Magma Fracking Beneath Active Volcanoes Based on Seismic Data and Hydrothermal Activity Observations
Abstract
:1. Introduction
2. Active Faults and Magma Fracks Based on Seismic Data Analysis
2.1. Koryaksky-Avachinsky Volcanoes
2.2. Mutnovsky and Gorely Volcanoes
2.3. Northern Group of Volcanoes
2.4. Kamchatka East Volcanic Belt and Adjacent Shelf Area
3. Hydrothermal Response to Magma Fracking
3.1. Uzon-Geysernaya Caldera Geysers
3.2. Koryaksky Narzan Thermal Springs
3.3. Mutnovsky Production Reservoir
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sigmundsson, F.; Hooper, A.; Hreinsdóttir, S.; Vogfjörd, K.S.; Ófeigsson, B.G.; Heimisson, E.R.; Drouin, V. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 2015, 517, 191–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiryukhin, A.V.; Fedotov, S.A.; Kiryukhin, P.A. A geomechanical interpretation of the local seismicity related to eruptions and renewed activity on Tolbachik, Koryaksky, and Avacha Volcanoes, Kamchatka, in 2008–2012. J. Volcanol. Seismol. 2016, 10, 275–291. [Google Scholar] [CrossRef]
- Kiryukhin, A. Analysis of magma injection beneath an active volcano using a hydromechanical numerical model. Horiz. Wells 2017, 1, 1–5. [Google Scholar]
- Kiryukhin, A.V.; Fedotov, S.A.; Chernykh, E.V. Magmatic plumbing systems of the Koryakskii–Avacha Volcanic Cluster as inferred from observations of local seismicity and from the regime of adjacent thermal springs. J. Volcanol. Seismol. 2017, 11, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Kiryukhin, A.; Lavrushin, V.; Kiryukhin, P.; Voronin, P. Geofluid systems of Koryaksky-Avachinsky volcanoes (Kamchatka, Russia). Geofluids 2017, 2017, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Kiryukhin, A.V.; Vorozheikina, L.A.; Voronin, P.О.; Kiryukhin, P.A. Thermal-Permeability structure and recharge conditions of the low temperature Paratunsky geothermal reservoirs, Kamchatka, Russia. Geothermics 2017, 70, 47–61. [Google Scholar] [CrossRef]
- Kiryukhin, A.; Polyakov, A.; Usacheva, O.; Kiryukhin, P. Thermal-permeability structure and recharge conditions of the Mutnovsky high-temperature geothermal field (Kamchatka, Russia). J. Volcanol. Geotherm. Res. 2018, 356, 36–55. [Google Scholar] [CrossRef]
- Kiryukhin, A.V.; Fedotov, S.A.; Kiryukhin, P.A. Magmatic systems and the conditions for hydrothermal circulation at depth in the klyuchevskoy volcanic cluster as inferred from observations of local seismicity and thermo-hydrodynamic simulation. J. Volcanol. Seismol. 2018, 12, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Kiryukhin, A. Modeling and observations of geyser activity in relation to catastrophic landslides–mudflows (Kronotsky nature reserve, Kamchatka, Russia). J. Volcanol. Geotherm. Res. 2016, 323, 129–147. [Google Scholar] [CrossRef]
- Zoback, M.D. Reservoir Geomechanics; Cambridge University Press: Cambridge, UK, 2010; p. 448. [Google Scholar]
- Fujii, Y.; Kodama, J.; Fukuda, D. Upper bounds of seismic events in induced seismicity. J. Open Geosci. 2010. submitted for publication. [Google Scholar]
- Chernykh, E.V.; Kiryukhin, A.V. Comparison of the geometry of seismogenic plane-sets and the mechanisms of the foci of earthquakes of the Koryaksky Volcano in 2008–2009. In Proceedings of the Geothermal Volcanology Workshop, Petropavlovsk Kamchatsky, Russia, 4–9 September 2019; pp. 58–63. [Google Scholar]
- Selyangin, O.B. Mutnovsky Volcano, Kamchatka: New evidence on structure, evolution, and future activity. J. Volcanol. Seismol. 1993, 15, 17–38. [Google Scholar]
- Selyangin, O.B. Wonderful World of Mutnovsky and Gorely Volcanoes: Volcanologic and Traveller’s Guide; Novaya Kniga: Petropavlovsk-Kamchatsky, Russia, 2009; p. 108. [Google Scholar]
- Polyak, B.G.; Melekestsev, I.V. On the output of volcanoes. J. Volcanol. Seismol. 1981, 5, 22–37. [Google Scholar]
- Kiryukhin, A.; Fedotov, S.; Solomatin, A.; Kiryukhin, P. Geomechanical interpretation of seismicity on Kamchatka Shelf: Applications for seismic forecast and hydrocarbon exploration. In Proceedings of the 20th Conference on Oil and Gas Geological Exploration and Development, Gelendzhik, Russia, 10–14 September 2018. [Google Scholar]
- Fedotov, S.A.; Maguskin, M.A.; Kirienko, A.P.; Zharinov, N.A. Vertical ground movements in the coast of the Kamchatka Gulf: their specific features in the epicentral zone on August 17, 1983 Earthquake М= 6.9, before and after. Tectonophysics 1992, 202, 157–162. [Google Scholar] [CrossRef]
- Hurwitz, S.; Clor, L.E.; McCleskey, R.B.; Nordstrom, D.K.; Hunt, A.G.; Evans, W.C. Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA. Geology 2016, 44, 235–238. [Google Scholar] [CrossRef] [Green Version]
- Kiryukhin, A.; Sugrobov, V.; Sonnenthal, E. Geysers VALLEY CO2 cycling geological engine (Kamchatka, Russia). Geofluids 2018, 2018, 1–16. [Google Scholar] [CrossRef]
- Karpov, G. Evolution of regime and physical–chemical characteristics of the new formed Geyser in Caldera Uzon (Kamchatka). J. Volcanol. Seismol. 2012, 3, 3–14. [Google Scholar]
- Kiryukhin, A.V. High temperature fluid flows in the Mutnovsky hydrothermal system, Kamchatka. Geothermics 1993, 23, 49–64. [Google Scholar] [CrossRef]
- Kiryukhin, A.V.; Takahashi, M.; Poliakov, A.Y.; Lesnykh, M.D.; Bataeva, O.P. Origin of water in the Mutnovsky geothermal field an oxygen (δ 18O) and hydrogen (δD) study. J. Volcanol. Seismol. 1999, 20, 441–450. [Google Scholar]
- Basmanov, O.L.; Kiryukhin, A.V.; Maguskin, M.A.; Dvigalo, V.N.; Rutqvist, J. Thermo-hydrogeomechanical modeling of vertical ground deformation during the operation of the Mutnovskii Geothermal Field. J. Volcanol. Seismol. 2016, 10, 138–149. [Google Scholar] [CrossRef]
- Kiryukhin, A.V.; Korneev, V.A.; Polyakov, A.Y. On possibility of relationship between strong earthquakes and anomalous pressure variations in two-phase geothermal reservoir. J. Volcanol. Seismol. 2006, 6, 3–11. [Google Scholar]
## | Data | Dip (°) | Dip Direction (°) | Mmax | N | Area km2 |
---|---|---|---|---|---|---|
1 | 02.08.11 | 39.3 | 115.1 | 2.95 | 7 | 1.4 |
2 | 28.02.16 | 70.2 | 64 | 2.45 | 7 | 1.7 |
3 | 22.08.17 | 69 | 246.3 | 1.30 | 6 | 1.0 |
4 | 14.11.17 | 78 | 291.2 | 1.25 | 17 | 11.5 |
5 | 14.11.17 | 63.7 | 283.2 | 0.85 | 8 | 10.0 |
6 | 22.04.19 | 73 | 266.5 | 1.95 | 6 | 2.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiryukhin, A.; Chernykh, E.; Polyakov, A.; Solomatin, A. Magma Fracking Beneath Active Volcanoes Based on Seismic Data and Hydrothermal Activity Observations. Geosciences 2020, 10, 52. https://doi.org/10.3390/geosciences10020052
Kiryukhin A, Chernykh E, Polyakov A, Solomatin A. Magma Fracking Beneath Active Volcanoes Based on Seismic Data and Hydrothermal Activity Observations. Geosciences. 2020; 10(2):52. https://doi.org/10.3390/geosciences10020052
Chicago/Turabian StyleKiryukhin, Alexey, Evgenia Chernykh, Andrey Polyakov, and Alexey Solomatin. 2020. "Magma Fracking Beneath Active Volcanoes Based on Seismic Data and Hydrothermal Activity Observations" Geosciences 10, no. 2: 52. https://doi.org/10.3390/geosciences10020052
APA StyleKiryukhin, A., Chernykh, E., Polyakov, A., & Solomatin, A. (2020). Magma Fracking Beneath Active Volcanoes Based on Seismic Data and Hydrothermal Activity Observations. Geosciences, 10(2), 52. https://doi.org/10.3390/geosciences10020052