Role of Hydrothermal Fluids in the Formation of the Kamioka Skarn-Type Pb–Zn Deposits, Japan
Abstract
:1. Introduction
2. Geologic Setting and Mineralogy
3. Materials and Methods
3.1. Materials
3.2. Carbon and Oxygen Isotope Ratio Analyses
3.3. Rare Earth Element Analysis
4. Results
4.1. Carbon and Oxygen Isotope Ratio Analyses
4.2. Rare Earth Element Analysis
5. Discussion
5.1. Carbon and Oxygen Isotope Ratios of the Barren Crystalline Limestone
5.2. Carbon and Oxygen Isotope Ratios of Calcite from the Kamioka Mining District
5.3. Origin of Calcite in the Sakonishi Area
5.4. Characteristics of Carbon and Oxygen Isotope Ratios of the Kamioka Deposits
5.5. REE Geochemistry of the Kamioka Deposits
5.6. Concluding Remarks: Genesis of the Ore-Forming Fluid at the Kamioka Deposits
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakurai, W.; Shimazaki, H. Exploration of blind skarn deposits based on the mineralization model of the Kamioka mine, Gifu prefecture, central Japan. Resour. Geol. 1993, 16, 141–150. [Google Scholar]
- Morishita, Y. Three-dimensional isotopic characteristics of crystalline limestone around the Sakonishi Zn ore bodies in the Kamioka mining district, Japan. Resour. Geol. 1999, 49, 243–257. [Google Scholar] [CrossRef]
- Shieh, Y.N.; Taylor, H.P., Jr. Oxygen and carbon isotope studies of contact metamorphism in of carbonate rocks. J. Petrol. 1969, 10, 307–331. [Google Scholar] [CrossRef]
- Shimazaki, H.; Kusakabe, M. Oxygen isotope study of the Kamioka Zn-Pb skarn deposits, central Japan. Miner. Depos. 1990, 25, 221–229. [Google Scholar] [CrossRef]
- Shimazaki, H.; Kusakabe, M. D/H ratios of sericites from the Kamioka mining area. Mining Geol. 1990, 40, 385–388. [Google Scholar]
- Akiyama, S. Geologic structure of the Hida metamorphic belt and mineralization of the Kamioka-type ore deposits—Studies on regional geology and mineralization in the Kamioka district, No. 1. Mining Geol. 1980, 30, 345–362, (In Japanese with English abstract). [Google Scholar]
- Shibata, K.; Nozawa, T. Isotopic ages of the Funatsu granitic rocks. J. Jpn. Assoc. Mineral. Petrol. Econ. Geol. 1984, 79, 289–298, (In Japanese with English abstract). [Google Scholar] [CrossRef]
- Kano, T.; Shibata, K.; Terayama, S. K-Ar age of hornblende from a dioritic rock in the Tochibora ore deposit of the Kamioka mine in the Hida metamorphic region, central Japan. Mining Geol. 1989, 39, 283–288, (In Japanese with English abstract). [Google Scholar]
- Nitta, T.; Akiyama, S. Silver mineralization in the Kamioka mine. Mining Geol. 1981, 10, 175–192, (In Japanese with English abstract). [Google Scholar]
- Sohma, T.; Akiyama, S. Geological structure lithofacies in the central part of the Hida metamorphic belt. J. Geol. Soc. Jpn. 1984, 90, 609–628, (In Japanese with English abstract). [Google Scholar] [CrossRef] [Green Version]
- Akiyama, S. Recent information about the mineralization in the Kamioka mining area—Studies on regional geology and mineralization in the Kamioka district, No. 2. Mining Geol. 1981, 31, 157–168, (In Japanese with English abstract). [Google Scholar]
- Machida, M.; Otsubo, T.; Furuyado, A. Disseminated type mineralization in the Tochibora ore deposits, Kamioka mine, Gifu prefecture, Japan. Mining Geol. 1987, 37, 119–131, (In Japanese with English abstract). [Google Scholar]
- Sakurai, W.; Shiokawa, S. K-Ar Ages of the dike rocks in the Kamioka Pb-Zn skarn deposits in the Hida terrain, Japan. Resour. Geol. 1993, 43, 311–319, (In Japanese with English abstract). [Google Scholar]
- Hirokawa, M.; Hayashi, K.; Machida, M. On the exploration of the Sakonishi district in the Kamioka mining area, Gifu Prefecture. Resour. Geol. 1995, 45, 157–168, (In Japanese with English abstract). [Google Scholar]
- Nitta, T.; Fukahori, Y.; Mishima, H. On the successful exploration at the lower part of the Mozumi mining area, the Kamioka mines (No. 2). Mining Geol. 1971, 21, 84–96, (In Japanese with English abstract). [Google Scholar]
- Nagasawa, K.; Shibata, K. K-Ar ages of sericites from the Kamioka mine and its significance in geochronology of the Kamioka deposits. Mining Geol. 1985, 35, 57–65, (In Japanese with English abstract). [Google Scholar]
- Sato, K.; Uchiumi, S. K-Ar ages and mineralization of the Kamioka Pb-Zn skarn deposits in the Hida terrain, Japan. Mining Geol. 1990, 40, 389–396, (In Japanese with English abstract). [Google Scholar]
- Wada, H.; Niitsuma, N.; Saito, T. Carbon and oxygen isotopic measurements of ultra-small samples. Geosci. Rep. Shizuoka Univ. 1982, 7, 35–50, (In Japanese with English abstract). [Google Scholar]
- Morishita, Y.; Matsuhisa, Y. Measurement of carbon and oxygen isotope ratios of carbonate reference samples. Bull. Geol. Surv. Jpn. 1984, 35, 69–79, (In Japanese with English abstract). [Google Scholar]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Taylor, H.P., Jr. Oxygen and hydrogen isotope relationship in hydrothermal mineral deposits. In Geochemistry of Hydrothermalore Deposits, 3rd ed.; Barnes, H.L., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1997; pp. 229–302. [Google Scholar]
- Zang, Z.; Dong, L.; Liu, W.; Zhao, H.; Wang, X.; Cai, K.; Wan, B. Garnet U-Pb and O isotopic determinations reveal a shear-zone induced hydrothermal system. Sci. Rep. 2019, 9, 10382. [Google Scholar] [CrossRef]
- Morishita, Y.; Nishio, Y. Ore genesis of the Takatori tungsten–quartz vein deposit, Japan: Chemical and isotopic evidence. Minerals 2021, 11, 765. [Google Scholar] [CrossRef]
- Wada, H. Carbon isotopic study on graphite and carbonate in the Kamioka mining district, Gifu prefecture, central Japan, in relation to the role of graphite in the pyrometasomatic ore deposition. Miner. Depos. 1978, 13, 201–220. [Google Scholar] [CrossRef]
- Naito, K.; Fukahori, Y.; Peiming, H.; Sakurai, W.; Shimazaki, H.; Matsuhisa, Y. Oxygen and carbon isotope zonations of wall rocks around the Kamioka Pb-Zn skarn deposits, central Japan: Application to prospecting. J. Geochem. Explor. 1995, 54, 199–211. [Google Scholar] [CrossRef]
- Bottinga, Y. Calculation of fractionation factors for carbon and oxygen isotopic exchange in the system calcite-carbon dioxide-water. J. Phys. Chem. 1968, 72, 800–808. [Google Scholar] [CrossRef]
- O’Neil, J.R.; Clayton, R.N.; Mayeda, T.K. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys. 1969, 51, 5547–5558. [Google Scholar] [CrossRef]
- Fuex, A.N.; Baker, D.R. Stable carbon isotopes in selected granitic, mafic, and ultramafic igneous rocks. Geochim. Cosmochim. Acta 1973, 37, 2509–2521. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Kato, Y. Rare Earth Elements as an Indicator to Origins of Skarn Deposits: Examples of the Kamioka Zn-Pb and Yoshiwara-Sannotake Cu (-Fe) Deposits in Japan. Resour. Geol. 1999, 49, 183–198. [Google Scholar] [CrossRef]
Sample No. | Deposit | Locality | Rock Type | δ13CPDB (‰) | δ18OSMOW (‰) | Mineral Paragenesis *1/Note |
---|---|---|---|---|---|---|
83111500 | Tochibora | Maebira −250 mL *2 | “Mokuji” | −5.0 | 3.7 | Hedenbergite–sphalerite–galena–quartz–calcite/next to crystalline limestone |
83111503 | Tochibora | Maebira −250 mL | Mineralized “Inishi rock” | −6.7 | 4.3 | Calcite–quartz–sphalerite–galena/right next to “Mokuji” |
83111506a *3 | Tochibora | Maebira −250 mL | Crystalline limestone | 0.9 | 14.0 | Calcite/grayish white |
83111506b *3 | Tochibora | Maebira −250 mL | Crystalline limestone | −2.2 | 5.1 | Calcite/white |
83111507 | Tochibora | Maebira −250 mL, Shin-No.2 | Disseminated | −5.5 | 6.0 | Calcite–quartz–sphalerite in ‘Inishi rock’ |
83111508 | Tochibora | Maebira −250 mL, Shin-No.2 | Disseminated | −5.9 | 5.0 | Calcite–sphalerite–graphite in ‘Inishi rock’ |
83111509 | Tochibora | Maebira −250 mL, Shin-No.2 | Disseminated | −5.7 | 8.2 | Calcite–sphalerite–quartz in clay zone of ‘Inishi rock’ |
83111514a *3 | Tochibora | Maebira −330 mL, No.10 | Crystalline limestone | 3.9 | 20.4 | Calcite with graphite/grayish white |
83111514b *3 | Tochibora | Maebira −330 mL, No.10 | Crystalline limestone | 1.5 | 17.3 | Calcite with a small amount of graphite/grayish white |
83111515 | Tochibora | Maebira −300 mL, No.9 | Crystalline limestone | 3.4 | 13.7 | Calcite with a small amount of graphite/grayish white |
83111522 | Tochibora | Maebira −315 mL, 5 Otsu-3 | “Mokuji” | −4.9 | 9.7 | Hedenbergite–sphalerite–galena–crystalline calcite–quartz in a druce |
83111605a *3 | Mozumi | −500 mL, East No.5 | Mineralized “Inishi rock” | - | - | Calcite–quartz–sphalerite–galena/right next to crystalline limestone |
83111605b *3 | Mozumi | −500 mL, East No.5 | Crystalline limestone | 2.4 | 4.2 | Calcite/grayish white, right next to “Inishi rock” |
83111607 | Mozumi | −500 mL, East No.5 | Crystalline limestone | 2.4 | 4.8 | Calcite/ grayish white, right next to “Mokuji” ore |
83111609 | Mozumi | −500 mL, East No.5 | Crystalline limestone | 0.5 | 9.7 | Calcite/grayish white |
95072706 | Tochibora | −320 mL, 9-ban 31st ore body | Ag-rich disseminated | −5.2 | 4.2 | Calcite–quartz–graphite |
95072806 | Maruyama | −240 mL, 5 Otsu | Disseminated | −2.5 | 8.8 | Sphalerite–quartz–calcite |
96100901 | Maruyama | Kotani outcrop | “Shiroji” | −4.5 | 12.7 | Quartz–calcite–galena–sphalerite/boulder |
96100902 | Sakonishi | Underground tunnel for exploration | Disseminated | −4.4 | 3.5 | Sphalerite–galena–pyrite–calcite |
96100905 | Tochibora | Maebira outcrop 280 mL | “Mokuji” | −5.3 | 7.0 | Hedenbergite–sphalerite–galena–calcite |
98081702 | Sakonishi | 9MAHSU-2 drill core 257.2 m | Disseminated | −3.0 | 5.7 | Sphalerite–galena–calcite (Zn-rich) |
Sample No. | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
83111500 | 1.60 | 3.51 | 0.45 | 1.60 | 0.28 | 0.05 | 0.23 | 0.04 | 0.23 | 0.05 | 0.13 | 0.02 | 0.19 | 0.04 |
83111508 | 7.60 | 11.75 | 1.67 | 6.90 | 1.75 | 1.96 | 1.98 | 0.32 | 2.04 | 0.40 | 1.12 | 0.15 | 0.82 | 0.11 |
83111605a | 12.70 | 29.60 | 4.14 | 16.30 | 3.00 | 0.48 | 1.84 | 0.26 | 1.54 | 0.28 | 0.83 | 0.11 | 0.63 | 0.09 |
83111607 | 3.10 | 3.63 | 0.50 | 1.90 | 0.31 | 0.07 | 0.26 | 0.03 | 0.21 | 0.05 | 0.17 | 0.03 | 0.23 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morishita, Y.; Wada, A. Role of Hydrothermal Fluids in the Formation of the Kamioka Skarn-Type Pb–Zn Deposits, Japan. Geosciences 2021, 11, 447. https://doi.org/10.3390/geosciences11110447
Morishita Y, Wada A. Role of Hydrothermal Fluids in the Formation of the Kamioka Skarn-Type Pb–Zn Deposits, Japan. Geosciences. 2021; 11(11):447. https://doi.org/10.3390/geosciences11110447
Chicago/Turabian StyleMorishita, Yuichi, and Ayaka Wada. 2021. "Role of Hydrothermal Fluids in the Formation of the Kamioka Skarn-Type Pb–Zn Deposits, Japan" Geosciences 11, no. 11: 447. https://doi.org/10.3390/geosciences11110447
APA StyleMorishita, Y., & Wada, A. (2021). Role of Hydrothermal Fluids in the Formation of the Kamioka Skarn-Type Pb–Zn Deposits, Japan. Geosciences, 11(11), 447. https://doi.org/10.3390/geosciences11110447