Methane Derived Authigenic Carbonate (MDAC) Aragonite Cemented Quaternary Hardground from a Methane Cold Seep, Rathlin Basin, Northern Ireland: δ13C and δ18O Isotopes, Environment, Porosity and Permeability
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Matrix and Cement
3.2. Fauna
3.3. Isotopes
3.4. Porosity and Permeability
4. Discussion
4.1. Comparison with Other MDAC Sites
4.2. Significance of Isotopes δ18O and δ13C
4.2.1. Significance of ∂18O Distributions:
4.2.2. Trends ∂13C Isotopes
4.3. Significance of Porosity and Permeability
4.4. Hydrocarbon Potential
4.5. Conservation Habitat
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Judd, A.G. Pock Marks in the UK Sector of the North Sea; Technical Report TR_002; UK Department of Trade and Industry: London, UK, 2001.
- Judd, A.; Noble-James, T.; Golding, N.; Eggett, A.; Diesing, M.; Clare, D.; Silburn, B.; Duncan, G.; Field, L.; Milodowski, A. The Croker Carbonate Slabs: Extensive methane-derived authigenic carbonate in the Irish Sea—Nature, origin, longevity and environmental significance. Geo-Mar. Lett. 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Loyd, S.J.; Sample, J.; Tripatic, R.E.; Defliese, W.F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L.G.; Martin, R.; et al. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures. Nat. Commun. 2016, 7, 12274. [Google Scholar] [CrossRef] [Green Version]
- Field, L.P.; Milodowski, A.E.; Wagner, D.; Sloane, H.; Leng, M.J.; Marriott, A.L. Mineralogy, Petrography and Stable Isotope Study of Methane-Derived Authigenic Carbonate Slabs, CEND 23/25 Survey, Part 2; Land, Soil and coast Programme Commissioned Report CR/16/164; British Geological Survey: Nottingham, UK, 2016. [Google Scholar]
- Field, L.P.; Milodowski, A.E.; Wagner, D.; Sloane, H.; Leng, M.J.; Marriott, A.L. Mineralogy, Petrography and Stable Isotope Study of Methane-Derived Authigenic Carbonate Slabs, CEND 23/25 Survey, Part 1; Land, Soil and coast Programme Commissioned Report CR/16/164; British Geological Survey: Nottingham, UK, 2016. [Google Scholar]
- Field, L.P.; Sahy, D.; Millar, I.; Milodowski, A.E. Analysis of Methane-Derived Authigenic Carbonates (MDAC) from the Croker Carbonate Slab, CEND 23/25 Survey. Stage 2 Radiometric Dating; Land, Soil and Coast Programme Commissioned Report CR/17/028; British Geological Survey: Nottingham, UK, 2017. [Google Scholar]
- Judd, A.G. The Distribution and Extent of Methane-Derived Authigenic Carbonate; DTI Strategic Environmental Assessment, Area 6 (SEA6); Department of Trade and Industry: London, UK, 2005; p. 69.
- Judd, A.; Croker, P.; Tizzard, L.; Voisey, C. Extensive methan-derived authigenic carbonates in the Irish Sea. Geo-Mar. Lett. 2007, 27, 259–267. [Google Scholar] [CrossRef]
- Milodowski, A.E.; Lacinska, A.; Sloane, H. Petrography and Stable Isotope Geochemistry of Samples of Methane-Derived Authigenic Carbonates (MDAC) from the Mid Irish Sea; British Geological Survey Commissioned Report CR/09/051; British Geological Survey: Nottingham, UK, 2009. [Google Scholar]
- Whomersley, P.; Wilson, C.; Clements, A.; Brown, C.; Lang, D.; Leslie, A.; Limpenny, D. Understanding the Marine Environment—Seabed Habitat Investigations of Submarine Structures in the Mid Irish Sea and Solan Bank Area of Search (AoS), JNCC Report no 430; Joint Nature Conservation Committee: Peterborough, UK, 2010.
- O’Reilly, S.S.; Hryniewicz, K.; Little, C.T.S.; Monteys, X.; Szpak, M.T.; Murphy, B.T.; Jordan, S.F.; Allen, C.C.R.; Kelleher, B.P. Shallow water methane-derived authigenic carbonate mounds at the Codling Fault Zone, western Irish Sea. Mar. Geol. 2014, 357, 139–150. [Google Scholar] [CrossRef] [Green Version]
- JNNC. Offshore Special Area of Conservation: Croker Carbonate Slabs; SAC Selection Assessment Document Version 5.0 (5 September 2012); JNNC: Visakhapatnam, India, 2012; p. 18.
- Buckman, J.; Bankole, S.; Zihms, S.; Lewis, M.H.; Couples, G.D.; Corbett, P.W.M. Quantifying porosity through automated image collection and batch image processing: Case study of three carbonates and an aragonite cemented sandstone. Geosciences 2017, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, L.; Curry, G.B.; Fallick, A.E. Stable-isotope and amino acid profiles of the New Zealand giant Pliocene oyster Crussostreu ingens. Lethaia 1995, 28, 237–243. [Google Scholar] [CrossRef]
- Parkinson, D.; Curry, G.B.; Cusack, M.; Fallick, A.E. Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells. Chem. Geol. 2005, 219, 193–235. [Google Scholar] [CrossRef]
- Vigneron, A.; Bishop, A.; Alsop, E.B.; Hull, K.; Rhodes, I.; Hendricks, R.; Head, I.M.; Tsesmetzis, N. Microbial and isotopic evidence for methane cycling in hydrocarbon-containing groundwater from the Pennsylvanian region. Front. Microbiol. 2017, 8, 289. [Google Scholar] [CrossRef] [Green Version]
- Epstein, S.; Buchsbaum, R.; Lowenstam, H.; Urey, H. Revised carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull. 1953, 64, 1315–1325. [Google Scholar] [CrossRef]
- Nobuhara, T. Cold seep carbonate mounds with Vesicomya (Calyptogena) kawamurai (Bivalvia: Vesicomyidae) in slope-mud fades of the Pliocene forearc basin of the Sagara-Kakegawa area, central Japan. Paleontol. Res. 2003, 7, 313–328. [Google Scholar] [CrossRef] [Green Version]
- Kinnaman, F.S.; Kimball, J.B.; Busso, L.; Birgel, D.; Ding, H.; Hinricks, K.; Valentine, L. Gas flux and carbonate occurrence at a shallow seep of thermogenic natural gas. Geo-Mar. Lett. 2010, 30, 355–365. [Google Scholar] [CrossRef]
- Hui, Y.; Jie, C.; Jun, X. A review on bivalve shell, a tool for reconstruction of paleo-climate and paleo-environment. Chin. J. Geochem. 2014, 33, 310–315. [Google Scholar]
- Machiyama, H.; Yamada, T.; Kaneko, N.; Iryu, Y.; Odawara, K.; Asami, R.; Matsuda, H.; Mawatari, S.F.; Bone, Y.; James, N.P. Carbon and oxygen isotopes of cool-water bryozoans from the Great Australian Bight and their paleoenvironmental significance. In Ocean Drilling Program, Scientific Results Volume 182; Hine, A.C., Feary, D.A., Malone, M.J., Eds.; International Ocean Discovery Program (IODP): College Station, TX, USA, 2003; Volume 182, pp. 1–29. Available online: http://www-odp.tamu.edu/publications/182_SR/007/007.htm (accessed on 2 July 2020).
- Smith, A.M.; Nelson, C.S.; Key, M.M., Jr.; Patterson, W.P. Stable isotope values in modern bryozoan carbonate from New Zealand and implications for paleoenvironmental interpretation. New Zealand J. Geol. Geophys. 2004, 47, 809–821. [Google Scholar] [CrossRef] [Green Version]
- McCoy, S.J.; Kamenos, N.A. Coralline algae (rhodophyta) in a changing world: Integrating ecological, physiological, and geochemical responses to global change. J. Phycol. 2015, 51, 6–24. [Google Scholar] [CrossRef] [PubMed]
- Lowenstam, H.A.; Weiner, S. On Biomineralization; Oxford University Press: Oxford, UK, 1989; p. 336. [Google Scholar]
- Ballycastle Sea Temperature. Available online: https://www.seatemperature.org/europe/united-kingdom/ballycastle.htm (accessed on 2 July 2020).
- Leng, M.J.; Lewis, J.P. Oxygen isotopes in Molluscan shell: Applications in environmental archaeology. Environ. Archaeol. 2016, 21, 295–306. [Google Scholar] [CrossRef]
- Hahn, S.; Rodolfo-Metalpa, R.; Griesshaber, E.; Schmahl, W.W.; Buhl, D.; Hall-Spencer, J.M.; Baggini, C.; Fehr, K.T.; Immenhauser, A. Marine bivalve shell geochemistry and ultrastucture from modern low pH environments: Environmental effect versus experimental bias. Biogeosciences 2012, 9, 1897–1914. [Google Scholar] [CrossRef] [Green Version]
- Crémière, A.; Lepland, A.; Chand, S.; Sahy, D.; Condon, D.J.; Noble, S.R.; Martma, T.; Thornsnes, T.; Sauer, S.; Brunstad, H. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet. Nat. Commun. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, A.; Peckmann, J.; Elvert, M.; Sahling, H.; Bohrmann, G. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan. Mar. Geol. 2010, 268, 129–136. [Google Scholar] [CrossRef]
- Stolper, D.A.; Martini, A.M.; Clog, M.; Douglas, P.M.; Shusta, S.S.; Valentine, D.L.; Sessions, A.L.; Eiler, J.M. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologies. Geochim. et Cosmochim. Acta 2015, 161, 219–247. [Google Scholar] [CrossRef] [Green Version]
- Miyajima, Y.; Watanabe, Y.; Goto, A.S.; Jenkins, R.G.; Sakai, S.; Matsumoto, R.; Hasegawa, T. Archael lipid biomarker as a tool to constrain the origin of methane at ancient methane seeps: Insight into subsurface fluid flow in the geological past. J. Asian Earth Sci. 2020, 189, 104134. [Google Scholar] [CrossRef]
- Himmler, T.; Birgel, D.; Bayan, G.; Pape, T.; Ge, L.; Bohrmann, G.; Peckmann, J. Formation of seep carbonates along the Makran convergent margin, northern Arabian Sea and a molecular and isotopic approach to constrain the carbon isotopic composition of parent methane. Chem. Geol. 2015, 415, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Niemann, H.; Elvert, M.; Hovland, M.; Orcutt, B.; Judd, A.; Suck, I.; Gutt, J.; Joye, S.; Damm, E.; Finster, K.; et al. Methane emission and consumption at a North Sea gas seep (Tommeliten area). Biogeosciences 2005, 2, 335–351. [Google Scholar] [CrossRef] [Green Version]
- Niemann, H.; Elvert, M. Diagnostic lipid biomarker and stable isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Org. Geochem. 2008, 39, 1668–1677. [Google Scholar] [CrossRef]
- Pellenard, P.; Tramoy, R.; Pucéat, E.; Huret, E.; Martinez, M.; Bruneau, L.; Thierry, J. Carbon cycle and seawater palaeotemperature evolution at the Middle-late Jurassic transition, eastern Paris Basin (France). Mar. Pet. Geol. 2014, 53, 30–43. [Google Scholar] [CrossRef]
- Aucour, A.-M.; Sheppard, S.M.F.; Savoye, R. ∂13C of fluvial mollusc shells (Rhône River): A proxy for dissolved inorganic carbon? Limnol. Oceanogr. 2003, 48, 2186–2193. [Google Scholar] [CrossRef]
- Gillikin, D.P.; Lorrain, A.; Bouillon, P.W.; Dehairs, F. Stable carbon isotopic composition of Mytilus edulis shells: Relation to metabolism, salinity, ∂13CDIC and phytoplankton. Org. Geochem. 2006, 37, 1371–1382. [Google Scholar] [CrossRef] [Green Version]
- Key, M.M., Jr.; Zágorsek, K.; Patterson, W.P. Paleoenvironmental reconstruction of the Early to Middle Miocene Central Paratethys using stable isotopes from bryozoan skeletons. Int. J. Earth Sci. 2012, 102, 305–318. [Google Scholar] [CrossRef]
- Goodwin, C.; Edwards, H.; Breen, J.; Picton, B. Rathlin Island—A Survey Report from the Nationally Important Marine Features Project 2009–2011; Northern Ireland Environmental Agency Research and Development Series No. 11/03; Northern Ireland Environmental Protection Agency: Belfast, UK, 2011.
- Williams, B.; Halfar, J.; Stenede, R.S.; Wartmann, U.G.; Hetzinger, S.; Adey, W.; Lebednik, P.; Joachimski, M. Twentieth Century ∂13C variability in surface water dissolved inorganic carbon record by coralline algae in the northern North Pacific Ocean and the Bering Sea. Biogeosciences 2001, 8, 165–174. [Google Scholar] [CrossRef] [Green Version]
- Doss, W. Large serpulid worm tube aggregates indicate an abrupt mid-Holocene transition from marine to restricted hyposaline conditions. 19th Annual Keck Research Symposium in Geology Proceedings. Amherst Mass. 2006, 33–37. Available online: https://keckgeology.org/files/pdf/symvol/19th/domincanrep/doss.pdf (accessed on 2 July 2020).
- Cukrov, N.; Cukrov, M.; Lojen, S. C and N stable isotope variability in soft tissue of invasive species (Annelida, Polychaeta) Ficopomatus enigmaticus. In Proceedings of the International Symposium on Isotopes in Hydrology, Marine Ecosystems, and Climate Change Studies, Monaco, 21 March–1 April 2011. [Google Scholar]
- Videtich, P.E. Stable isotope composition of serpulids give insights to calcification processes in marine organisms. Palaios 1986, 1, 189–193. [Google Scholar] [CrossRef]
- Jiang, Z.; Wu, K.; Couples, G.; van Dijke, M.; Sorbie, K.S.; Ma, J. Efficient extraction of pore networks from three-dimensional porous media. Water Resour. Res. 2007, 43, 2578–2584. [Google Scholar] [CrossRef]
- Jiang, Z.; van Dijke, M.I.J.; Wu, K.; Couples, G.D.; Sorbie, K.S.; Ma, J. Stochastic pore network generation from 3D rock images. Transp. Porous Media 2012, 94, 571–593. [Google Scholar] [CrossRef] [Green Version]
- Buckman, J.; Chudi, O.; Lewis, H.; Couples, G.; Huang, T.; Jiang, Z. Synthetic digital rock methods to estimate the impact of quartz cementation on porosity and permeability: Assessment of Miocene turbidite sandstones and prediction of deeper Oligocene sandstones, Niger Delta Basin. J. Pet. Sci. Eng. 2020, 184, 106538. [Google Scholar] [CrossRef]
- Zwicker, J.; Smrzka, D.; Gier, S.; Goedert, J.L.; Peckmann, J. Mineralized conduits are part of the uppermost plumbing system of Oligocene methane-seep deposits, Washington State (USA). Mar. Pet. Geol. 2015, 66, 616–630. [Google Scholar] [CrossRef]
- Providence. Licence P1885. Blocks 125/18, 125/19, 125/23, 125/24, 125/25. Rathlin Basin, Offshore Northern ireland, Relinquishment Report April 2016. 2016. Available online: https://itportal.ogauthority.co.uk/web_files/relinqs/jul2016/P1885.pdf (accessed on 2 July 2020).
- Fyfe, L.-J.C.; Schofield, N.; Holford, S.; Heafford, A.; Raine, R. Geology and petroleum prospectivity of the Larne and Portpatrick basins, North Channel, offshore SW Scotland and Northern Ireland. Pet. Geosci. 2020, 26, 272–302. [Google Scholar] [CrossRef]
- Noble-James, T.; Judd, A.; Diesing, M.; Clare, D.; Eggett, A.; Silburn, B.; Duncan, G. Monitoring shallow methane-derived authigenic carbonate: Insights from a UK Marine Protected Area. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 959–976. [Google Scholar] [CrossRef]
- Naehr, T.H. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Oceanography 2007, 54, 1268–1291. [Google Scholar] [CrossRef]
Description | Comp (XRD) | ∂13C ‰ V-PDB | ∂18O ‰ V-PDB | T °C |
---|---|---|---|---|
Gastropod in hash at base | aragonite | −2.86 | 2.33 | 6 |
Large bivalve | aragonite | 1.52 | 2.07 | 7 |
Large bivalve (convex up) | aragonite | 1.23 | 3.33 | 1 |
Large bivalve (convex up) | aragonite | −1.46 | 2.45 | 5 |
Large bivalve (convex up) | LMC | −1.75 | 2.39 | 5 |
Burrowing bivalve | aragonite | −1.68 | 2.13 | 7 |
Burrowing bivalve | aragonite | −1.01 | 2.26 | 6 |
Burrowing bivalve | aragonite | −0.26 | 1.64 | 9 |
Burrowing bivalve | aragonite | −1.99 | 2.26 | 6 |
Burrowing bivalve | aragonite | −0.3 | 1.85 | 8 |
Burrowing bivalve | aragonite | −5.16 | 1.7 | 9 |
Burrowing bivalve | aragonite | −3.81 | 2.13 | 7 |
Boring bivalve | aragonite | −3.84 | 2.24 | 6 |
Boring bivalve | aragonite | −8.1 | 2.59 | 4 |
Boring bivalve | aragonite | −0.98 | 2.14 | 7 |
Boring bivalve | aragonite | −2.18 | 2.61 | 4 |
Boring bivalve | aragonite | −5.56 | 2.5 | 5 |
Boring bivalve | aragonite | 0.39 | 2.22 | 6 |
Boring bivalve (large) | aragonite | −3.14 | 2.39 | 5 |
Boring bivalve | aragonite | −5.04 | 2.45 | 5 |
Boring bivalve | aragonite | −5.76 | 2.91 | 3 |
Boring bivalve (small) | aragonite | −2.79 | 2.68 | 4 |
Bryozoan (encrusting) | LMC | −0.99 | 0.77 | 13 |
Bryozoan (encrusting) | LMC | −3.25 | 1.74 | 9 |
Bryozoan (encrusting) | LMC | −2.5 | 1.23 | 11 |
Encrusting white algae | HMC | −5.43 | 0.26 | 15 |
Encrusting white algae | HMC | −4.8 | −0.47 | 18 |
Annelid tube | INDET | −1.32 | 1.7 | 9 |
Annelid tube (Pomatoceros) | HMC | −1.34 | −0.06 | 17 |
Cement (acicular) | aragonite | −48.99 | 3 | 2 |
Cement (acicular) | aragonite | −60.09 | 3.29 | 1 |
XRT | Direction | X | Y | Z | |||
Permeability (mD) | 2515 | 23,307 | 11,732 | ||||
TinyPerm | Sample point # | 1 | 2 | 3 | 4 | 5 | 6 |
Permeability (mD) | 98.88 | 94.21 | 96.46 | 94.09 | 96.26 | 122.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buckman, J.; Donnelly, T.; Jiang, Z.; Lewis, H.; Ruffell, A. Methane Derived Authigenic Carbonate (MDAC) Aragonite Cemented Quaternary Hardground from a Methane Cold Seep, Rathlin Basin, Northern Ireland: δ13C and δ18O Isotopes, Environment, Porosity and Permeability. Geosciences 2020, 10, 255. https://doi.org/10.3390/geosciences10070255
Buckman J, Donnelly T, Jiang Z, Lewis H, Ruffell A. Methane Derived Authigenic Carbonate (MDAC) Aragonite Cemented Quaternary Hardground from a Methane Cold Seep, Rathlin Basin, Northern Ireland: δ13C and δ18O Isotopes, Environment, Porosity and Permeability. Geosciences. 2020; 10(7):255. https://doi.org/10.3390/geosciences10070255
Chicago/Turabian StyleBuckman, Jim, Terry Donnelly, Zeyun Jiang, Helen Lewis, and Alastair Ruffell. 2020. "Methane Derived Authigenic Carbonate (MDAC) Aragonite Cemented Quaternary Hardground from a Methane Cold Seep, Rathlin Basin, Northern Ireland: δ13C and δ18O Isotopes, Environment, Porosity and Permeability" Geosciences 10, no. 7: 255. https://doi.org/10.3390/geosciences10070255
APA StyleBuckman, J., Donnelly, T., Jiang, Z., Lewis, H., & Ruffell, A. (2020). Methane Derived Authigenic Carbonate (MDAC) Aragonite Cemented Quaternary Hardground from a Methane Cold Seep, Rathlin Basin, Northern Ireland: δ13C and δ18O Isotopes, Environment, Porosity and Permeability. Geosciences, 10(7), 255. https://doi.org/10.3390/geosciences10070255