Empirical Evidence for Latitude and Altitude Variation of the In Situ Cosmogenic 26Al/10Be Production Ratio
Abstract
:1. Introduction
2. Background
2.1. In Situ Cosmogenic 26Al and 10Be
2.2. Applications
2.3. Previous Constraints on 26Al/10Be Production Ratio
2.4. Indication of Spatial Variability in the 26Al/10Be Production Ratio
3. Materials and Methods
3.1. Data Sources and Sample Selection
3.2. Statistical Analyses
4. Results
4.1. Compilation Statistics
4.2. Regression Statistics
4.3. ANOVA
5. Discussion
6. Implications
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gosse, J.C.; Phillips, F.M. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat. Sci. Rev. 2001, 20, 1475–1560. [Google Scholar] [CrossRef]
- Bierman, P.R.; Marsella, K.A.; Patterson, C.; Davis, P.T.; Caffee, M. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: A multiple nuclide approach. Geomorphology 1999, 27, 25–39. [Google Scholar] [CrossRef]
- Briner, J.P.; Miller, G.H.; Davis, P.T.; Bierman, P.R.; Caffee, M. Last glacial maximum ice sheet dynamics in Arctic Canada inferred from young erratics perched on ancient tors. Quat. Sci. Rev. 2003, 22, 437–444. [Google Scholar] [CrossRef]
- Corbett, L.B.; Bierman, P.R.; Rood, D.H. Constraining multi-stage exposure-burial scenarios for boulders preserved beneath cold-based glacial ice in Thule, northwest Greenland. Earth Planet. Sci. Lett. 2016, 440, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Granger, D.E.; Kirchner, J.W.; Finkel, R.C. Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium. Geology 1997, 25, 107–110. [Google Scholar] [CrossRef]
- McPhillips, D.; Hoke, G.D.; Liu-Zeng, J.; Bierman, P.R.; Rood, D.H.; Niedermann, S. Dating the incision of the Yangtze River gorge at the First Bend using three-nuclide burial ages. Geophys. Res. Lett. 2016, 43, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Carbonell, E.; Bermúdez De Castro, J.M.; Parés, J.M.; Pérez-González, A.; Cuenca-Bescós, G.; Ollé, A.; Mosquera, M.; Huguet, R.; Van Der Made, J.; Rosas, A.; et al. The first hominin of Europe. Nature 2008, 452, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Gibbon, R.J.; Pickering, T.R.; Sutton, M.B.; Heaton, J.L.; Kuman, K.; Clarke, R.J.; Brain, C.K.; Granger, D.E. Cosmogenic nuclide burial dating of hominin-bearing Pleistocene cave deposits at Swartkrans, South Africa. Quat. Geochronol. 2014, 24, 10–15. [Google Scholar] [CrossRef]
- Granger, D.E.; Gibbon, R.J.; Kuman, K.; Clarke, R.J.; Bruxelles, L.; Caffee, M.W. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature 2015, 522, 85–88. [Google Scholar] [CrossRef]
- Nishiizumi, K. Preparation of 26Al AMS standards. In Proceedings of the Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms; Elsevier: Amsterdam, The Netherlands, 2004; Volume 223–224, pp. 388–392. [Google Scholar] [CrossRef]
- Chmeleff, J.; von Blanckenburg, F.; Kossert, K.; Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Korschinek, G.; Bergmaier, A.; Faestermann, T.; Gerstmann, U.C.; Knie, K.; Rugel, G.; Wallner, A.; Dillmann, I.; Dollinger, G.; von Gostomski, C.L.; et al. A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2010, 268, 187–191. [Google Scholar] [CrossRef]
- Lifton, N.A.; Bieber, J.W.; Clem, J.M.; Duldig, M.L.; Evenson, P.; Humble, J.E.; Pyle, R. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth Planet. Sci. Lett. 2005, 239, 140–161. [Google Scholar] [CrossRef]
- Fenton, C.R.; Niedermann, S.; Dunai, T.; Binnie, S.A. The SPICE project: Production rates of cosmogenic 21Ne, 10Be, and 14C in quartz from the 72 ka SP basalt flow, Arizona, USAu. Quat. Geochronol. 2019, 54, 101019. [Google Scholar] [CrossRef]
- Balco, G.; Briner, J.; Finkel, R.C.; Rayburn, J.A.; Ridge, J.C.; Schaefer, J.M. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quat. Geochronol. 2009, 4, 93–107. [Google Scholar] [CrossRef]
- Klein, J.; Giegengack, R.; Middleton, R.; Sharma, P.; Underwood, J.R.; Weeks, R.A. Revealing Histories of Exposure Using In Situ Produced 26Al and 10Be in Libyan Desert Glass. Radiocarbon 1986, 28, 547–555. [Google Scholar] [CrossRef] [Green Version]
- Caffee, M.W.; Granger, D.E.; Woodruff, T.E. The Gas-Filled-Magnet at PRIME Lab: Increased Sensitivity of Cosmogenic Nuclide Measurements. In Proceedings of the American Geophysical Union, Fall Meeting; American Geophysical Union: Washington, DC, USA, 2015; Volume 2015. [Google Scholar]
- Gillespie, A.R.; Bierman, P.R. Precision of terrestrial exposure ages and erosion rates estimated from analysis of cosmogenic isotopes produced in situ. J. Geophys. Res. Solid Earth 1995, 100, 24637–24649. [Google Scholar] [CrossRef]
- Argento, D.C.; Stone, J.O.; Reedy, R.C.; O’Brien, K. Physics-based modeling of cosmogenic nuclides part II—Key aspects of in-situ cosmogenic nuclide production. Quat. Geochronol. 2015, 26, 44–55. [Google Scholar] [CrossRef]
- Lifton, N.; Sato, T.; Dunai, T.J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 2014, 386, 149–160. [Google Scholar] [CrossRef]
- Corbett, L.B.; Bierman, P.R.; Rood, D.H.; Caffee, M.W.; Lifton, N.A.; Woodruff, T.E. Cosmogenic 26Al/10Be surface production ratio in Greenland. Geophys. Res. Lett. 2017, 44, 1350–1359. [Google Scholar] [CrossRef]
- Heisinger, B.; Lal, D.; Jull, A.J.T.; Kubik, P.; Ivy-Ochs, S.; Neumaier, S.; Knie, K.; Lazarev, V.; Nolte, E. Production of selected cosmogenic radionuclides by muons 1. Fast muons. Earth Planet. Sci. Lett. 2002, 200, 345–355. [Google Scholar] [CrossRef]
- Müller, A.M.; Christl, M.; Lachner, J.; Synal, H.A.; Vockenhuber, C.; Zanella, C. 26Al measurements below 500 kV in charge state 2+. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 361, 257–262. [Google Scholar] [CrossRef]
- Bierman, P.R.; Caffee, M. Cosmogenic exposure and erosion history of Australian bedrock landforms. GSA Bull. 2002, 114, 787–803. [Google Scholar] [CrossRef]
- Fujioka, T.; Fink, D.; Mifsud, C. Towards improvement of aluminium assay in quartz for in situ cosmogenic 26Al analysis at ANSTO. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 361, 346–353. [Google Scholar] [CrossRef]
- Binnie, S.A.; Dewald, A.; Heinze, S.; Voronina, E.; Hein, A.; Wittmann, H.; von Blanckenburg, F.; Hetzel, R.; Christl, M.; Schaller, M.; et al. Preliminary results of CoQtz-N: A quartz reference material for terrestrial in-situ cosmogenic 10Be and 26Al measurements. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 456, 203–212. [Google Scholar] [CrossRef]
- Phillips, F.M.; Argento, D.C.; Balco, G.; Caffee, M.W.; Clem, J.; Dunai, T.J.; Finkel, R.; Goehring, B.; Gosse, J.C.; Hudson, A.M.; et al. The CRONUS-Earth Project: A synthesis. Quat. Geochronol. 2016, 31, 119–154. [Google Scholar] [CrossRef] [Green Version]
- Jull, A.J.T.; Scott, E.M.; Bierman, P. The CRONUS-Earth inter-comparison for cosmogenic isotope analysis. Quat. Geochronol. 2015, 26, 3–10. [Google Scholar] [CrossRef]
- Portenga, E.W.; Bierman, P.R.; Duncan, C.; Corbett, L.B.; Kehrwald, N.M.; Rood, D.H. Erosion rates of the Bhutanese Himalaya determined using in situ-produced 10Be. Geomorphology 2015, 233, 112–126. [Google Scholar] [CrossRef]
- Nishiizumi, K.; Winterer, E.L.; Kohl, C.P.; Klein, J.; Middleton, R.; Lal, D.; Arnold, J.R. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. J. Geophys. Res. Solid Earth 1989, 94, 17907–17915. [Google Scholar] [CrossRef]
- Nishiizumi, K.; Kohl, C.P.; Arnold, J.R.; Klein, J.; Fink, D.; Middleton, R. Cosmic ray produced 10Be and 26Al in Antarctic rocks: Exposure and erosion history. Earth Planet. Sci. Lett. 1991, 104, 440–454. [Google Scholar] [CrossRef]
- Christ, A.J.; Bierman, P.R.; Schaefer, J.M.; Dahl-Jensen, D.; Steffensen, J.P.; Corbett, L.B.; Peteet, D.M.; Thomas, E.K.; Steig, E.J.; Rittenour, T.M.; et al. A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century. Proc. Natl. Acad. Sci. USA 2021, 118, e2021442118. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.M.; Finkel, R.C.; Balco, G.; Alley, R.B.; Caffee, M.W.; Briner, J.P.; Young, N.E.; Gow, A.J.; Schwartz, R. Greenland was nearly ice-free for extended periods during the Pleistocene. Nature 2016, 540, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Stroeven, A.P.; Fabel, D.; Hättestrand, C.; Harbor, J. A relict landscape in the centre of Fennoscandian glaciation: Cosmogenic radionuclide evidence of tors preserved through multiple glacial cycles. Geomorphology 2002, 44, 145–154. [Google Scholar] [CrossRef]
- Bierman, P.R.; Shakun, J.D.; Corbett, L.B.; Zimmerman, S.R.; Rood, D.H. A persistent and dynamic East Greenland Ice Sheet over the past 7.5 million years. Nature 2016, 540, 256–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakun, J.D.; Corbett, L.B.; Bierman, P.R.; Underwood, K.; Rizzo, D.M.; Zimmerman, S.R.; Caffee, M.W.; Naish, T.; Golledge, N.R.; Hay, C.C. Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years. Nature 2018, 558, 284–287. [Google Scholar] [CrossRef]
- Clapp, E.M.; Bierman, P.R.; Schick, A.P.; Lekach, J.; Enzel, Y.; Caffee, M. Sediment yield exceeds sediment production in arid region drainage basins. Geology 2000, 28, 995–998. [Google Scholar] [CrossRef]
- Erlanger, E.D.; Granger, D.E.; Gibbon, R.J. Rock uplift rates in South Africa from isochron burial dating of fl uvial and marine terraces. Geology 2012, 40, 1019–1022. [Google Scholar] [CrossRef]
- Granger, D.E.; Muzikar, P.F. Dating sediment burial with in situ-produced cosmogenic nuclides: Theory, techniques, and limitations. Earth Planet. Sci. Lett. 2001, 188, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Balco, G.; Rovey, C.W. An isochron method for cosmogenic-nuclide dating of buried soils and sediments. Am. J. Sci. 2008, 308, 1083–1114. [Google Scholar] [CrossRef]
- Shen, G.; Gao, X.; Gao, B.; Granger, D.E. Age of Zhoukoudian Homo erectus determined with 26Al/10Be burial dating. Nature 2009, 458, 198–200. [Google Scholar] [CrossRef] [PubMed]
- Lal, D. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 1991, 104, 424–439. [Google Scholar] [CrossRef]
- Nishiizumi, K.; Imamura, M.; Caffee, M.W.; Southon, J.R.; Finkel, R.C.; McAninch, J. Absolute calibration of 10Be AMS standards. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 258, 403–413. [Google Scholar] [CrossRef]
- Masarik, J.; Reedy, R.C. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations. Earth Planet. Sci. Lett. 1995, 136, 381–395. [Google Scholar] [CrossRef]
- Balco, G.; Stone, J.O.; Lifton, N.A.; Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 2008, 3, 174–195. [Google Scholar] [CrossRef]
- Argento, D.C.; Reedy, R.C.; Stone, J.O. Modeling the earth’s cosmic radiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 294, 464–469. [Google Scholar] [CrossRef]
- Caffee, M.W.; Nishiizumi, K.; Sisterson, J.M.; Ullmann, J.; Welten, K.C. Cross section measurements at neutron energies 71 and 112 MeV and energy integrated cross section measurements (0.1 < En < 750 MeV) for the neutron induced reactions O(n,x)10Be, Si(n,x)10Be, and Si(n,x)26Al. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2013, 294, 479–483. [Google Scholar] [CrossRef]
- Reedy, R.C. Cosmogenic-nuclide production rates: Reaction cross section update. In Proceedings of the Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms; Elsevier: Amsterdam, The Netherlands, 2013; Volume 294, pp. 470–474. [Google Scholar]
- Balco, G. Technical note: A prototype transparent-middle-layer data management and analysis infrastructure for cosmogenic-nuclide exposure dating. Geochronology 2020, 2, 169–175. [Google Scholar] [CrossRef]
- Bentley, M.J.; Fogwill, C.J.; Kubik, P.W.; Sugden, D.E. Geomorphological evidence and cosmogenic 10Be/26Al exposure ages for the Last Glacial Maximum and deglaciation of the Antarctic Peninsula Ice Sheet. GSA Bull. 2006, 118, 1149–1159. [Google Scholar] [CrossRef]
- Hochberg, Y.; Tamhane, A.C. Multiple Comparison Procedures; Wiley: New York, NY, USA, 1987. [Google Scholar]
- McGill, R.; Tukey, J.W.; Larsen, W.A. Variations of box plots. Am. Stat. 1978, 32, 12–16. [Google Scholar] [CrossRef]
- Corbett, L.B.; Bierman, P.R.; Woodruff, T.E.; Caffee, M.W. A homogeneous liquid reference material for monitoring the quality and reproducibility of in situ cosmogenic 10Be and 26Al analyses. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 456, 180–185. [Google Scholar] [CrossRef]
Estimate | SE | tStat | p Value | |
---|---|---|---|---|
Intercept | 6.86 | 0.24 | 28.26 | 8.74 × 10−88 |
Elevation | −8.97 × 10−5 | 3.09 × 10−5 | −2.91 | 0.004 |
Latitude | −3.02 × 10−4 | 0.005 | −0.07 | 0.947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halsted, C.T.; Bierman, P.R.; Balco, G. Empirical Evidence for Latitude and Altitude Variation of the In Situ Cosmogenic 26Al/10Be Production Ratio. Geosciences 2021, 11, 402. https://doi.org/10.3390/geosciences11100402
Halsted CT, Bierman PR, Balco G. Empirical Evidence for Latitude and Altitude Variation of the In Situ Cosmogenic 26Al/10Be Production Ratio. Geosciences. 2021; 11(10):402. https://doi.org/10.3390/geosciences11100402
Chicago/Turabian StyleHalsted, Christopher T., Paul R. Bierman, and Greg Balco. 2021. "Empirical Evidence for Latitude and Altitude Variation of the In Situ Cosmogenic 26Al/10Be Production Ratio" Geosciences 11, no. 10: 402. https://doi.org/10.3390/geosciences11100402
APA StyleHalsted, C. T., Bierman, P. R., & Balco, G. (2021). Empirical Evidence for Latitude and Altitude Variation of the In Situ Cosmogenic 26Al/10Be Production Ratio. Geosciences, 11(10), 402. https://doi.org/10.3390/geosciences11100402