Review of Explosive Hydrovolcanism
Abstract
:1. Introduction: Historic Perspective and Definitions
2. Explosive Hydrovolcanism in Large Magmatic (Polygenetic) Systems
2.1. Stratovolcanic Systems
2.2. Silicic Caldera Systems
2.3. Shield Volcanoes and Oceanic Island Volcanoes
2.4. Subglacial Volcanism
2.5. Subaqueous Volcanism
3. Explosive Hydrovolcanism in Small Magmatic (Monogenetic) Systems
4. Features Relating to Phreatomagmatism
5. Discussion on New Advances
5.1. Origin of First Authors
5.2. Age of Studied Volcanic Systems
5.3. Locations of Examined Volcanoes
5.4. Type of Examined Volcanoes
5.5. Composition of Examined Volcanoes
5.6. Methodology Used for the Examination of Hydrovolcanism
5.7. Main Topics
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lupi, M.; Geiger, S.; Carey, R.J.; Thordarson, T.; Houghton, B.F. A model for syn-eruptive groundwater flow during the phreatoplinian phase of the 28–29 March 1875 Askja volcano eruption, Iceland. J. Volcanol. Geotherm. Res. 2011, 203, 146–157. [Google Scholar] [CrossRef]
- De Rita, D.; Giordano, G.; Esposito, A.; Fabbri, M.; Rodani, S. Large volume phreatomagmatic ignimbrites from the Colli Albani Volcano (Middle Pleistocene, Italy). J. Volcanol. Geotherm. Res. 2002, 118, 77–98. [Google Scholar] [CrossRef]
- Wilson, C.J.N. The 26.5 ka Oruanui eruption, New Zealand: An introduction and overview. J. Volcanol. Geotherm. Res. 2001, 112, 133–174. [Google Scholar] [CrossRef]
- Branney, M.J. Eruption and Depositional Facies of the Whorneyside Tuff Formation, English Lake District—An Exceptionally Large- Magnitude Phreatoplinian Eruption. Geol. Soc. Am. Bull. 1991, 103, 886–897. [Google Scholar] [CrossRef]
- Stearns, H.T. Volcanism in the Mud Lake area, Idaho. Am. J. Sci. 1926, 11, 353–363. [Google Scholar] [CrossRef]
- Moore, J.G.; Nakamura, K.; Alcaraz, A. The 1966 eruption of Taal volcano. Science 1966, 155, 955–960. [Google Scholar] [CrossRef]
- Self, S.; Kienle, J.; Huot, J.P. Ukinrek Maars, Alaska 2. Deposits and formation of the 1977 craters. J.Volcanol. Geotherm. Res. 1980, 7, 39–65. [Google Scholar] [CrossRef]
- Waters, A.C.; Fisher, R.V. Base surges and its deposits: Capelinhos and Taal volcanoes. J. Geophys. Res. 1971, 76, 5596–5614. [Google Scholar] [CrossRef]
- Thorarinsson, S. The Surtsey eruption: Course of events and development of Surtsey and other new islands. Surtsey Res. Prog. Rep. 1965, II, 113–135. [Google Scholar]
- Thorarinsson, S. Surtsey. The New Island in the North Atlantic; The Viking Press: New York, NY, USA, 1967. [Google Scholar]
- Moore, J.G. Structure And Eruptive Mechanisms At Surtsey Volcano, Iceland. Geol. Mag. 1985, 122, 649–661. [Google Scholar] [CrossRef]
- Peckover, R.S.; Buchanan, D.J.; Ashby, D.E.T.F. Fuel-coolant interactions in submarine vulcanism. Nature 1973, 245, 307–308. [Google Scholar] [CrossRef]
- Gunnerson, F.S.; Cronenberg, A.W. Film boiling and vapor explosion phenomena. Nucl. Technol. 1980, 49, 380–391. [Google Scholar] [CrossRef]
- Elgenk, M.S.; Hobbins, R.R.; Macdonald, P.E. Molten fuel-coolant interaction during a reactivity initiated accident experiment. Nucl. Eng. Des. 1981, 66, 247–267. [Google Scholar] [CrossRef]
- Corradini, M.L. A proposed model for fuel-coolant mixing. Trans. Am. Nucl. Soc. 1982, 41, 415–416. [Google Scholar]
- Elgenk, M.S.; Hobbins, R.R.; Macdonald, P.E. Fragmentation of molten debris during a molten fuel coolant interaction. J. Nucl. Mat. 1983, 113, 101–117. [Google Scholar] [CrossRef]
- Wentworth, C.K. Hawaiian volcano observatory special report 3. In Ash Formations of the Island Hawaii; Hawaiian Volcano Research Association: Honolulu, HI, USA, 1938; pp. 1–183. [Google Scholar]
- Stearns, H.; Vaksvik, K. Geology and Groundwater Resources of the Island of Oahu; Hawaii Maui Publ. Co.: Maui, HI, USA, 1935; pp. 1–479. [Google Scholar]
- Kilgour, G.; Gates, S.; Kennedy, B.; Farquhar, A.; McSporran, A.; Asher, C. Phreatic eruption dynamics derived from deposit analysis: A case study from a small, phreatic eruption from Whakri/White Island, New Zealand. Earth Planets Space 2019, 71. [Google Scholar] [CrossRef]
- Battaglia, A.; Maarten de Moor, J.; Aiuppa, A.; Avard, G.; Bakkar, H.; Bitetto, M.; Mora Fernandez, M.M.; Kelly, P.; Giudice, G.; Della Donne, D.; et al. Insights Into the Mechanisms of Phreatic Eruptions From Continuous High Frequency Volcanic Gas Monitoring: Rincon de la Vieja Volcano, Costa Rica. Front. Earth Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Ueda, H.; Nagai, M.; Tanada, T. Phreatic eruptions and deformation of Ioto Island (Iwo-jima), Japan, triggered by deep magma injection. Earth Planets Space 2018, 70. [Google Scholar] [CrossRef] [Green Version]
- Miwa, T.; Nagai, M.; Kawaguchi, R. Resuspension of ash after the 2014 phreatic eruption at Ontake volcano, Japan. J.Volcanol. Geotherm. Res. 2018, 351, 105–114. [Google Scholar] [CrossRef]
- Marini, L.; Principe, C.; Chiodini, G.; Cioni, R.; Fytikas, M.; Marinelli, G. Hydrothermal Eruptions of Nisyros (Dodecanese, Greece)—Past Events and Present Hazard. J.Volcanol. Geotherm. Res. 1993, 56, 71–94. [Google Scholar] [CrossRef]
- Watson, A. Possible causes of hydrothermal eruptions. Proc. New Zealand Geotherm. Workshop 2002, 24, 91–96. [Google Scholar]
- Edwards, M.J.; Kennedy, B.M.; Jolly, A.D.; Scheu, B.; Jousset, P. Evolution of a small hydrothermal eruption episode through a mud pool of varying depth and rheology, White Island, NZ. Bull. Volcanol. 2017, 79. [Google Scholar] [CrossRef]
- Stearns, H.T.; Macdonald, G.A. Geology and Ground-Water Resources of the Island of Hawaii; Report No. 9; Honolulu Advertising: Honolulu, HI, USA, 1946. [Google Scholar]
- Pardo, N.; Cronin, S.J.; Németh, K.; Brenna, M.; Schipper, C.I.; Breard, E.; White, J.D.L.; Procter, J.; Stewart, B.; Agustin-Flores, J.; et al. Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. J. Volcanol. Geotherm. Res. 2014, 286, 397–414. [Google Scholar] [CrossRef]
- Walker, G.P.L.; Croasdale, R. Characteristics of some basaltic pyroclastics. Bull. Volcanol. 1971, 35, 303–317. [Google Scholar] [CrossRef]
- Heiken, G.; Fisher, R.V.; Negendank, J.; Brüchmann, C. Water and magma can mix—A history of the concepts of hydrovolcanism (1819–1980). In Proceedings of the International Maar Conference, Daun, Germany, 17–27 August 2000; pp. 165–189. [Google Scholar]
- Zimanowski, B.; Buettner, R. Phreatomagmatic explosions in subaqueous volcanism. In Explosive Subaqueous Volcanism; Volume Geophysical, Monographs; White, J.D.L., Smellie, J.L., Clague, D.A., Eds.; Americal Geophysical Union: Washington, DC, USA, 2003; pp. 51–60. [Google Scholar]
- Buettner, R.; Dellino, P.; Raue, H.; Sonder, I.; Zimanowski, B. Stress-induced brittle fragmentation of magmatic melts: Theory and experiments. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Grunewald, U.; Zimanowski, B.; Buettner, R.; Phillips, L.F.; Heide, K.; Buechel, G. MFCI experiments on the influence of NaCl-saturated water on phreatomagmatic explosions. J. Volcanol. Geotherm. Res. 2007, 159, 126–137. [Google Scholar] [CrossRef]
- Schmid, A.; Sonder, I.; Seegelken, R.; Zimanowski, B.; Buettner, R.; Gudmundsson, M.T.; Oddsson, B. Experiments on the heat discharge at the dynamic magma-water-interface. Geophys. Res. Lett. 2010, 37, L20311. [Google Scholar] [CrossRef]
- Sonder, I.; Harp, A.G.; Graettinger, A.H.; Moitra, P.; Valentine, G.A.; Buettner, R.; Zimanowski, B. Meter-Scale Experiments on Magma-Water Interaction. J. Geophys. Res. Solid Earth 2018, 123, 10597–10615. [Google Scholar] [CrossRef]
- Buettner, R.; Dellino, P.; La Volpe, L.; Lorenz, V.; Zimanowski, B. Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. J. Geophys. Res. 2002, 107, 1–14. [Google Scholar] [CrossRef]
- Buettner, R.; Dellino, P.; Zimanowski, B. Identifying magma-water interaction from the surface features of ash particles. Nature (London) 1999, 401, 688–690. [Google Scholar] [CrossRef]
- Zimanowski, B.; Buettner, R.; Lorenz, V. Premixing of magma and water in MFCI experiments. Bull. Volc. 1997, 58, 491–495. [Google Scholar] [CrossRef]
- Zimanowski, B.; Buettner, R.; Lorenz, V.; Haefele, H.-G. Fragmentation of basaltic melt in the course of explosive volcanism. J. Geophys. Res. 1997, 102, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, M.F.; Wohletz, K.H. Hydrovolcanism—Basic considerations and review. J.Volcanol. Geotherm. Res. 1983, 17, 1–29. [Google Scholar] [CrossRef]
- Wohletz, K.H. Mechanisms Of Hydrovolcanic Pyroclast Formation—Grain-Size, Scanning Electron-Microscopy, And Experimental Studies. J. Volcanol. Geotherm. Res. 1983, 17, 31–63. [Google Scholar] [CrossRef]
- Buchanan, D.J.; Dullforce, T.A. Mechanism for vapor explosions. Nature 1973, 245, 32–34. [Google Scholar] [CrossRef]
- Dullforce, T.A.; Buchanan, D.J.; Peckover, R.S. Self-triggering of small-scale fuel-coolant interactions. 1. Experiments. J. Phys. D Appl. Phys. 1976, 9, 1295. [Google Scholar] [CrossRef]
- Morrissey, M.M.; Zimanowski, B.; Wohletz, K.; Buettner, R.; Ballard, R.D. Phreatomagmatic Fragmentation; Academic Press: San Diego, CA, USA, 2000. [Google Scholar]
- Wohletz, K. Water/magma interaction: Some theory and experiments on peperite formation. J.Volcanol. Geotherm. Res. 2002, 114, 19–35. [Google Scholar] [CrossRef] [Green Version]
- Wohletz, K.H.; Zimanowski, B. Physics of phreatomagmatism; I: Explosion physics. In Proceedings of the International Maar Conference, Daun, Germany, 17–27 August 2000; Volume 6, pp. 515–523. [Google Scholar]
- Kokelaar, B.P. The mechanism of Surtseyan volcanism. J. Geol. Soc. London 1983, 140, 939–944. [Google Scholar] [CrossRef]
- Kokelaar, P. Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull. Volc. 1986, 48, 275–289. [Google Scholar] [CrossRef]
- Wall, S.D.; Lopes, R.M.; Stofan, E.R.; Wood, C.A.; Radebaugh, J.L.; Horst, S.M.; Stiles, B.W.; Nelson, R.M.; Kamp, L.W.; Janssen, M.A.; et al. Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: Evidence for geologically recent cryovolcanic activity. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Desch, S.J.; Neveu, M. Differentiation and cryovolcanism on Charon: A view before and after New Horizons. Icarus 2017, 287, 175–186. [Google Scholar] [CrossRef]
- Sori, M.M.; Byrne, S.; Bland, M.T.; Bramson, A.M.; Ermakov, A.I.; Hamilton, C.W.; Otto, K.A.; Ruesch, O.; Russell, C.T. The vanishing cryovolcanoes of Ceres. Geophys. Res. Lett. 2017, 44, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Hargitai, H.; Kereszturi, Á.; Choukroun, M. Cryovolcanic Features. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, Á., Eds.; Springer: New York, NY, USA, 2015; pp. 487–494. [Google Scholar]
- Brown, R.J.; Calder, E.S. Pyroclastics (Including Tuff, Ignimbrites and Ash). In Encyclopedia of Geology; Selley, R.C., Cocks, L.R.M., Plimer, I.R., Eds.; Academic Press: New York, NY, USA, 2004; pp. 386–397. [Google Scholar]
- White, J.D.L.; Schipper, C.I.; Kano, K. Chapter 31—Submarine explosive eruptions. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: New York, NY, USA, 2015; pp. 553–569. [Google Scholar]
- DeWolfe, Y.M.; Pittman, N. Subaqueous strombolian eruptions, and eruption-fed pyroclastic deposits in a Paleoproterozoic rifted-arc: Hidden formation, Flin Flon, Canada. Precamb. Res. 2018, 316, 48–65. [Google Scholar] [CrossRef]
- Graettinger, A.H.; Skilling, I.; McGarvie, D.; Hoskuldsson, A. Subaqueous basaltic magmatic explosions trigger phreatomagmatism: A case study from Askja, Iceland. J.Volcanol. Geotherm. Res. 2013, 264, 17–35. [Google Scholar] [CrossRef]
- White, J.D.L.; Smellie, J.L.; Clague, D.A. Introduction: A deductive outline and topical overview of subaqueous explosive volcanism. In Explosive Subaqueous Volcanism; Volume Geophysical Monograph Series; White, J.D.L., Smellie, J.L., Clague, A., Eds.; American Geophysical Union: Washington, DC, USA, 2003; pp. 1–23. [Google Scholar]
- Mueller, W. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples. In Explosive Subaqueous Volcanism; Volume Geophysical Monograph Series; White, J.D.L., Smellie, J.L., Clague, D.A., Eds.; American Geophysical Union: Washington, DC, USA, 2003; pp. 189–204. [Google Scholar]
- White, J.D.L. Subaqueous eruption-fed density currents and their deposits. Precamb. Res. 2000, 101, 87–109. [Google Scholar] [CrossRef]
- Smellie, J.L.; Hole, M.J. Products and processes in Pliocene-Recent, subaqueous to emergent volcanism in the Antarctic Peninsula: Examples of englacial Surtseyan volcano construction. Bull. Volc. 1997, 58, 628–646. [Google Scholar] [CrossRef]
- White, J.D.L. Pre-emergent construction of a lacustrine basaltic volcano, Pahvant Butte, Utah (USA). Bull. Volc. 1996, 58, 249–262. [Google Scholar] [CrossRef]
- Cas, R.A.F.; Giordano, G. Submarine volcanism: A review of the constraints, processes and products, and relevance to the Cabo de Gata volcanic succession. Ital. J. Geosci. 2014, 133, 362–377. [Google Scholar] [CrossRef]
- Mastin, L.G.; Witter, J.B. The hazards of eruptions through lakes and seawater. J.Volcanol. Geotherm. Res. 2000, 97, 195–214. [Google Scholar] [CrossRef]
- Kokelaar, B.P.; Durant, G.P. The submarine eruption of Surtla (Surtsey, Iceland). J.Volcanol. Geotherm. Res. 1983, 19, 239–246. [Google Scholar] [CrossRef]
- Cas, R.A.F.; Landis, C.A.; Fordyce, R.E. A monogenetic, Surtla-type, Surtseyan volcano from Eocene-Oligocene Waiareka-Deborah volcanics, Otago, New Zealand: A model. Bull. Volc. 1989, 51, 281–298. [Google Scholar] [CrossRef]
- White, J.D.L.; Valentine, G.A. Magmatic versus phreatomagmatic fragmentation: Absence of evidence is not evidence of absence. Geosphere 2016, 12, 1478–1488. [Google Scholar] [CrossRef]
- D’Oriano, C.; Poggianti, E.; Bertagnini, A.; Cioni, R.; Landi, P.; Polacci, M.; Rosi, M. Changes in eruptive style during the AD 1538 Monte Nuovo eruption (Phlegrean Fields, Italy): The role of syn-eruptive crystallization. Bull. Volc. 2005, 67, 601–621. [Google Scholar] [CrossRef]
- van Otterloo, J.; Cas, R.A.F.; Sheard, M.J. Eruption processes and deposit characteristics at the monogenetic Mt. Gambier Volcanic Complex, SE Australia: Implications for alternating magmatic and phreatomagmatic activity. Bull. Volc. 2013, 75. [Google Scholar] [CrossRef]
- Calvari, S.; Buettner, R.; Cristaldi, A.; Dellino, P.; Giudicepietro, F.; Orazi, M.; Peluso, R.; Spampinato, L.; Zimanowski, B.; Boschi, E. The 7 September 2008 Vulcanian explosion at Stromboli volcano: Multiparametric characterization of the event and quantification of the ejecta. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Wong, L.J.; Larsen, J.F. The Middle Scoria sequence: A Holocene violent strombolian, subplinian and phreatomagmatic eruption of Okmok volcano, Alaska. Bull. Volc. 2010, 72, 17–31. [Google Scholar] [CrossRef]
- Morrissey, M.M.; Mastin, L.G. Vulcanian eruptions. In Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J., Eds.; Academic Press: New York, NY, USA, 2000; pp. 463–475. [Google Scholar]
- Schumacher, R.; MuesSchumacher, U. The pre-ignimbrite (phreato) plinian and phreatomagmatic phases of the Akdag-Zelve ignimbrite eruption in Central Anatolia, Turkey. J.Volcanol. Geotherm. Res. 1997, 78, 139–153. [Google Scholar] [CrossRef]
- Wohletz, K.; Orsi, G.; Devita, S. Eruptive mechanism of the Neapolitan Yellow Tuff interpreted from stratigraphyc, chemical, and granulometric data. J.Volcanol. Geotherm. Res. 1995, 67, 263–290. [Google Scholar] [CrossRef]
- Wilson, C.J.N.; Walker, G.P.L. The Taupo eruption, New-Zealand I. General-aspects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1985, 314, 199–228. [Google Scholar] [CrossRef]
- van Otterloo, J.; Ort, M.H.; Cruden, A.R. Unique occurrence of a folded in-vent dike: New insights on magma-water mixing. Geology 2018, 46, 379–382. [Google Scholar] [CrossRef]
- Xian, B.-Z.; He, Y.-X.; Niu, H.-P.; Wang, J.-H.; Liu, J.-P.; Wang, Z. Identification of hydrovolcanism and its significance for hydrocarbon reservoir assessment: A review. J. Palaeogeogr. Engl. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Paez, G.N.; Permuy Vidal, C.; Galina, M.; Lopez, L.; Jovic, S.M.; Guido, D.M. Intrusive hyaloclastite and peperitic breccias associated to sill and cryptodome emplacement on an Early Paleocene polymagmatic compound cone-dome volcanic complex from El Guanaco mine, Northern Chile. J.Volcanol. Geotherm. Res. 2018, 354, 153–170. [Google Scholar] [CrossRef]
- Rosa, C.J.P.; McPhie, J.; Relvas, J.M.R.S. Distinguishing peperite from other sediment-matrix igneous breccias: Lessons from the Iberian Pyrite Belt. J. Volcanol. Geotherm. Res. 2016, 315, 28–39. [Google Scholar] [CrossRef]
- Graettinger, A.H.; Skilling, I.P.; McGarvie, D.; Hoskuldsson, A. Intrusion of basalt into frozen sediments and generation of Coherent-Margined Volcaniclastic Dikes (CMVDs). J.Volcanol. Geotherm. Res. 2012, 217, 30–38. [Google Scholar] [CrossRef]
- Schipper, C.I.; White, J.D.L.; Zimanowski, B.; Buttner, R.; Sonder, I.; Schmid, A. Experimental interaction of magma and “dirty” coolants. Earth Planet. Sci. Lett. 2011, 303, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Németh, K.; White, C.M. Intra-vent peperites related to the phreatomagmatic 71 Gulch Volcano, western Snake River Plain volcanic field, Idaho (USA). J.Volcanol. Geotherm. Res. 2009, 183, 30–41. [Google Scholar] [CrossRef]
- Martin, U.; Németh, K. Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. J.Volcanol. Geotherm. Res. 2007, 159, 164–178. [Google Scholar] [CrossRef]
- White, J.D.L.; Houghton, B.F. Primary volcaniclastic rocks. Geology 2006, 34, 677–680. [Google Scholar] [CrossRef]
- Martin, U.; Nemeth, K. Peperitic lava lake-fed sills at Sag-hegy, western Hungary: A complex interaction of a wet tephra ring and lava. Geol. Soc. Spec. Publ. 2004, 234, 33–50. [Google Scholar] [CrossRef]
- Zimanowski, B.; Buttner, R. Dynamic mingling of magma and liquefied sediments. J.Volcanol. Geotherm. Res. 2002, 114, 37–44. [Google Scholar] [CrossRef]
- Skilling, I.P.; White, J.D.L.; McPhie, J. Peperite: A review of magma-sediment mingling. J.Volcanol. Geotherm. Res. 2002, 114, 1–17. [Google Scholar] [CrossRef] [Green Version]
- White, J.D.L.; McPhie, J.; Skilling, I. Peperite: A useful genetic term. Bull. Volc. 2000, 62, 65–66. [Google Scholar] [CrossRef]
- Watton, T.J.; Jerram, D.A.; Thordarson, T.; Davies, R.J. Three-dimensional lithofacies variations in hyaloclastite deposits. J.Volcanol. Geotherm. Res. 2013, 250, 19–33. [Google Scholar] [CrossRef]
- Soriano, C.; Giordano, G.; Cas, R.; Riggs, N.; Porreca, M. Facies architecture, emplacement mechanisms and eruption style of the submarine andesite El Barronal complex, Cabo de Gata, SE Spain. J.Volcanol. Geotherm. Res. 2013, 264, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Németh, K.; Pécskay, Z.; Martin, U.; Gméling, K.; Molnár, F.; Cronin, S.J. Hyaloclastites, peperites and soft-sediment deformation textures of a shallow subaqueous Miocene rhyolitic dome-cryptodome complex, Pálháza, Hungary. In Structure and Emplacement of High-Level Magmatic Systems Geological Society, London, Special Publications; Thomson, K., Petford, N., Eds.; The Geological Society of London: London, UK, 2008; pp. 61–83. [Google Scholar]
- Befus, K.S.; Hanson, R.E.; Breyer, J.A.; Busby, A.B. Nonexplosive magma/wet-sediment interaction and explosive phreatomagmatism associated with Eocene basaltic intrusions, Big Bend area, West Texas. Abstr. Programs Geol. Soc. Am. 2006, 38, 564. [Google Scholar]
- Doyle, M.G. Clast shape and textural associations in peperite as a guide to hydromagmatic interactions: Upper Permian basaltic and basaltic andesite examples from Kiama, Australia. Aust. J. Earth Sci. 2000, 47, 167–177. [Google Scholar] [CrossRef]
- Batiza, R.; White, J.D.L. Submarine lavas and hyaloclastite. In Encyclopedia of Volcanoes; Sigurdsson, H., Houghton, B.F., McNutt, S.R., Stix, H.R., Eds.; Academic Press: New York, NY, USA, 2000; pp. 361–381. [Google Scholar]
- Smellie, J.L.; Edwards, B.R. Glaciovolcanism on Earth and Mars: Products, Processes and Palaeoenvironmental Significance; Cambridge University Press: Cambridge, UK, 2016; ISBN 13 978-1107037397. [Google Scholar]
- Smith, I.E.M.; Németh, K. Source to surface model of monogenetic volcanism: A critical review. In Monogenetic Volcanism; Volume Geological Society of London, Special Publications Geological Society of London Special Publications; Németh, K., Carrasco-Nuñez, G., Aranda-Gomez, J.J., Smith, I.E.M., Eds.; The Geological Society Publishing House: London, UK, 2017; pp. 1–28. [Google Scholar]
- Németh, K.; Kereszturi, G. Monogenetic volcanism: Personal views and discussion. Int. J. Earth Sci. 2015, 104, 2131–2146. [Google Scholar] [CrossRef]
- de Silva, S.; Lindsay, J.M. Chapter 15—Primary volcanic landforms. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: New York, NY, USA, 2015; pp. 273–297. [Google Scholar]
- Edwards, B.R.; Gudmundsson, M.T.; Russell, J.K. Chapter—Glaciovolcanism. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: New York, NY, USA, 2015; pp. 377–393. [Google Scholar]
- Gudmundsson, M.T. Chapter—Hazards from Lahars and Jökulhlaups. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: New York, NY, USA, 2015; pp. 971–984. [Google Scholar]
- Nakagawa, M.; Nairn, I.A.; Kobayashi, T. The similar to 10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand—Part 2. Petrological insights into magma storage and transport during regional extension. J.Volcanol. Geotherm. Res. 1998, 86, 45–65. [Google Scholar] [CrossRef]
- Hobden, B.J.; Houghton, B.F.; Lanphere, M.A.; Nairn, I.A. Growth of the Tongariro volcanic complex: New evidence from K-Ar age determinations. N. Z. J. Geol. Geophys. 1996, 39, 151–154. [Google Scholar] [CrossRef]
- Donoghue, S.L.; Neall, V.E.; Palmer, A.S. Stratigraphy and chronology of late Quaternary andesitic tephra deposits, Tongariro Volcanic Centre, New Zealand. J. Royal Soc. N. Z. 1995, 25, 115–206. [Google Scholar] [CrossRef] [Green Version]
- Lachowycz, S.M.; Pyle, D.M.; Gilbert, J.S.; Mather, T.A.; Mee, K.; Naranjo, J.A.; Hobbs, L.K. Glaciovolcanism at Volcan Sollipulli, southern Chile: Lithofacies analysis and interpretation. J.Volcanol. Geotherm. Res. 2015, 303, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Mee, K.; Tuffen, H.; Gilbert, J.S. Snow-contact volcanic facies and their use in determining past eruptive environments at Nevados de Chillan volcano, Chile. Bull. Volc. 2006, 68, 363–376. [Google Scholar] [CrossRef]
- Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L. Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: A case study of frequent large avalanches on Iliamna Volcano, Alaska. J.Volcanol. Geotherm. Res. 2007, 168, 114–136. [Google Scholar] [CrossRef]
- Capra, L.; Bernal, J.P.; Carrasco-Nunez, G.; Roverato, M. Climatic fluctuations as a significant contributing factor for volcanic collapses. Evidence from Mexico during the Late Pleistocene. Glob. Planet. Chang. 2013, 100, 194–203. [Google Scholar] [CrossRef]
- Cole, R.P.; White, J.D.L.; Conway, C.E.; Leonard, G.S.; Townsend, D.B.; Pure, L.R. The glaciovolcanic evolution of an andesitic edifice, South Crater, Tongariro volcano, New Zealand. J.Volcanol. Geotherm. Res. 2018, 352, 55–77. [Google Scholar] [CrossRef]
- Manville, V.; Hodgson, K.A.; Houghton, B.F.; Keys, J.R.H.; White, J.D.L. Tephra, snow and water: Complex sedimentary responses at an active snow-capped stratovolcano, Ruapehu, New Zealand. Bull. Volc. 2000, 62, 278–293. [Google Scholar] [CrossRef]
- Conway, C.E.; Townsend, D.B.; Leonard, G.S.; Wilson, C.J.N.; Calvert, A.T.; Gamble, J.A. Lava-ice interaction on a large composite volcano: A case study from Ruapehu, New Zealand. Bull. Volc. 2015, 77. [Google Scholar] [CrossRef]
- Kilgour, G.; Manville, V.; Della Pasqua, F.; Graettinger, A.; Hodgson, K.A.; Jolly, G.E. The 25 September 2007 eruption of Mount Ruapehu, New Zealand: Directed ballistics, surtseyan jets, and ice-slurry lahars. J.Volcanol. Geotherm. Res. 2010, 191, 1–14. [Google Scholar] [CrossRef]
- Hurwitz, S.; Kipp, K.L.; Ingebritsen, S.E.; Reid, M.E. Groundwater flow, heat transport, and water table position within volcanic edifices: Implications for volcanic processes in the Cascade Range. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Celico, P.; Summa, G. Occurrence and development of groundwater in the Vulture Volcano (Basilicata). Boll. Del. Soc. Geol. Ital. 2004, 123, 343–356. [Google Scholar]
- Christenson, B.; Németh, K.; Rouwet, D.; Tassi, F.; Vandemeulebrouck, J.; Varekamp, J.C. Volcanic Lakes. In Volcanic Lakes Advances in Volcanology; Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J., Eds.; Springer: New York, NY, USA, 2015; pp. 1–20. [Google Scholar]
- Houghton, B.F.; Latter, J.H.; Hackett, W.R. Volcanic hazard assessment for Ruapehu composite volcano, Taupo volcanic zone, New Zealand. Bull. Volc. 1987, 49, 737–751. [Google Scholar] [CrossRef]
- Cronin, S.J.; Neall, V.E.; Lecointre, J.A.; Palmer, A.S. Unusual “snow slurry” lahars from Ruapehu volcano, New Zealand, September 1995. Geology 1996, 24, 1107–1110. [Google Scholar] [CrossRef]
- Donoghue, S.L.; Neall, V.E.; Palmer, A.S.; Stewart, R.B. The volcanic history of Ruapehu during the past 2 millennia based on the record of Tufa Trig tephras. Bull. Volc. 1997, 59, 136–146. [Google Scholar] [CrossRef]
- Manville, V.; Hodgson, K.A.; White, J.D.L. Rheological properties of a remobilised-tephra lahar associated with the 1995 eruptions of Ruapehu volcano, New Zealand. N. Z. J. Geol. Geophys. 1998, 41, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Manville, V.; Hodgson, K.A.; Nairn, I.A. A review of break-out floods from volcanogenic lakes in New Zealand. N. Z. J. Geol. Geophys. 2007, 50, 131–150. [Google Scholar] [CrossRef]
- Pardo, N.; Cronin, S.J.; Palmer, A.S.; Nemeth, K. Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: Lithostratigraphic tools to understand subplinian-plinian eruptions at andesitic volcanoes. Bull. Volc. 2012, 74, 617–640. [Google Scholar] [CrossRef]
- Rowe, G.L.; Brantley, S.L.; Fernandez, M.; Fernandez, J.F.; Borgia, A.; Barquero, J. Fluid-voclano interaction in an active stratovolcano—The crater lake system of Poas Voclano, Costa Rica. J.Volcanol. Geotherm. Res. 1992, 49, 23–51. [Google Scholar] [CrossRef]
- Salvage, R.O.; Avard, G.; Maarten de Moor, J.; Pacheco, J.F.; Brenes Marin, J.; Cascante, M.; Muller, C.; Martinez Cruz, M. Renewed Explosive Phreatomagmatic Activity at Poas Volcano, Costa Rica in April 2017. Front. Earth Sci. 2018, 6. [Google Scholar] [CrossRef]
- Avery, M.R.; Panter, K.S.; Gorsevski, P.V. Distinguishing styles of explosive eruptions at Erebus, Redoubt and Taupo volcanoes using multivariate analysis of ash morphometrics. J.Volcanol. Geotherm. Res. 2017, 332, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Geshi, N.; Itoh, J.i. Pyroclastic density currents associated with the 2015 phreatomagmatic eruption of the Kuchinoerabujima volcano. Earth Plants Space 2018, 70. [Google Scholar] [CrossRef]
- Miyabuchi, Y.; Iizuka, Y.; Hara, C.; Yokoo, A.; Ohkura, T. The September 14, 2015 phreatomagmatic eruption of Nakadake first crater, Aso Volcano, Japan: Eruption sequence inferred from ballistic, pyroclastic density current and fallout deposits. J.Volcanol. Geotherm. Res. 2018, 351, 41–56. [Google Scholar] [CrossRef]
- Laiolo, M.; Coppola, D.; Barahona, F.; Benitez, J.E.; Cigolini, C.; Escobar, D.; Funes, R.; Gutierrez, E.; Henriquez, B.; Hernandez, A.; et al. Evidences of volcanic unrest on high-temperature fumaroles by satellite thermal monitoring: The case of Santa Ana volcano, El Salvador. J.Volcanol. Geotherm. Res. 2017, 340, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Vidal, C.M.; Komorowski, J.-C.; Metrich, N.; Pratomo, I.; Kartadinata, N.; Prambada, O.; Michel, A.; Carazzo, G.; Lavigne, F.; Rodysill, J.; et al. Dynamics of the major plinian eruption of Samalas in 1257 AD (Lombok, Indonesia). Bull. Volc. 2015, 77. [Google Scholar] [CrossRef]
- Cioni, R.; Sulpizio, R.; Garruccio, N. Variability of the eruption dynamics during a Subplinian event: The Greenish Pumice eruption of Somma-Vesuvius (Italy). J.Volcanol. Geotherm. Res. 2003, 124, 89–114. [Google Scholar] [CrossRef]
- Rolandi, G.; Mastrolorenzo, G.; Barrella, A.M.; Borrelli, A. The Avellino Plinian eruption of Somma-Vesuvius (3760 Y Bp)—The progressive evolution from magmatic to hydromagmatic style. J.Volcanol. Geotherm. Res. 1993, 58, 67–88. [Google Scholar] [CrossRef]
- Aravena, A. Stability of volcanic conduits: Critical mechanical parameters. II Nuovo Cimento 2017, 40. [Google Scholar] [CrossRef]
- Aravena, A.; Vitturi, M.d.M.; Cioni, R.; Neri, A. Physical constraints for effective magma-water interaction along volcanic conduits during silicic explosive eruptions. Geology 2018, 46, 867–870. [Google Scholar] [CrossRef]
- Rolandi, G.; Munno, R.; Postiglione, I. The AD 472 eruption of the Somma volcano. J.Volcanol. Geotherm. Res. 2004, 129, 291–319. [Google Scholar] [CrossRef]
- Delmelle, P.; Henley, R.W.; Bernard, A. Chapter 48—Volcano-related lakes. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: New York, NY, USA, 2015; pp. 851–864. [Google Scholar]
- Rouwet, D.; Morrissey, M.M. Mechanisms of crater lake breaching eruptions. In Volcanic Lakes; Rouwet, D., Christenson, B., Tassi, F., Vandemeulebrouck, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 73–91. [Google Scholar]
- Nobuo, G.; Masato, I.; Hiroshi, S. Phreatomagmatic eruptions of 2014 and 2015 in Kuchinoerabujima Volcano triggered by a shallow intrusion of magma. J. Nat. Dis. Sci. 2016, 37, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Tuffen, H. Subglacial Volcanism. In Encyclopedia of Snow, Ice and Glaciers; Singh, V.P., Singh, P., Haritashya, U.K., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 1105–1106. [Google Scholar]
- Smellie, J.L. Subglacial eruptions. In Encyclopaedia of Volcanoes, 1st ed.; Sigurðsson, H., Houghton, B.F., McNutt, S.R., Rymer, H., Stix, J., Eds.; Academic Press: New York, NY, USA, 2000; pp. 403–418. [Google Scholar]
- Kósik, S.; Németh, K.; Kereszturi, G.; Procter, J.N.; Zellmer, G.F.; Geshi, N. Phreatomagmatic and water-influenced Strombolian eruptions of a small-volume parasitic cone complex on the southern ringplain of Mt. Ruapehu, New Zealand: Facies architecture and eruption mechanisms of the Ohakune Volcanic Complex controlled by an unstable fissure eruption. J.Volcanol. Geotherm. Res. 2016, 327, 99–115. [Google Scholar] [CrossRef]
- Branney, M.; Acocella, V. Chapter 16—Calderas. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: New York, NY, USA, 2015; pp. 299–315. [Google Scholar]
- Todde, A.; Cioni, R.; Pistolesi, M.; Geshi, N.; Bonadonna, C. The 1914 Taisho eruption of Sakurajima volcano: Stratigraphy and dynamics of the largest explosive event in Japan during the twentieth century. Bull. Volc. 2017, 79. [Google Scholar] [CrossRef]
- Yokoyama, I. An interpretation of the 1914 eruption of Sakurajima volcano. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 1997, 73, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Geyer, A.; Marti, J. The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes. J.Volcanol. Geotherm. Res. 2008, 175, 334–354. [Google Scholar] [CrossRef] [Green Version]
- Goto, Y.; Suzuki, K.; Shinya, T.; Yamauchi, A.; Miyoshi, M.; Danhara, T.; Tomiya, A. Stratigraphy and Lithofacies of the Toya Ignimbrite in Southwestern Hokkaido, Japan: Insights into the Caldera-forming Eruption at Toya Caldera. J. Geogr. Chigaku Zasshi 2018, 127, 191–227. [Google Scholar] [CrossRef]
- Hasegawa, T.; Nakagawa, M. Large scale explosive eruptions of Akan volcano, eastern Hokkaido, Japan: A geological and petrological case study for establishing tephro-stratigraphy and -chronology around a caldera cluster. Quart. Int. 2016, 397, 39–51. [Google Scholar] [CrossRef]
- Milner, D.M.; Cole, J.W.; Wood, C.P. Mamaku Ignimbrite: A caldera-forming ignimbrite erupted from a compositionally zoned magma chamber in Taupo Volcanic Zone, New Zealand. J.Volcanol. Geotherm. Res. 2003, 122, 243–264. [Google Scholar] [CrossRef]
- Allen, S.R. Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea. J.Volcanol. Geotherm. Res. 2001, 105, 141–162. [Google Scholar] [CrossRef]
- Smith, R.; Houghton, B.F. Heterogeneous and episodic large scale phreatomagmatic volcanism; Unit 4 (Rotongaio Ash) of the Taupo eruption. Geol. Soc. N. Z. Misc. Publ. 1998, 101A, 208. [Google Scholar]
- Van Eaton, A.R.; Wilson, C.J.N. The nature, origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui, New Zealand. J.Volcanol. Geotherm. Res. 2013, 250, 129–154. [Google Scholar] [CrossRef]
- Biró, T.; Hencz, M.; Németh, K.; Karátson, D.; Márton, E.; Szakács, A.; Bradak, B.; Szalai, Z.; Pécskay, Z.; Kovács, I.J. Miocene phreatoplinian eruption in a wet lowland setting in the North-Eastern Pannonian Basin, Hungary. J. Volcanol. Geotherm. Res. 2019. in review. [Google Scholar]
- Self, S.; Sparks, R.S.J. Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bull. Volc. 1978, 41, 197–212. [Google Scholar] [CrossRef]
- Kósik, S.; Németh, K.; Procter, J.N.; Stewart, R.B. Shallow subaqueous to emergent intra-caldera silicic volcanism of the Motuoapa Peninsula, Taupo Volcanic Zone, New Zealand. Bull. Volc. 2019. in review. [Google Scholar]
- Poland, M.P.; Orr, T.R. Identifying hazards associated with lava deltas. Bull. Volc. 2014, 76. [Google Scholar] [CrossRef]
- Németh, K.; Cronin, S.J. Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu. J.Volcanol. Geotherm. Res. 2009, 180, 246–258. [Google Scholar] [CrossRef]
- Németh, K.; Cronin, S.J. Drivers of explosivity and elevated hazard in basaltic fissure eruptions: The 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). J.Volcanol. Geotherm. Res. 2011, 201, 194–209. [Google Scholar] [CrossRef]
- Németh, K.; Cronin, S.J. Volcanic structures and oral traditions of volcanism of Western Samoa (SW Pacific) and their implications for hazard education. J.Volcanol. Geotherm. Res. 2009, 186, 223–237. [Google Scholar] [CrossRef]
- Jurado-Chichay, Z.; Rowland, S.K.; Walker, G.P.L. The formation of circular littoral cones from tube-fed pahoehoe; Mauna Loa, Hawai’i. Bull. Volc. 1996, 57, 471–482. [Google Scholar] [CrossRef]
- Fisher, R.V. Puu Hou littoral cones, Hawaii. Geol. Rundsch. 1968, 57, 837–864. [Google Scholar] [CrossRef]
- Reynolds, P.; Brown, R.J.; Thordarson, T.; Llewellin, E.W.; Fielding, K. Rootless cone eruption processes informed by dissected tephra deposits and conduits. Bull. Volc. 2015, 77. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.W.; Thordarson, T.; Fagents, S.A. Explosive lava-water interactions I: Architecture and emplacement chronology of volcanic rootless cone groups in the 1783-1784 Laki lava flow, Iceland. Bull. Volc. 2010, 72, 449–467. [Google Scholar] [CrossRef]
- Németh, K.; Cronin, S.J.; Charley, D.; Harrison, M.; Garae, E. Exploding lakes in Vanuatu—“Surtseyan-style” eruptions witnessed on Ambae Island. Episodes 2006, 29, 87–92. [Google Scholar] [CrossRef]
- McPhie, J.; Walker, G.P.L.; Christiansen, R.L. Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea Volcano, Hawaii, 1790 AD—Keanakakoi Ash Member. Bull. Volc. 1990, 52, 334–354. [Google Scholar] [CrossRef]
- Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M. The Uwekahuna Ash Member of the Puna Basalt—Product of violent phreatomagmatic eruptions at Kilauea Volcano, Hawaii, between 2800 and 2100 C-14 Years Ago. J.Volcanol. Geotherm. Res. 1995, 66, 163–184. [Google Scholar] [CrossRef]
- Mastin, L.G. Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii. J. Geophys. Res. Solid Earth 1997, 102, 20093–20109. [Google Scholar] [CrossRef]
- Jakobsson, S.P.; Gudmundsson, M.T. Subglacial and intraglacial volcanic formations in Iceland. Jökull 2008, 58, 179–196. [Google Scholar]
- Gudmundsson, A. Melting of ice by magma-ice-water interactions during subglacial eruptions as an indicator of heat transfer in subaqueous eruptions. In Explosive Subaqueous Volcanism; Volume Geophysical Monograph Series; White, J.D.L., Smellie, J.L., Clague, D.A., Eds.; American Geophysical Union: Washington, DC, USA, 2003; pp. 61–72. [Google Scholar]
- Stevenson, J.A.; McGarvie, D.W.; Smellie, J.L.; Gilbert, J.S. Subglacial and ice-contact volcanism at the Oraefajokull stratovolcano, Iceland. Bull. Volc. 2006, 68, 737–752. [Google Scholar] [CrossRef]
- Gudmundsson, M.T.; Thordarson, T.; Hoskuldsson, A.; Larsen, G.; Bjornsson, H.; Prata, F.J.; Oddsson, B.; Magnusson, E.; Hognadottir, T.; Petersen, G.N.; et al. Ash generation and distribution from the April-May 2010 eruption of Eyjafjallajokull, Iceland. Sci. Rep. 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Schmith, J.; Hoskuldsson, A.; Holm, P.M.; Larsen, G. Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics. J.Volcanol. Geotherm. Res. 2018, 354, 140–152. [Google Scholar] [CrossRef]
- Sharma, K.; Self, S.; Blake, S.; Thordarson, T.; Larsen, G. The AD 1362 Oraefajokull eruption, SE Iceland: Physical volcanology and volatile release. J.Volcanol. Geotherm. Res. 2008, 178, 719–739. [Google Scholar] [CrossRef]
- Clague, D.A.; Moore, J.G.; Reynolds, J.R. Formation of submarine flat-topped volcanic cones in Hawai’i. Bull. Volc. 2000, 62, 214–233. [Google Scholar] [CrossRef]
- Allen, S.R.; Cas, R.A.F. Rhyolitic fallout and pyroclastic density current deposits from a phreatoplinian eruption in the eastern Aegean Sea, Greece. J.Volcanol. Geotherm. Res. 1998, 86, 219–251. [Google Scholar] [CrossRef]
- Kano, K. Subaqueous pumice eruptions and their products: A review. In Explosive Subaqueous Volcanism; Volume Geophysical Monograph Series; White, J.D.L., Smellie, J.L., Clague, D.A., Eds.; American Geophysical Union: Washington, DC, USA, 2003; pp. 213–230. [Google Scholar]
- Solgevik, H.; Mattsson, H.B.; Hermelin, O. Growth of an emergent tuff cone: Fragmentation and depositional processes recorded in the Capelas tuff cone, Sao Miguel, Azores. J.Volcanol. Geotherm. Res. 2007, 159, 246–266. [Google Scholar] [CrossRef]
- Honnorez, J.; Kirst, P. Submarine basaltic volcanism: Morphometric parameters for discriminating hyaloclastites from hyalotuffs. Bull. Volc. 1975, 32, 441–465. [Google Scholar] [CrossRef]
- van Otterloo, J.; Cas, R.A.F.; Scutter, C.R. The fracture behaviour of volcanic glass and relevance to quench fragmentation during formation of hyaloclastite and phreatomagmatism. Earth-Sci. Rev. 2015, 151, 79–116. [Google Scholar] [CrossRef]
- Embley, R.W.; Tamura, Y.; Merle, S.G.; Sato, T.; Ishizuka, O.; Chadwick, W.W., Jr.; Wiens, D.A.; Shore, P.; Stern, R.J. Eruption of South Sarigan Seamount, Northern Mariana Islands insights into hazards from submarine volcanic eruptions. Oceanography 2014, 27, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Jaggar, T.A., Jr. The evolution of Bogoslof voclano. Bull. Am. Geograph. Soc. New York 1908, 40, 385–400. [Google Scholar] [CrossRef]
- Coombs, M.; Wallace, K.; Cameron, C.; Lyons, J.; Wech, A.; Angeli, K.; Cervelli, P. Overview, chronology, and impacts of the 2016–2017 eruption of Bogoslof volcano, Alaska. Bull. Volc. 2019, 81. [Google Scholar] [CrossRef]
- Lyons, J.J.; Haney, M.M.; Fee, D.; Wech, A.G.; Waythomas, C.F. Infrasound from giant bubbles during explosive submarine eruptions. Nat. Geosci. 2019, 12, 952–958. [Google Scholar] [CrossRef]
- Loewen, M.W.; Izbekov, P.; Moshrefzadeh, J.; Coombs, M.; Larsen, J.; Graham, N.; Harbin, M.; Waythomas, C.; Wallace, K. Petrology of the 2016–2017 eruption of Bogoslof Island, Alaska. Bull. Volc. 2019, 81. [Google Scholar] [CrossRef]
- Valentine, G.A.; Connor, C.B. Chapter 23—Basaltic volcanic fields. In The Encyclopedia of Volcanoes, 2nd ed.; Sigurdsson, H., Ed.; Academic Press: New York, NY, USA, 2015; pp. 423–439. [Google Scholar]
- Brand, B.D.; Brož, P. Tuff cone. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, Á., Eds.; Springer: New York, NY, USA, 2015; pp. 2197–2204. [Google Scholar]
- Brož, P.; Németh, K. Tuff ring. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, Á., Eds.; Springer: New York, NY, USA, 2015; pp. 2204–2210. [Google Scholar]
- De Hon, R. Maar. In Encyclopedia of Planetary Landforms; Hargitai, H., Kereszturi, Á., Eds.; Springer: New York, NY, USA, 2015; pp. 1295–1299. [Google Scholar]
- White, J.D.L.; Ross, P.S. Maar-diatreme volcanoes: A review. J.Volcanol. Geotherm. Res. 2011, 201, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Gutmann, J.T. Geology of Crater Elegante, Sonora, Mexico. Geol. Soc. Am. Bull. 1976, 87, 1718–1729. [Google Scholar] [CrossRef]
- Gutmann, J.T. Strombolian and effusive activity as precursors to phreatomagmatism: Eruptive sequence at maars of the Pinacate volcanic field, Sonora, Mexico. J.Volcanol. Geotherm. Res. 2002, 113, 345–356. [Google Scholar] [CrossRef]
- Lorenz, V. On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull. Volc. 1986, 48, 265–274. [Google Scholar] [CrossRef]
- Murcia, H.; Németh, K.; El-Masry, N.N.; Lindsay, J.M.; Moufti, M.R.H.; Wameyo, P.; Cronin, S.J.; Smith, I.E.M.; Kereszturi, G. The Al-Du’aythah volcanic cones, Al-Madinah City: Implications for volcanic hazards in northern Harrat Rahat, Kingdom of Saudi Arabia. Bull. Volc. 2015, 77. [Google Scholar] [CrossRef]
- Kereszturi, G.; Németh, K.; Cronin, S.J.; Procter, J.; Agustin-Flores, J. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. J.Volcanol. Geotherm. Res. 2014, 286, 101–115. [Google Scholar] [CrossRef]
- Lorenz, V.; Suhr, P.; Suhr, S. Phreatomagmatic maar-diatreme volcanoes and their incremental growth; a model. Spec. Publ. Geol. Soc. Lond. 2016, 446, 29–59. [Google Scholar] [CrossRef]
- Valentine, G.A.; White, J.D.L.; Ross, P.-S.; Graettinger, A.H.; Sonder, I. Updates to Concepts on Phreatomagmatic Maar-Diatremes and Their Pyroclastic Deposits. Front Earth Sci. 2017, 5. [Google Scholar] [CrossRef]
- Graettinger, A.H.; Valentine, G.A. Evidence for the relative depths and energies of phreatomagmatic explosions recorded in tephra rings. Bull. Volc. 2017, 79. [Google Scholar] [CrossRef]
- Macorps, E.; Graettinger, A.H.; Valentine, G.A.; Ross, P.-S.; White, J.D.L.; Sonder, I. The effects of the host-substrate properties on maar-diatreme volcanoes: Experimental evidence. Bull. Volc. 2016, 78. [Google Scholar] [CrossRef] [Green Version]
- Graettinger, A.H.; Valentine, G.A.; Sonder, I. Recycling in debris-filled volcanic vents. Geology 2016, 44, 811–814. [Google Scholar] [CrossRef]
- Valentine, G.A.; Graettinger, A.H.; Macorps, E.; Ross, P.-S.; White, J.D.L.; Doehring, E.; Sonder, I. Experiments with vertically and laterally migrating subsurface explosions with applications to the geology of phreatomagmatic and hydrothermal explosion craters and diatremes. Bull. Volc. 2015, 77. [Google Scholar] [CrossRef]
- Sonder, I.; Graettinger, A.H.; Valentine, G.A. Scaling multiblast craters: General approach and application to volcanic craters. J. Geophys. Res. Solid Earth 2015, 120, 6141–6158. [Google Scholar] [CrossRef]
- Graettinger, A.H.; Valentine, G.A.; Sonder, I. Circum-crater variability of deposits from discrete, laterally and vertically migrating volcanic explosions: Experimental evidence and field implications. J.Volcanol. Geotherm. Res. 2015, 308, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Valentine, G.A.; Graettinger, A.H.; Sonder, I. Explosion depths for phreatomagmatic eruptions. Geophys. Res. Lett. 2014, 41, 3045–3051. [Google Scholar] [CrossRef]
- Graettinger, A.H.; Valentine, G.A.; Sonder, I.; Ross, P.S.; White, J.D.L.; Taddeucci, J. Maar-diatreme geometry and deposits: Subsurface blast experiments with variable explosion depth. Geochem. Geophys. Geosyst. 2014, 15, 740–764. [Google Scholar] [CrossRef]
- Berghuijs, J.F.; Mattsson, H.B. Magma ascent, fragmentation and depositional characteristics of “dry” maar volcanoes: Similarities with vent-facies kimberlite deposits. J.Volcanol. Geotherm. Res. 2013, 252, 53–72. [Google Scholar] [CrossRef]
- Lierenfeld, M.B.; Mattsson, H.B. Geochemistry and eruptive behaviour of the Finca la Nava maar volcano (Campo de Calatrava, south-central Spain). Int. J. Earth Sci. 2015, 104, 1795–1817. [Google Scholar] [CrossRef]
- Ross, P.-S.; Carrasco Nunez, G.; Hayman, P. Felsic maar-diatreme volcanoes: A review. Bull. Volc. 2017, 79. [Google Scholar] [CrossRef]
- Ross, P.S.; Hayman, P.; Nunez, G.C. Epithermal gold in felsic maar-diatremes. In Mineral Resources to Discover; Mercier Langevin, P., Dube, B., Bardoux, M., Ross, P.S., Dion, C., Eds.; SGA: Québec City, QC, Canada, 2017; Volume 1–4, pp. 331–334. ISBN 978-2-9816898-0-1. [Google Scholar]
- Popkhadze, N.; Moritz, R.; Natsvlishvili, M.; Bitsadze, N. First evidence of phreatomagmatic breccia at the Late Cretaceous Madneuli polymetallic deposit, Bolnisi district, Lesser Caucasus, Georgia. In Mineral Resources to Discover; Mercier Langevin, P., Dube, B., Bardoux, M., Ross, P.S., Dion, C., Eds.; SGA: Québec City, QC, Canada, 2017; Volume 1–4, pp. 323–326. ISBN 978-2-9816898-0-1. [Google Scholar]
- Sillitoe, R.H. Porphyry Copper Systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.G.S.; Cooke, D.R.; Gemmell, J.B. Hydrothermal breccias and veins at the Kelian gold mine, Kalimantan, Indonesia: Genesis of a large epithermal gold deposit. Econ. Geol. 2008, 103, 717–757. [Google Scholar] [CrossRef]
- Feier, N.; Minut, A.; O’Connor, G.; Tamas, C. Multiple intrusions and brecciation events and their role in precious metal mineralization at Rosia Montana, Apuseni Mountains, Romania. Digging Deeper 2007, 1–2, 869–872. [Google Scholar]
- Kósik, S.; Németh, K.; Lexa, J.; Procter, J.N. Understanding the evolution of a small-volume silicic fissure eruption: Puketerata Volcanic Complex, Taupo Volcanic Zone, New Zealand. J.Volcanol. Geotherm. Res. 2019, 383, 28–46. [Google Scholar] [CrossRef]
- Houghton, B.F.; Lloyd, E.F.; Wilson, C.J.N.; Lanphere, M.A. K-Ar ages from the western dome belt and associated rhyolitic lavas in the Maroa Taupo area, Taupo Volcanic Zone, New Zealand. N. Z. J. Geol. Geophys. 1991, 34, 99–101. [Google Scholar] [CrossRef]
- Murcia, H.; Borrero, C.; Németh, K. Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes’ volcanic province. J.Volcanol. Geotherm. Res. 2019, 383, 77–87. [Google Scholar] [CrossRef]
- Isaia, R.; Vitale, S.; Di Giuseppe, M.G.; Iannuzzi, E.; Tramparulo, F.D.A.; Troiano, A. Stratigraphy, structure, and volcano-tectonic evolution of Solfatara maar-diatreme (Campi Flegrei, Italy). Geol. Soc. Am. Bull. 2015, 127, 1485–1504. [Google Scholar] [CrossRef] [Green Version]
- Németh, K.; Moufti, M.R. Geoheritage values of a mature monogenetic volcanic field in intra-continental settings: Harrat Khaybar, Kingdom of Saudi Arabia. Geoheritage 2017, 9, 311–328. [Google Scholar] [CrossRef]
- Riggs, N.R.; Hurlbert, J.C.; Schroeder, T.J.; Ward, S.A. The interaction of volcanism and sedimentation in the proximal areas of a mid-tertiary volcanic dome field, central Arizona, USA. J. Sed. Res. 1997, 67, 142–153. [Google Scholar]
- Wohletz, K.H.; Sheridan, M.F. Hydrovolcanic Explosions II. Evolution of Basaltic Tuff Rings and Tuff Cones. Am. J. Sci. 1983, 283, 385–413. [Google Scholar] [CrossRef]
- Fisher, R.V.; Waters, A.C. Base surge bed forms in maar volcanoes. Am. J. Sci. 1970, 268, 157–180. [Google Scholar] [CrossRef]
- Gencalioglu-Kuscu, G.; Atilla, C.; Cas, R.A.F.; Kuscu, I. Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar). J.Volcanol. Geotherm. Res. 2007, 159, 198–209. [Google Scholar] [CrossRef]
- Brand, B.D.; Gravley, D.M.; Clarke, A.B.; Lindsay, J.M.; Bloomberg, S.H.; Agustin-Flores, J.; Nemeth, K. A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand. J.Volcanol. Geotherm. Res. 2014, 276, 215–232. [Google Scholar] [CrossRef] [Green Version]
- Chough, S.K.; Sohn, Y.K. Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology 1990, 37, 1115–1135. [Google Scholar] [CrossRef]
- Dellino, P.; Kyriakopoulos, K. Phreatomagmatic ash from the ongoing eruption of Etna reaching the Greek island of Cefalonia. J.Volcanol. Geotherm. Res. 2003, 126, 341–345. [Google Scholar] [CrossRef]
- Cioni, R.; Sbrana, A.; Vecci, R. Morphological features of juvenile pyroclasts from magmatic and phreatomagmatic deposits of Vesuvius. J.Volcanol. Geotherm. Res. 1992, 51, 61–78. [Google Scholar] [CrossRef]
- Rausch, J.; Grobety, B.; Vonlanthen, P. Eifel maars: Quantitative shape characterization of juvenile ash particles (Eifel Volcanic Field, Germany). J.Volcanol. Geotherm. Res. 2015, 291, 86–100. [Google Scholar] [CrossRef] [Green Version]
- Heiken, G.H. Morphology and petrography of volcanic ashes. Geol. Soc. AM. Bull. 1972, 83, 1961–1988. [Google Scholar] [CrossRef]
- Schumacher, R.; Schmincke, H.-U. Models for the origin of accretionary lapilli. Bull. Volc. 1995, 56, 626–639. [Google Scholar] [CrossRef]
- Walker, G.P.L. Explosive volcanic eruptions—A new classification scheme. Geol. Rundsch. 1973, 62, 431–446. [Google Scholar] [CrossRef]
- Wohletz, K.H. Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies. Bull. Volc. 1986, 48, 245–264. [Google Scholar] [CrossRef]
- Heiken, G.H.; Wohletz, K. Fragmentation processes in explosive volcanic eruptions. In Sedimentation in Volcanic Settings; Volume 45 SEPM Special Publication; Geology, S.f.S., Ed.; SEPM: Tulsa, OK, USA, 1991; pp. 19–26. [Google Scholar]
- Wohletz, K.H.; McQueen, R.G. Experimental studies in hydromagmatic volcanism. In Studies in Geophysics: Explosive Volcanism: Inception, Evolution and Hazards; National Academy Press: Washington, DC, USA, 1984; pp. 158–169. [Google Scholar]
- Zimanowski, B.; Wohletz, K.; Dellino, P.; Buttner, R. The volcanic ash problem. J. Volcanol. Geotherm. Res. 2003, 122, 1–5. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Németh, K.; Kósik, S. Review of Explosive Hydrovolcanism. Geosciences 2020, 10, 44. https://doi.org/10.3390/geosciences10020044
Németh K, Kósik S. Review of Explosive Hydrovolcanism. Geosciences. 2020; 10(2):44. https://doi.org/10.3390/geosciences10020044
Chicago/Turabian StyleNémeth, Károly, and Szabolcs Kósik. 2020. "Review of Explosive Hydrovolcanism" Geosciences 10, no. 2: 44. https://doi.org/10.3390/geosciences10020044
APA StyleNémeth, K., & Kósik, S. (2020). Review of Explosive Hydrovolcanism. Geosciences, 10(2), 44. https://doi.org/10.3390/geosciences10020044