 |
Cohesion (C) | −0.2 | −0.1 | −0.2 | 0.0 | 0.0 | 0.3 | 1.0 | −0.1 | 0.3 | 0.3 | −0.3 | −0.3 | −0.1 | −0.1 | 0.3 | 0.2 |
Curvature | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 | 0.0 | −0.1 | 1.0 | 0.0 | −0.1 | −0.1 | 0.4 | 0.9 | 0.9 | 0.0 | 0.0 |
Dist. to the Hydr. Network | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.3 | 0.0 | 1.0 | 0.1 | −0.5 | 0.0 | 0.0 | 0.0 | 0.6 | 0.7 |
Flow Accumulation | 0.0 | 0.0 | 0.0 | −0.1 | −0.1 | 0.1 | 0.3 | −0.1 | 0.1 | 1.0 | −0.4 | −0.1 | −0.1 | 0.0 | 0.0 | 0.1 |
Wetness | −0.2 | −0.1 | −0.2 | −0.3 | −0.3 | −0.5 | −0.3 | −0.1 | −0.5 | −0.4 | 1.0 | −0.1 | −0.1 | −0.1 | −0.5 | −0.7 |
Rock Density (γ) | 0.4 | 0.2 | 0.5 | 0.1 | 0.1 | 0.0 | −0.3 | 0.4 | 0.0 | −0.1 | −0.1 | 1.0 | 0.6 | 0.3 | 0.0 | −0.1 |
Lithology | 0.2 | 0.2 | 0.4 | 0.1 | 0.1 | 0.0 | −0.1 | 0.9 | 0.0 | −0.1 | −0.1 | 0.6 | 1.0 | 0.8 | 0.0 | 0.0 |
Angle of Internal Friction (Φ) | 0.2 | 0.2 | 0.3 | 0.1 | 0.1 | 0.0 | −0.1 | 0.9 | 0.0 | 0.0 | −0.1 | 0.3 | 0.8 | 1.0 | 0.0 | 0.0 |
Plan Curvature | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.3 | 0.0 | 0.6 | 0.0 | −0.5 | 0.0 | 0.0 | 0.0 | 1.0 | 0.3 |
Profile Curvature | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 0.2 | 0.0 | 0.7 | 0.1 | −0.7 | −0.1 | 0.0 | 0.0 | 0.3 | 1.0 |
References
- European Environmental Agency. Mapping the Impacts of Natural Hazards and Technological Accidents in Europe—An Overview of the Last Decade; Publications Office of the European Union: Luxembourg, 2010; p. 144. [Google Scholar]
- Centre for Research on the Epidemiology of Disasters. Natural Disasters 2019: Now Is the Time to Not Give Up; CRED: Brussels, Belgium, 2020. [Google Scholar]
- Alexander, E.D. Vulnerability to Landslides. In Landslide Risk Assessment; Glade, T., Anderson, M., Crozier, M., Eds.; Wiley: Hoboken, NJ, USA, 2005; pp. 175–198. [Google Scholar]
- Nadim, F.; Kjekstad, O.; Peduzzi, P.; Herold, C.; Jaedicke, C. Global Landslide and Avalanche Hotspots. Landslides 2006, 3, 159–173. [Google Scholar] [CrossRef]
- Hong, Y.; Adler, R.; Huffman, G. Use of Satellite Remote Sensing Data in the Mapping of Global Landslide Susceptibility. Nat. Hazards 2007, 43, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Kirschbaum, D.; Adler, R.; Hong, Y.; Lerner-Lam, A. Evaluation of a Preliminary Satellite-Based Landslide Hazard Algorithm Using Global Landslide Inventories. Nat. Hazards Earth Syst. Sci. 2009, 9, 673–686. [Google Scholar] [CrossRef] [Green Version]
- Dilley, M.; Chen, R.S.; Deichmann, U.; Lerner-Lam, A.; Arnold, M.; Agwe, J.; Buys, P.; Kjekstad, O.; Lyon, B.; Yetman, G. Natural Disaster Hotspots: A Global Risk Analysis; The World Bank: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Günther, A.; Eeckhaut, M.; Malet, J.-P.; Paola, R.; Hervás, J. Climate-Physiographically Differentiated Pan-European Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation and Transnational Landslide Information. Geomorphology 2014, 224, 69–85. [Google Scholar] [CrossRef]
- Jaedicke, C.; Eeckhaut, M.; Nadim, F.; Hervás, J.; Kalsnes, B.; Vangelsten, B.; Smith, J.; Tofani, V.; Ciurean, R.; Winter, M.; et al. Identification of Landslide Hazard and Risk ‘Hotspots’ in Europe. Bull. Eng. Geol. Environ. 2014, 73, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Wilde, M.; Günther, A.; Reichenbach, P.; Malet, J.-P.; Hervás, J. Pan-European Landslide Susceptibility Mapping: ELSUS Version 2. J. Maps 2018, 14, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Malet, J.-P.; Thiery, Y.; Hervás, J.; Günther, A.; Puissant, A.; Grandjean, G. Landslide Susceptility Mapping at 1:1 M Scale over France: Exploratory Results with a Heuristic Model. In Proceedings of the International Conference on Landslide Processes: From Geomorphologic Mapping to Dynamic Modelling; Malet, J.-P., Remaître, A., Boogard, T., Eds.; CERG Editions: Strasbourg, France, 2009; pp. 315–320. [Google Scholar]
- Okalp, K.; Akgün, H. National Level Landslide Susceptibility Assessment of Turkey Utilizing Public Domain Dataset. Environ. Earth Sci. 2016, 75, 847. [Google Scholar] [CrossRef]
- Peduzzi, P. Landslides and Vegetation Cover in the 2005 North Pakistan Earthquake: A GIS and Statistical Quantitative Approach. Nat. Hazards Earth Syst. Sci. 2010, 10, 623–640. [Google Scholar] [CrossRef]
- Abella, E.A.C.; Van Westen, C.J. Generation of a Landslide Risk Index Map for Cuba Using Spatial Multi-Criteria Evaluation. Landslides 2007, 4, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Quesada-Román, A. Landslide Risk Index Map at the Municipal Scale for Costa Rica. Int. J. Disaster Risk Reduct. 2021, 56, 102144. [Google Scholar] [CrossRef]
- Bălteanu, D.; Micu, M.; Jurchescu, M.; Malet, J.-P.; Sima, M.; Kucsicsa, G.; Dumitrică, C.; Petrea, D.; Mărgărint, M.C.; Bilaşco, Ş.; et al. National-Scale Landslide Susceptibility Map of Romania in a European Methodological Framework. Geomorphology 2020, 371, 107432. [Google Scholar] [CrossRef]
- Grozavu, A.; Patriche, C. Mapping Landslide Susceptibility at National Scale by Spatial Multi-Criteria Evaluation. Geomat. Nat. Hazards Risk 2021, 12, 1127–1152. [Google Scholar] [CrossRef]
- Cepeda, J.M.; Høeg, K.; Nadim, F. Landslide-Triggering Rainfall Thresholds: A Conceptual Framework. Q. J. Eng. Geol. Hydrogeol. 2010, 43, 69–84. [Google Scholar] [CrossRef]
- Kumar, V.; Cauchie, L.; Mreyen, A.-S.; Micu, M.; Havenith, H.-B. Evaluating Landslide Response in Seismic and Rainfall Regime: A Case Study from the SE Carpathians, Romania. Nat. Hazards Earth Syst. Sci. Discuss. 2021, in press. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Fallas López, B.; Hernandez-Espinoza, K.; Ballesteros-Canovas, J. Relationships between Earthquakes, Hurricanes, and Landslides in Costa Rica. Landslides 2019, 16, 1539–1550. [Google Scholar] [CrossRef]
- Carrara, A.; Cardinali, M.; Guzzetti, F.; Paola, R. GIS Technology in Mapping Landslide Hazard. In Geographical Information Systems in Assessing Natural Hazards; Carrara, A., Guzzetti, F., Eds.; Springer: Dordrecht, The Netherlands, 1995; Volume 5, pp. 135–176. [Google Scholar]
- Steger, S.; Kofler, C. Statistical Modeling of Landslides: Landslide Susceptibility and Beyond. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 519–546. ISBN 978-0-12-815226-3. [Google Scholar]
- Vanacker, V.; Vanderschaeghe, M.; Govers, G.; Willems, E.; Poesen, J.; Deckers, J.; De Bièvre, B. Linking Hydrological, Infinite Slope Stability and Land-Use Change Models through GIS for Assessing the Impact of Deforestation on Slope Stability in High Andean Watersheds. Geomorphology 2003, 52, 299–315. [Google Scholar] [CrossRef]
- Havenith, H.-B.; Strom, A.; Caceres, F.; Pirard, E. Analysis of Landslide Susceptibility in the Suusamyr Region, Tien Shan: Statistical and Geotechnical Approach. Lanslides 2006, 3, 39–50. [Google Scholar] [CrossRef]
- Dao, D.V.; Jaafari, A.; Bayat, M.; Mafi-Gholami, D.; Qi, C.; Moayedi, H.; Phong, T.V.; Ly, H.-B.; Le, T.-T.; Trinh, P.T.; et al. A Spatially Explicit Deep Learning Neural Network Model for the Prediction of Landslide Susceptibility. CATENA 2020, 188, 104451. [Google Scholar] [CrossRef]
- Merghadi, A.; Yunus, A.P.; Dou, J.; Whiteley, J.; ThaiPham, B.; Bui, D.T.; Avtar, R.; Abderrahmane, B. Machine Learning Methods for Landslide Susceptibility Studies: A Comparative Overview of Algorithm Performance. Earth-Sci. Rev. 2020, 207, 103225. [Google Scholar] [CrossRef]
- Hakimov, F.; Domej, G.; Ischuk, A.; Reicherter, K.; Cauchie, L.; Havenith, H.-B. Site Amplification Analysis of Dushanbe City Area, Tajikistan to Support Seismic Microzonation. Geosciences 2021, 11, 154. [Google Scholar] [CrossRef]
- Ozturk, U.; Pittore, M.; Behling, R.; Roessner, S.; Andreani, L.; Korup, O. How Robust Are Landslide Susceptibility Estimates? Landslides 2021, 18, 681–695. [Google Scholar] [CrossRef]
- Schlögel, R.; Marchesini, I.; Alvioli, M.; Paola, R.; Rossi, M.; Malet, J.-P. Optimizing Landslide Susceptibility Zonation: Effects of DEM Spatial Resolution and Slope Unit Delineation on Logistic Regression Models. Geomorphology 2017, 301, 10–20. [Google Scholar] [CrossRef]
- Micu, M. Landslide Types and Spatial Pattern in the Subcarpathian Area. In Landform Dynamics and Evolution in Romania; Springer Geography; Rădoane, M., Vespremeanu-Stroe, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 305–325. ISBN 978-3-319-32587-3. [Google Scholar]
- Eeckhaut, M.; Hervás, J.; Jaedicke, C.; Malet, J.-P.; Montanarella, L.; Nadim, F. Statistical Modelling of Europe-Wide Landslide Susceptibility Using Limited Landslide Inventory Data. Landslides 2012, 9, 357–369. [Google Scholar] [CrossRef]
- Micu, M.; Jurchescu, M.; Șandric, I.; Margarint, M.C.; Chițu, Z.; Micu, D.; Ciurean, R.; Ilinca, V.; Vasile, M. Mass Movements. In Landform Dynamics and Evolution in Romania; Rădoane, M., Vespremeanu-Stroe, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 765–820. ISBN 978-3-319-32587-3. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate. Hydrol. Earth Syst. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Mațenco, L. Tectonics and Exhumation of Romanian Carpathians: Inferences from Kinematic and Thermochronological Studies. In Landform Dynamics and Evolution in Romania; Rădoane, M., Vespremeanu-Stroe, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 15–56. ISBN 978-3-319-32587-3. [Google Scholar]
- Mațenco, L.; Krézsek, C.; Merten, S.; Schmid, S.; Cloetingh, S.; Andriessen, P. Characteristics of Collisional Orogens with Low Topographic Build-up: An Example from the Carpathians. Terra Nova 2010, 22, 155–165. [Google Scholar] [CrossRef]
- Badea, L.; Băcăuanu, V.; Posea, G. Relieful. In Geografia României; IGAR, Ed.; Editura Academiei Republicii Socialiste România: Bucharest, Romania, 1983; Volume 1, pp. 64–194. [Google Scholar]
- Grecu, F. Mapping Geomorphic Hazards in Romania: Small, Medium and Large Scale Representations of Land Instability/Carte Des Aléas Géomorphologiques En Roumanie: Représentation à Petite, Moyenne et Grande Échelles. Geomorphol. Relief Process. Environ. 2002, 8, 197–206. [Google Scholar] [CrossRef]
- NIEP ROMPLUS Catalogue. Available online: http://www.infp.ro/index.php?i=romplus (accessed on 9 July 2021).
- Bălteanu, D. Slope-Modelling Processes Triggered by the March 4, 1977 Earthquake in the Buzau Carpathians and Subcarpathians. Stud. Cercet. GGG-Geogr. 1979, XXVI, 43–55. [Google Scholar]
- Mândrescu, N. The Romanian Earthquake of March 4, 1977: Aspects of Soil Behaviour. Rev. Roum. Geol. Geophys. Geogr. Geophys. 1981, 25, 35–56. [Google Scholar]
- Bogdan, O. Caracterizarea Topoclimatelor. In Geogrgafia României; IGAR, Ed.; Editura Academiei Republicii Socialiste România: Bucharest, Romania, 1983; Volume I, pp. 279–287. [Google Scholar]
- Micu, M.; Balteanu, D.; Micu, D.; Zarea, R.; Raluca, R. Landslides in the Romanian Curvature Carpathians in 2010. In Geomorphological Impacts of Extreme Weather: Case Studies from Central and Eastern Europe; Lóczy, D., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 251–264. [Google Scholar]
- Micu, M. The Systematic of Landslide Processes in the Conditions of Romania’s Relief. In Landform Dynamics and Evolution in Romania; Rădoane, M., Vespremeanu-Stroe, A., Eds.; Springer Geographpy; Springer: Cham, Switzerland, 2017; pp. 249–269. ISBN 978-3-319-32587-3. [Google Scholar]
- Micu, M. Evaluarea Hazardului Legat de Alunecări de Teren În Subcarpaţii Dintre Buzău Și Teleajen. Ph.D. Thesis, Institute of Geography, Bucharest, Romania, 2008. [Google Scholar]
- Zumpano, V.; Hussin, H.; Paola, R.; Balteanu, D.; Micu, M.; Sterlacchini, S. A Landslide Susceptibility Analysis for Buzau County, Romania. Rom. J. Geogr. 2014, 58, 9–16. [Google Scholar]
- Damen, M.C.J.; Micu, M.; Zumpano, V.; Van Westen, C.J.; Sijmons, K.; Bălteanu, D. Landslide Mapping and Interpretation: Implications for Landslide Susceptibility Analysis in Discontinuous Data Environment. In Proceedings of the International Conference Analysis and Management of Changing Risks for Natural Hazards, Padua, Italy, 18–19 November 2014. [Google Scholar]
- Chițu, Z.; Istrate, A.; Adler, M.-J.; Șandric, I.; Olariu, B.; Mihai, B.-A. Comparative Study of the Methods for Assessing Landslide Susceptibility in Ialomiţa Subcarpathians, Romania. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Cham, Switzerland, 2015; Volume 2, pp. 1205–1209. ISBN 978-3-319-09056-6. [Google Scholar]
- Hussin, H.Y.; Zumpano, V.; Reichenbach, P.; Sterlacchini, S.; Micu, M.; Van Westen, C.J.; Bălteanu, D. Different Landslide Sampling Strategies in a Grid-Based Bi-Variate Statistical Susceptibility Model. Geomorphology 2016, 253, 508–523. [Google Scholar] [CrossRef]
- Jurchescu, M.; Kucsicsa, G.; Micu, M.; Sima, M.; Balteanu, D. Landslide Exposure Assessment under Environmental Change in the Romanian Subcarpathians. Stud. Geomorphol. Carpatho-Balc. 2020, LIII–LIV, 59–84. [Google Scholar]
- Süzen, M.; Doyuran, V. Data Driven Bivariate Landslide Susceptibility Assessment Using Geographical Information Systems: A Method and Application to Asarsuyu Catchment, Turkey. Eng. Geol. 2004, 71, 303–321. [Google Scholar] [CrossRef]
- Havenith, H.-B.; Torgoev, A.; Schlögel, R.; Braun, A.; Torgoev, I.; Ischuk, A. Tien Shan Geohazards Database: Landslide Susceptibility Analysis. Geomorphology 2015, 249, 32–43. [Google Scholar] [CrossRef]
- Newmark, N.M. Effective of Earthquake on Dams and Embankments. Geotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Miles, S.; Ho, C. Rigorous Landslide Hazard Zonation Using Newmark’s Method and Stochastic Ground Motion Simulation. Soil Dyn. Earthq. Eng. 1999, 18, 305–323. [Google Scholar] [CrossRef]
- Jibson, R.W.; Harp, E.L.; Michael, J.A. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California, Area; U.S. Geological Survey: Reston, VA, USA, 1998; pp. 98–113.
- Janbu, N. Slope Stability Computations. In Embankment-Dam Engeering Casagrande Volume; John Wiley Sons Inc.: New York, NY, USA, 1973; pp. 47–86. [Google Scholar]
- Keefer, D.K.; Wilson, R.C. Predicting Earthquake-Induced Landslides, with Emphasis on Arid and Semi-Arid Environments. In Landslides in a Semiarid Environment; Sadler, P.M., Morton, D.M., Eds.; Inland Geological Society of Southern California Publications: Riverside, CA, USA, 1989; Volume 2, pp. 118–149. [Google Scholar]
- Harp, E.L.; Jibson, R.W. Inventory of Landslides Triggered by the 1994 Northridge, California Earthquake; U.S. Geological Survey: Reston, VA, USA, 1995; pp. 95–213.
- Foulser-Piggott, R.; Goda, K. New Prediction Equations of Arias Intensity and Cumulative Absolute Velocity for Japanese Earthquakes. In Proceedings of the 2nd European Conference on Earthquake Engineering and Seismology, Istanbul, Turkey, 25–29 August 2014; pp. 1–11. [Google Scholar]
- Metz, C.E. Basic Principles of ROC Analysis. Semin. Nucl. Med. 1978, 8, 283–298. [Google Scholar] [CrossRef]
- Fawcett, T. ROC Graphs: Notes and Practical Considerations for Researchers. Mach. Learn. 2004, 31, 1–38. [Google Scholar]
- Lee, S. Application of Logistic Regression Model and Its Validation for Landslide Susceptibility Mapping Using GIS and Remote Sensing Data Journals. Int. J. Remote Sens. 2005, 26, 1477–1491. [Google Scholar] [CrossRef]
- Nefeslioglu, H.; Sezer, E.; Gokceoglu, C.; Bozkir, A.; Duman, T. Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of Istanbul, Turkey. Math. Probl. Eng. 2010, 2010, 901095. [Google Scholar] [CrossRef] [Green Version]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Luo, X.; Lin, F.; Zhu, S.; Yu, M.; Zhang, Z.; Meng, L.; Peng, J. Mine Landslide Susceptibility Assessment Using IVM, ANN and SVM Models Considering the Contribution of Affecting Factors. PLoS ONE 2019, 14, e0215134. [Google Scholar] [CrossRef]
- Granados-Bolaños, S.; Quesada-Román, A.; Guillermo, A. Low-Cost UAV Applications in Dynamic Tropical Volcanic Landforms. J. Volcanol. Geotherm. Res. 2020, 410, 107143. [Google Scholar] [CrossRef]
Type of Climate | Altitudes (m) | Average Annual Temperatures (°C) | Precipitation (mm/Year) |
---|---|---|---|
High mountain climate Low mountain climate Hill and plateau climate | >1700 | −2–2 | 1000–1100 |
800–1700 | 2–6 | 850–1000 | |
<300–800 | 8–10 | 500–850 | |
Lowland climate Climate of the seaside area | <200 | 10–11 | 450–600 |
>11 | <350–400 |
Coefficient | Ia (m/s) |
---|---|
1.786697 | |
4.630313 | |
1.106875 | |
−0.592696 | |
0.629011 | |
−0.903888 |
ND Scenario | Saturation Rate m | Magnitude | Depth D (km) |
---|---|---|---|
1 | 0 | 7.1 | 100 |
2 | 0 | 7.1 | 150 |
3 | 0 | 7.1 | 200 |
4 | 0 | 8 | 100 |
5 | 0 | 8 | 150 |
6 | 0 | 8 | 200 |
7 | 0.5 | 7.1 | 100 |
8 | 0.5 | 7.1 | 150 |
9 | 0.5 | 7.1 | 200 |
10 | 0.5 | 8 | 100 |
11 | 0.5 | 8 | 150 |
12 | 0.5 | 8 | 200 |
13 | 1 | 7.1 | 100 |
14 | 1 | 7.1 | 150 |
15 | 1 | 7.1 | 200 |
16 | 1 | 8 | 100 |
Map | ND (7.1; 100) | ND (8; 100) | SS | AS |
---|---|---|---|---|
ND (7.1; 100) | 0.52 | 6.19 | 0.09 | 0.03 |
ND (8; 100) | 73.96 | 1.09 | 0.33 | |
SS | 0.07 | 0.05 | ||
AS | 0.07 |
Map | ND (7.1; 100) | ND (8; 100) | SS | AS |
---|---|---|---|---|
ND (7.1; 100) | 1.0000 | 0.9998 | 0.4718 | 0.1352 |
ND (8; 100) | 1.0000 | 0.4789 | 0.1424 | |
SS | 1.0000 | 0.7133 | ||
AS | 1.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harmouzi, H.; Schlögel, R.; Jurchescu, M.; Havenith, H.-B. Landslide Susceptibility Mapping in the Vrancea-Buzău Seismic Region, Southeast Romania. Geosciences 2021, 11, 495. https://doi.org/10.3390/geosciences11120495
Harmouzi H, Schlögel R, Jurchescu M, Havenith H-B. Landslide Susceptibility Mapping in the Vrancea-Buzău Seismic Region, Southeast Romania. Geosciences. 2021; 11(12):495. https://doi.org/10.3390/geosciences11120495
Chicago/Turabian StyleHarmouzi, Hasnaa, Romy Schlögel, Marta Jurchescu, and Hans-Balder Havenith. 2021. "Landslide Susceptibility Mapping in the Vrancea-Buzău Seismic Region, Southeast Romania" Geosciences 11, no. 12: 495. https://doi.org/10.3390/geosciences11120495
APA StyleHarmouzi, H., Schlögel, R., Jurchescu, M., & Havenith, H. -B. (2021). Landslide Susceptibility Mapping in the Vrancea-Buzău Seismic Region, Southeast Romania. Geosciences, 11(12), 495. https://doi.org/10.3390/geosciences11120495