Recent Climatic Mass Balance of the Schiaparelli Glacier at the Monte Sarmiento Massif and Reconstruction of Little Ice Age Climate by Simulating Steady-State Glacier Conditions
Abstract
:1. Introduction
1.1. Rationale
1.2. Study Site
2. Materials and Methods
2.1. Meteorological and Glaciological Observations
2.2. Reanalysis Data
2.3. Elevation and Glacier Outline
2.4. Surface Energy and Climatic Mass Balance Model
2.4.1. Climate Forcing of COSIPY
2.4.2. Uncertainty Assessment of COSIPY and OPM
2.5. Little Ice Age Estimations
3. Results and Discussion
3.1. Link between Climatic Mass Balance and Lake Level Changes
3.2. Reconstruction of LIA Climate
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AWS | Automatic Weather Station |
CDI | Cordillera Darwin Icefield |
CMB | Climatic Mass Balance |
COSIPY | Coupled Snowpack and Ice Surface Energy and Mass Balance Model in Python |
COSIMA | COupled Snowpack and Ice Surface Energy and Mass Balance Model |
ELA | Equilibrium Line Altitude |
LIA | Little Ice Age |
MSM | Monte Sarmiento Massif |
NPI | Northern Patagonia Icefield |
OPM | Orographic Precipitation Model |
PO | Precipitation Offset |
SPI | Southern Patagonia Icefield |
TO | Temperature Offset |
References
- Lopez, P.; Chevallier, P.; Favier, V.; Pouyaud, B.; Ordenes, F.; Oerlemans, J. A regional view of fluctuations in glacier length in southern South America. Glob. Planet. Chang. 2010, 71, 85–108. [Google Scholar] [CrossRef]
- Meier, W.J.H.; Grießinger, J.; Hochreuther, P.; Braun, M.H. An Updated Multi-Temporal Glacier Inventory for the Patagonian Andes With Changes Between the Little Ice Age and 2016. Front. Earth Sci. 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Melkonian, A.K.; Willis, M.J.; Pritchard, M.E.; Rivera, A.; Bown, F.; Bernstein, S.A. Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. Cryosphere 2013, 7, 823–839. [Google Scholar] [CrossRef] [Green Version]
- Strelin, J.; Casassa, G.; Rosqvist, G.; Holmlund, P. Holocene glaciations in the Ema Glacier Valley, Monte Sarmiento Massif, Tierra del Fuego. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 260, 299–314. [Google Scholar] [CrossRef]
- Masiokas, M.H.; Rivera, A.; Espizua, L.E.; Villalba, R.; Delgado, S.; Aravena, J.C. Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 242–268. [Google Scholar] [CrossRef]
- Koch, J. Little Ice Age and recent glacier advances in the Cordillera Darwin, Tierra del Fuego, Chile. Anales Instituto Patagonia (Chile) 2015, 43, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.J.H.; Aravena, J.C.; Grießinger, J.; Hochreuther, P.; Soto-Rogel, P.; Zhu, H.; Pol-Holz, R.D.; Schneider, C.; Braun, M.H. Late Holocene Glacial Fluctuations of Schiaparelli Glacier at Monte Sarmiento Massif, Tierra del Fuego (54°24′ S). Geosciences 2019, 9, 340. [Google Scholar] [CrossRef] [Green Version]
- Koch, J.; Kilian, R. ‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile. Holocene 2005, 15, 20–28. [Google Scholar] [CrossRef]
- Aniya, M. Holocene glaciations of Hielo Patagacico (Patagonia Icefield), South America: A brief review. Geochem. J. 2013, 47, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Glasser, N.F.; Harrison, S.; Winchester, V.; Aniya, M. Late Pleistocene and Holocene palaeoclimate and glacier fluctuations in Patagonia. Glob. Planet. Chang. 2004, 43, 79–101. [Google Scholar] [CrossRef]
- Kilian, R.; Lamy, F. A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55 °S). Quat. Sci. Rev. 2012, 53, 1–23. [Google Scholar] [CrossRef]
- Villalba, R.; Lara, A.; Boninsegna, J.A.; Masiokas, M.; Delgado, S.; Aravena, J.C.; Roig, F.A.; Schmelter, A.; Wolodarsky, A.; Ripalta, A. Large-Scale Temperature Changes Across the Southern Andes: 20th-Century Variations in the Context of the Past 400 Years. In Climate Variability and Change in High Elevation Regions: Past, Present & Future; Diaz, H.F., Ed.; Springer: Dordrecht, The Netherlands, 2003; pp. 177–232. [Google Scholar] [CrossRef]
- Rosenblüth, B.; Fuenzalida, H.A.; Aceituno, P. Recent temperature variations in southern South America. Int. J. Climatol. 1997, 17, 67–85. [Google Scholar] [CrossRef]
- Davies, B.; Glasser, N. Accelerating shrinkage of Patagonian glaciers from the Little Ice Age (AD 1870) to 2011. J. Glaciol. 2012, 58, 1063–1084. [Google Scholar] [CrossRef] [Green Version]
- Holmlund, P.; Fuenzalida, H. Anomalous glacier responses to 20th century climatic changes in Darwin Cordillera, southern Chile. J. Glaciol. 1995, 41, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Aniya, M.; Sato, H.; Naruse, R.; Skvarca, P.; Casassa, G. The use of satellite and airborne imagery to inventory outlet glaciers of the southern Patagonia Icefield, South America. Photogramm. Eng. Remote Sens. 1996, 62, 1361–1369. [Google Scholar]
- Rivera, A.; Casassa, G. Volume changes on Pío XI glacier, Patagonia: 1975–1995. Glob. Planet. Chang. 1999, 22, 233–244. [Google Scholar] [CrossRef]
- Rivera, A.; Benham, T.; Casassa, G.; Bamber, J.; Dowdeswell, J.A. Ice elevation and areal changes of glaciers from the Northern Patagonia Icefield, Chile. Glob. Planet. Chang. 2007, 59, 126–137. [Google Scholar] [CrossRef]
- Willis, M.J.; Melkonian, A.K.; Pritchard, M.E.; Ramage, J.M. Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing. Remote Sens. Environ. 2012, 117, 184–198. [Google Scholar] [CrossRef]
- Sakakibara, D.; Sugiyama, S. Ice-front variations and speed changes of calving glaciers in the Southern Patagonia Icefield from 1984 to 2011. J. Geophys. Res. Earth Surf. 2014, 119, 2541–2554. [Google Scholar] [CrossRef]
- Minowa, M.; Sugiyama, S.; Sakakibara, D.; Sawagaki, T. Contrasting glacier variations of Glaciar Perito Moreno and Glaciar Ameghino, Southern Patagonia Icefield. Ann. Glaciol. 2015, 56, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Malz, P.; Meier, W.; Casassa, G.; Jaña, R.; Skvarca, P.; Braun, M.H. Elevation and Mass Changes of the Southern Patagonia Icefield Derived from TanDEM-X and SRTM Data. Remote Sens. 2018, 10, 188. [Google Scholar] [CrossRef] [Green Version]
- Braun, M.H.; Malz, P.; Sommer, C.; Farías-Barahona, D.; Sauter, T.; Casassa, G.; Soruco, A.; Skvarca, P.; Seehaus, T.C. Constraining glacier elevation and mass changes in South America. Nat. Clim. Chang. 2019, 9, 130–136. [Google Scholar] [CrossRef]
- Koppes, M.; Hallet, B.; Anderson, J. Synchronous acceleration of ice loss and glacial erosion, Glaciar Marinelli, Chilean Tierra del Fuego. J. Glaciol. 2009, 55, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Dussaillant, I.; Berthier, E.; Brun, F.; Masiokas, M.; Hugonnet, R.; Favier, V.; Rabatel, A.; Pitte, P.; Ruiz, L. Two decades of glacier mass loss along the Andes. Nat. Geosci. 2019, 12, 802–808. [Google Scholar] [CrossRef]
- Masiokas, M.H.; Rabatel, A.; Rivera, A.; Ruiz, L.; Pitte, P.; Ceballos, J.L.; Barcaza, G.; Soruco, A.; Bown, F.; Berthier, E.; et al. A Review of the Current State and Recent Changes of the Andean Cryosphere. Front. Earth Sci. 2020, 8, 99. [Google Scholar] [CrossRef]
- Weidemann, S.S.; Sauter, T.; Malz, P.; Jaña, R.; Arigony-Neto, J.; Casassa, G.; Schneider, C. Glacier Mass Changes of Lake-Terminating Grey and Tyndall Glaciers at the Southern Patagonia Icefield Derived From Geodetic Observations and Energy and Mass Balance Modeling. Front. Earth Sci. 2018, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Huintjes, E.; Sauter, T.; Schröter, B.; Maussion, F.; Yang, W.; Kropáček, J.; Buchroithner, M.; Scherer, D.; Kang, S.; Schneider, C. Evaluation of a Coupled Snow and Energy Balance Model for Zhadang Glacier, Tibetan Plateau, Using Glaciological Measurements and Time-Lapse Photography. Arctic Antarctic Alpine Res. 2015, 47, 573–590. [Google Scholar] [CrossRef]
- Sauter, T.; Arndt, A.; Schneider, C. COSIPY v1.2–An open-source coupled snowpack and ice surface energy and mass balance model. Geosci. Model Dev. Discuss. 2020, 2020, 1–25. [Google Scholar] [CrossRef]
- Consortium, R. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 5.0.: Technical Report. In Global Land Ice Measurements from Space; Digital Media: Boulder, CO, USA, 2015. [Google Scholar] [CrossRef]
- Weidemann, S.; Sauter, T.; Schneider, L.; Schneider, C. Impact of two conceptual precipitation downscaling schemes on mass-balance modeling of Gran Campo Nevado ice cap, Patagonia. J. Glaciol. 2013, 59, 1106–1116. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.; Uppala, S.; Simmons, A.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hoffmann, J.; Walter, D. How Complementary are SRTM-X and-C Band Digital Elevation Models? Photogramm. Eng. Remote Sens. 2006, 72, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Reuter, H.; Nelson, A.; Guevara, E. Hole-Filled Seamless SRTM data V4; International Centre for Tropical Agriculture (CIAT): Cali, Colombia, 2008. [Google Scholar]
- Oerlemans, J. Glaciers and Climate Change; Swets and Zeitlinger: Lisse, The Netherland, 2001. [Google Scholar]
- Schaefer, M.; Machguth, H.; Falvey, M.; Casassa, G.; Rignot, E. Quantifying mass balance processes on the Southern Patagonia Icefield. Cryosphere 2015, 9, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Möller, M.; Schneider, C.; Kilian, R. Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia. Ann. Glaciol. 2007, 46, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.B.; Barstad, I. A Linear Theory of Orographic Precipitation. J. Atmos. Sci. 2004, 61, 1377–1391. [Google Scholar] [CrossRef]
- Jiang, Q.; Smith, R.B. Cloud Timescales and Orographic Precipitation. J. Atmos. Sci. 2003, 60, 1543–1559. [Google Scholar] [CrossRef]
- Barstad, I.; Smith, R.B. Evaluation of an Orographic Precipitation Model. J. Hydrometeorol. 2005, 6, 85–99. [Google Scholar] [CrossRef]
- Aguirre, F.; Carrasco, J.; Sauter, T.; Schneider, C.; Gaete, K.; Garín, E.; Adaros, R.; Butorovic, N.; Jaña, R.; Casassa, G. Snow Cover Change as a Climate Indicator in Brunswick Peninsula, Patagonia. Front. Earth Sci. 2018, 6, 130. [Google Scholar] [CrossRef]
- Crochet, P.; Jóhannesson, T.; Jónsson, T.; Sigurðsson, O.; Björnsson, H.; Pálsson, F.; Barstad, I. Estimating the Spatial Distribution of Precipitation in Iceland Using a Linear Model of Orographic Precipitation. J. Hydrometeorol. 2007, 8, 1285–1306. [Google Scholar] [CrossRef]
- Schuler, T.V.; Crochet, P.; Hock, R.; Jackson, M.; Barstad, I.; Jóhannesson, T. Distribution of snow accumulation on the Svartisen ice cap, Norway, assessed by a model of orographic precipitation. Hydrol. Process. 2008, 22, 3998–4008. [Google Scholar] [CrossRef]
- Jarosch, A.H.; Anslow, F.S.; Clarke, G.K.C. High-resolution precipitation and temperature downscaling for glacier models. Clim. Dyn. 2012, 38, 391–409. [Google Scholar] [CrossRef]
- Panofsky, H.; Brier, G. Some Applications of Statistics to Meteorology; Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences: University Park, PA, USA, 1968. [Google Scholar]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.; Skidmore, A.K.; Knowles, E. Modelling topographic variation in solar radiation in a GIS environment. Int. J. Geogr. Inf. Sci. 1997, 11, 475–497. [Google Scholar] [CrossRef]
- Huintjes, E.; Loibl, D.; Lehmkuhl, F.; Schneider, C. A modelling approach to reconstruct Little Ice Age climate from remote-sensing glacier observations in southeastern Tibet. Ann. Glaciol. 2016, 57, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Meier, W.J.H. Glacier inventory for the Patagonian Andes, link to shape files, 2018. Supplement to: Meier, Wolfgang Jens-Henrik; Grießinger, Jussi; Hochreuther, Philipp; Braun, Matthias Holger: An Updated Multi-Temporal Glacier Inventory for the Patagonian Andes With Changes Between the Little Ice Age and 2016. Front. Earth Sci. 2018, 6, 62. [Google Scholar] [CrossRef]
- Sauter, T. Revisiting extreme precipitation amounts over southern South America and implications for the Patagonian Icefields. Hydrol. Earth Syst. Sci. 2020, 24, 2003–2016. [Google Scholar] [CrossRef] [Green Version]
- Bown, F.; Rivera, A.; Zenteno, P.; Bravo, C.; Cawkwell, F. First Glacier Inventory and Recent Glacier Variation on Isla Grande de Tierra Del Fuego and Adjacent Islands in Southern Chile. In Global Land Ice Measurements from Space; Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 661–674. [Google Scholar] [CrossRef]
- Porter, C.; Santana, A. Rapid 20th century retreat of Ventisquero Marinelli in the Cordillera Darwin Icefield. An. Inst. Patagonia 2003, 31, 17–26. [Google Scholar]
- Kilian, R.; Schneider, C.; Koch, J.; Fesq-Martin, M.; Biester, H.; Casassa, G.; Arévalo, M.; Wendt, G.; Baeza, O.; Behrmann, J. Paleoecological constraints on Late Glacial and Holocene ice retreat in the Southern Andes (53° S). Glob. Planet. Chang. 2007, 59, 49–66. [Google Scholar] [CrossRef]
- Villalba, R. Climatic fluctuations in northern Patagonia during the last 1000 years as inferred from tree-ring records. Quat. Res. 1990, 34, 346–360. [Google Scholar] [CrossRef]
- Haberzettl, T.; Corbella, H.; Fey, M.; Janssen, S.; Lücke, A.; Mayr, C.; Ohlendorf, C.; Schäbitz, F.; Schleser, G.H.; Wille, M.; et al. Lateglacial and Holocene wet-dry cycles in southern Patagonia: Chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. Holocene 2007, 17, 297–310. [Google Scholar] [CrossRef]
Parameter | Value/Range | Unit | Fixed/Calculated | Source | |
---|---|---|---|---|---|
COSIPY | Total domain depth | 100 | m | F | - |
Model layer thickness | 0.1 | m | F | - | |
Ice albedo | 0.3 | - | F | [36] | |
Fresh snow albedo | 0.9 | - | F | [28] | |
Firn albedo | 0.45 | - | F | [36] | |
Initial subsurface temperature | 273.15 | C | F | [27] | |
Air temperature lapse rates | −0.67, −0.73 | C 100 m | F | [27] | |
Surface pressure gradient | −0.105 | hPa m | F | [27] | |
Snow density for | 250 | kg m | F | [28] | |
Threshold for to | 0–2.0 | C | F | [37] | |
Snow pack density profile | 250 to 550 | kg m | C | [28] | |
OPM | Uplift sensitivity factor | 0.006 * | - | C | [38] |
Water vapor scale height | 2382 * | m | C | [38] | |
Conversion/fallout time scale | 1824 * | m s | C | [39] | |
Brunt-Väisälä frequency | 0.009 * | s | C | [38] | |
Averaged falling speed | 1.3 | m s | F | [27] | |
Thresholds relative humidity | 80, 85, 90 | % | F | [38] |
Glacier | Size km | CMB m w.e. | ELAm a.s.l | P m w.e. | T C | SW W m | LW W m | Q W m | Q W m |
---|---|---|---|---|---|---|---|---|---|
Grey | 239 | +0.86 ± 0.52 | 960 ± 70 | 5.9 ± 1.0 | −2.4 ± 0.6 | 39 | −9 | 11 | −9 |
Tyndall | 301 | +0.41 ± 0.54 | 920 ± 60 | 7.1 ± 1.1 | −0.7 ± 0.5 | 45 | −18 | 16 | −7 |
Schiaparelli | 24 | −1.69 ± 0.36 | 730 ± 50 | 2.3 ± 0.3 | 0.6 ± 0.3 | 26 | −5 | 32 | −10 |
TO/PO | −10% | −5% | 0% | 5% | 10% | 15% | 20% | 25% | 30% |
---|---|---|---|---|---|---|---|---|---|
0.0 C | −1.81 | ||||||||
−0.4 C | −0.29 | −0.17 | |||||||
−0.5 C | −0.22 | −0.08 | 0.05 | ||||||
−0.6 C | −0.14 | −0.01 | 0.13 | ||||||
−0.7 C | −0.07 | 0.06 | 0.20 | ||||||
−0.8 C | −0.16 | −0.02 | 0.12 | ||||||
−0.9 C | −0.13 | 0.02 | |||||||
−1.0 C | −0.10 | 0.05 | 0.19 |
TO/PO | −10% | −5% | 0% | 5% | 10% | 15% | 20% | 25% | 30% |
---|---|---|---|---|---|---|---|---|---|
0.0 C | −1.64 | ||||||||
−0.4 C | −0.23 | −0.09 | 0.05 | ||||||
−0.5 C | −0.17 | −0.02 | 0.12 | ||||||
−0.6 C | −0.13 | 0.03 | |||||||
−0.7 C | −0.08 | 0.07 | |||||||
−0.8 C | −0.03 | 0.12 | |||||||
−0.9 C | −0.13 | 0.01 | 0.17 | ||||||
−1.0 C | 0.05 | 0.19 | 0.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weidemann, S.S.; Arigony-Neto, J.; Jaña, R.; Netto, G.; Gonzalez, I.; Casassa, G.; Schneider, C. Recent Climatic Mass Balance of the Schiaparelli Glacier at the Monte Sarmiento Massif and Reconstruction of Little Ice Age Climate by Simulating Steady-State Glacier Conditions. Geosciences 2020, 10, 272. https://doi.org/10.3390/geosciences10070272
Weidemann SS, Arigony-Neto J, Jaña R, Netto G, Gonzalez I, Casassa G, Schneider C. Recent Climatic Mass Balance of the Schiaparelli Glacier at the Monte Sarmiento Massif and Reconstruction of Little Ice Age Climate by Simulating Steady-State Glacier Conditions. Geosciences. 2020; 10(7):272. https://doi.org/10.3390/geosciences10070272
Chicago/Turabian StyleWeidemann, Stephanie Suzanne, Jorge Arigony-Neto, Ricardo Jaña, Guilherme Netto, Inti Gonzalez, Gino Casassa, and Christoph Schneider. 2020. "Recent Climatic Mass Balance of the Schiaparelli Glacier at the Monte Sarmiento Massif and Reconstruction of Little Ice Age Climate by Simulating Steady-State Glacier Conditions" Geosciences 10, no. 7: 272. https://doi.org/10.3390/geosciences10070272
APA StyleWeidemann, S. S., Arigony-Neto, J., Jaña, R., Netto, G., Gonzalez, I., Casassa, G., & Schneider, C. (2020). Recent Climatic Mass Balance of the Schiaparelli Glacier at the Monte Sarmiento Massif and Reconstruction of Little Ice Age Climate by Simulating Steady-State Glacier Conditions. Geosciences, 10(7), 272. https://doi.org/10.3390/geosciences10070272