Ichnofossils, Cracks or Crystals? A Test for Biogenicity of Stick-Like Structures from Vera Rubin Ridge, Mars
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Measurement ID | Measured Specimen | Width (cm) |
---|---|---|
1 | s1 | 0.08 |
2 | s1 | 0.08 |
3 | s1 | 0.08 |
4 | s1 | 0.07 |
5 | s1 | 0.06 |
6 | s3 | 0.09 |
7 | s4 | 0.07 |
8 | s4 | 0.06 |
9 | s4 | 0.06 |
10 | s5 | 0.09 |
11 | s5 | 0.09 |
12 | s5 | 0.08 |
13 | s5 | 0.08 |
14 | s5 | 0.09 |
15 | s6 | 0.06 |
16 | s6 | 0.06 |
17 | s6 | 0.07 |
18 | s7 | 0.07 |
19 | s8 | 0.05 |
20 | s8 | 0.07 |
21 | s8 | 0.07 |
22 | s9 | 0.08 |
23 | s9 | 0.08 |
26 | s9 | 0.08 |
24 | s9 | 0.08 |
27 | s10 | 0.07 |
25 | s9 | 0.08 |
28 | s10 | 0.08 |
29 | s10 | 0.07 |
30 | s10 | 0.07 |
31 | s10 | 0.07 |
32 | s11 | 0.04 |
33 | s11 | 0.05 |
34 | s11 | 0.04 |
Mean | 0.07 | |
Min | 0.04 | |
Max | 0.09 |
Specimen | Length (cm) |
---|---|
s1 | 0.40 |
s2 | 0.30 |
s3 | 0.26 |
s4 | 0.22 |
s5 | 1.05 |
s6 | 0.25 |
s7 | 0.24 |
s8 | 0.26 |
s9 | 0.43 |
s10 | 0.81 |
s11 | 0.23 |
Mean | 0.40 |
Min | 0.22 |
Max | 1.05 |
Angle ID | Rays of the Angle | Angle (°) |
---|---|---|
α | s4–s5 | 63.1 |
β | s8–s9 | 85.6 |
γ | s10–s11 | 39.8 |
Mean | 63.1 | |
Min | 39.8 | |
Max | 85.6 |
References
- Asikainen, C.A.; Francus, P.; Brigham-Grette, J. Sedimentology, clay mineralogy and grain-size as indicators of 65 ka of climate change from El’gygytgyn Crater Lake, Northeastern Siberia. J. Paleolimnol. 2007, 37, 105–122. [Google Scholar] [CrossRef]
- Scott, J.J.; Renaut, R.W.; Buatois, L.A.; Owen, R.B. Biogenic structures in exhumed surfaces around saline lakes: An example from Lake Bogoria, Kenya Rift Valley. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 272, 176–198. [Google Scholar] [CrossRef]
- Greicius, T. Stick-Shape, Rice-Size Features on Martian Rock “Haroldswick”. Available online: https://www.nasa.gov/image-feature/jpl/pia22213/stick-shape-rice-size-features-on-martian-rock-haroldswick (accessed on 8 October 2019).
- DiGregorio, B. Ichnological evidence for bioturbation in an ancient lake at Vera Rubin Ridge, Gale Crater, Mars. In Proceedings of the 3rd International Convention on Geosciences and Remote Sensing, Ottawa, ON, Canada, 19–20 October 2018; pp. 1–7. [Google Scholar]
- Howell, E. No, Those Aren’t Animal Tracks on Mars. Available online: https://www.space.com/39894-mars-rock-features-not-animal-tracks.html (accessed on 8 October 2019).
- Howell, E. Did Crystals from Ancient Lakes on Mars Form These Tiny, Weird Things? Available online: https://www.space.com/39687-ancient-mars-lakes-made-weird-crystal-features.html (accessed on 8 October 2019).
- David, L. Curiosity Rover Spots Weird Tube-Like Structures on Mars. Available online: https://www.space.com/39294-mars-rover-curiosity-weird-tube-structures.html (accessed on 8 October 2019).
- Frydenvang, J.; Mangold, N.; Wiens, R.C.; Fraeman, A.A.; Edgar, L.A.; Fedo, C.; L’Haridon, J.; Gupta, S.; Grotzinger, J.P.; Bedford, C.; et al. The role of large-scale diagenesis in the formation of Vera Rubin Ridge in Gale crater, Mars, as implied by ChemCam observations. In Proceedings of the 50th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; Volume 2019. LPI Contribution No. 2132. [Google Scholar]
- Fraeman, A.A.; Arvidson, R.E.; Catalano, J.G.; Grotzinger, J.P.; Morris, R.V.; Murchie, S.L.; Stack, K.M.; Humm, D.C.; McGovern, J.A.A.; Seelos, F.P.P.; et al. A hematite-bearing layer in Gale crater, Mars: Mapping and implications for past aqueous conditions. Geology 2013, 41, 1103–1106. [Google Scholar] [CrossRef]
- L’Haridon, J.; Mangold, N.; Rapin, W.; Cousin, A.; Johnson, J.R.; Fraeman, A.A.; Meslin, P.-Y.; Gasnault, O.; Maurice, S.; Wiens, R. Diagenetic iron enrichments observed by ChemCam on Vera Rubin Ridge, Gale Crater, Mars. In Proceedings of the 49th Lunar and Planetary Science Conference 2018, The Woodlands, TX, USA, 19–23 March 2018. LPI Contribution No. 2083. [Google Scholar]
- Heydari, E.; Parker, T.J.; Calef, F.J.; Schroeder, J.F.; Van Beek, J.; Rowland, S.K.; Fairen, A.G. Characteristics and the origin of the Vera Rubin Ridge, Gale Crater, Mars. In Proceedings of the 49th Lunar and Planetary Science Conference 2018, The Woodlands, TX, USA, 19–23 March 2018. LPI Contrib No. 2083. [Google Scholar]
- Frydenvang, J.; Mangold, N.; Wiens, R.C.; Fraeman, A.A.; Edgar, L.A.; Fedo, C.M.; L’Haridon, J.; Bedford, C.C.; Gupta, S.; Grotzinger, J.P.; et al. The chemostratigraphy of the lacustrine Murray formation in Gale crater, Mars, and evidence for large-scale diagenesis in Vera Rubin ridge bedrock as implied by ChemCam observations. In Proceedings of the Ninth International Conference on Mars 2019, Pasadena, CA, USA, 22–25 July 2019. LPI Contrib. No. 2089. [Google Scholar]
- Williams, A.J.; Sumner, D.Y.; Alpers, C.N.; Karunatillake, S.; Hofmann, B.A. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California. Astrobiology 2015, 15, 637–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, N.; Grotzinger, J.P.; Schieber, J.; Mangold, N.; Hallet, B.; Newsom, H.; Stack, K.M.; Berger, J.A.; Thompson, L.; Siebach, K.L.; et al. Desiccation cracks provide evidence of lake drying on Mars, Sutton Island member, Murray formation, Gale Crater. Geology 2018, 46, 515–518. [Google Scholar] [CrossRef]
- Rampe, E.B.; Ming, D.W.; Blake, D.F.; Bristow, T.F.; Chipera, S.J.; Grotzinger, J.P.; Morris, R.V.; Morrison, S.M.; Vaniman, D.T.; Yen, A.S.; et al. Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth Planet. Sci. Lett. 2017, 471, 172–185. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Sumner, D.Y.; Kah, L.C.; Stack, K.; Gupta, S.; Edgar, L.; Rubin, D.; Lewis, K.; Schieber, J.; Mangold, N.; et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1242777. [Google Scholar] [CrossRef]
- Grotzinger, J.P.; Gupta, S.; Malin, M.C.; Rubin, D.M.; Schieber, J.; Siebach, K.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E.; et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 2015, 350, aac7575. [Google Scholar] [CrossRef] [PubMed]
- Hurowitz, J.A.; Grotzinger, J.P.; Fischer, W.W.; McLennan, S.M.; Milliken, R.E.; Stein, N.; Vasavada, A.R.; Blake, D.F.; Dehouck, E.; Eigenbrode, J.L.; et al. Redox stratification of an ancient lake in Gale crater, Mars. Science 2017, 356, eaah6849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res. Planets 2001, 106, 32943–32958. [Google Scholar] [CrossRef]
- Edgar, L.A.; Fraeman, A.A.; Gupta, S.; Fedo, C.M.; Grotzinger, J.P.; Stack, K.M.; Bennett, K.A.; Sun, V.Z.; Banham, S.G.; Stein, N.T.; et al. Sedimentology and stratigraphy observed at Vera Rubin Ridge by the Mars science laboratory Curiosity Rover. In Proceedings of the 49th Lunar and Planetary Science Conference 2018, The Woodlands, TX, USA, 19–23 March 2018; Volume 2018, pp. 5–6. [Google Scholar]
- Yingst, R.A.; Edgett, K.S.; Kennedy, M.R.; Krezoski, G.M.; McBride, M.J.; Minitti, M.E.; Ravine, M.A.; Williams, R.M.E. MAHLI on Mars: Lessons learned operating a geoscience camera on a landed payload robotic arm. Geosci. Instrum. Methods Data Syst. 2016, 5, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Grotzinger, J.; Bell, I.; Herkenhoff, K.; Johnson, J.; Knoll, A.; McCartney, E.; McLennan, S.; Metz, J.; Moore, J.; Squyres, S.; et al. Sedimentary textures formed by aqueous processes, Erebus crater Meridiani Planum, Mars. Geology 2006, 34, 1085–1088. [Google Scholar] [CrossRef] [Green Version]
- McMahon, S.; van S. Hood, A.; McIlroy, D. The origin and occurrence of subaqueous sedimentary cracks. In Earth System Evolution and Early Life: A Celebration of the Work of Martin Brasier. Special Publications 448; Brasier, A.T., McIlroy, D., McLoughlin, N., Eds.; Geological Society: London, UK, 2017; pp. 285–309. [Google Scholar]
- Harazim, D.; Callow, R.H.T.; Mcilroy, D. Microbial mats implicated in the generation of intrastratal shrinkage (‘synaeresis’) cracks. Sedimentology 2013, 60, 1621–1638. [Google Scholar] [CrossRef]
- Siebach, K.L.; Grotzinger, J.P.; Kah, L.C.; Stack, K.M.; Malin, M.; Léveillé, R.; Sumner, D.Y. Subaqueous shrinkage cracks in the Sheepbed mudstone: Implications for early fluid diagenesis, Gale crater, Mars. J. Geophys. Res. Planets 2014, 119, 1597–1613. [Google Scholar] [CrossRef] [Green Version]
- Jensen, S.; Droser, M.L.; Gehling, J.G. Trace fossil preservation and the early evolution of animals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 19–29. [Google Scholar] [CrossRef]
- Noffke, N. Ancient Sedimentary Structures in the <3.7 Ga Gillespie Lake Member, Mars, That Resemble Macroscopic Morphology, Spatial Associations, and Temporal Succession in Terrestrial Microbialites. Astrobiology 2015, 15, 169–192. [Google Scholar]
- Al-Youssef, M. Gypsum Crystals Formation and Habits, Umm Said Sabkha, Qatar. In Sabkha Ecosystems Volume IV: Cash Crop Halophyte and Biodiversity Conservation. Part of the Tasks for Vegetation Science Book Series (TAVS, Volume 47); Khan, M.A., Böer, B., Öztürk, M., Zahran, T., Abdessalaam, A., Clüsener-Godt, M., Gul, B., Eds.; Springer: Berlin, Germany, 2014; pp. 23–54. [Google Scholar]
- Klein, C.; Philpotts, A.R. Earth Materials: Introduction to Mineralogy and Petrology; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Becker, A. Facies development of the Badenian (Middle Miocene) gypsum deposits in the Racławice area (Miechów Upland, southern Poland). Ann. Soc. Geol. Pol. 2016, 75, 111–120. [Google Scholar]
- Babel, M.; Bogucki, A. The Badenian evaporite basin of the northern Carpathian Foredeep as a model of a meromictic selenite basin. In Evaporites Through Space and Time. Geological Society of London Special Publications; Schreiber, B., Lugli, S., Babel, M., Eds.; The Geological Society of London: London, UK, 2007; Volume 285, pp. 219–246. [Google Scholar]
- Benison, K.C.; Karmanocky, F.J., III. Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples. Geology 2014, 42, 615–618. [Google Scholar] [CrossRef] [Green Version]
- Rinaudo, C.; Franchini-angela, M.; Boistelle, R. Curvature of gypsum crystals induced by growth in the presence of impurities. Mineral. Mag. 1989, 53, 479–482. [Google Scholar] [CrossRef]
- Seilacher, A.; Meschede, M.; Bolton, E.W.; Luginsland, H. Precambrian “fossil” Vermiforma is a tectograph. Geology 2000, 28, 235–238. [Google Scholar] [CrossRef]
- Mettraux, M.; Homewood, P.W.; Kwarteng, A.Y.; Mattner, J. Coastal and continental sabkhas of Barr Al Hikman, Sultanate of Oman. In Quaternary Carbonate and Evaporite Sedimentary Facies and Their Ancient Analogues: A Tribute to Douglas James Shearman; The International Association of Sedimentologists Special Publications; Wiley-Blackwell: Hoboken, NJ, USA, 2011; Volume 43, pp. 183–204. ISBN 9781444339109. [Google Scholar]
- Otálora, F.; Mazurier, A.; Garcia-Ruiz, J.M.; Kranendonk, M.J.; Van Kotopoulou, E.; El Albani, A.; Garridoa, C.J. A crystallographic study of crystalline casts and pseudomorphs from the 3.5 Ga Dresser Formation, Pilbara Craton (Australia). J. Appl. Crystallogr. 2018, 51, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, M.; Watkinson, M.; Price, G.D.; Jerrett, R. An improved model for the ikaite-glendonite transformation: Evidence from the Lower Cretaceous of Spitsbergen, Svalbard. Nor. J. Geol. 2018, 98, 1–15. [Google Scholar] [CrossRef]
- Minter, N.J.; Krainer, K.; Lucas, S.G.; Braddy, S.J.; Hunt, A.P. Palaeoecology of an Early Permian playa lake trace fossil assemblage from Castle Peak, Texas, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 246, 390–423. [Google Scholar] [CrossRef]
- Baucon, A.; Venturini, C.; Neto de Carvalho, C.; Felletti, F.; Muttoni, G. Behaviours mapped by new geographies: Ichnonetwork analysis of the Val Dolce Formation (lower Permian; Italy-Austria). Geosphere 2015, 11, 744–776. [Google Scholar] [CrossRef] [Green Version]
- Baucon, A.; Carvalho, C. From the river to the sea: Pramollo, a new ichnolagerstätte from the Carnic Alps. Stud. Trent. Sci. Nat. Acta Geol. 2008, 83, 87–114. [Google Scholar]
- Kowalewski, M.; Demko, T.M. Trace fossils and population paleoecology: Comparative analysis of size-frequency distributions derived from burrows. Lethaia 1996, 29, 113–124. [Google Scholar] [CrossRef]
- Mángano, M.G.; Carmona, N.; Buatois, L.; Muñiz Guinea, F. A New Ichnospecies of Arthrophycus from the Upper Cambrian-Lower Tremadocian of Northwest Argentina: Implications for the Arthrophycid Lineage and Potential in Ichnostratigraphy. Ichnos 2005, 12, 179–190. [Google Scholar] [CrossRef]
- Monaco, P. Bulbichnus giornii n. ichnogen. and n. ichnosp.: A deep-water domichnion-praedichnion made by an eunicid polychaete (Marnoso-Arenacea Formation, Miocene, Northern Apennines, central Italy). Boll. Della Soc. Paleontol. Ital. 2016, 55, 172. [Google Scholar]
- Neto de Carvalho, C.; Fernandes, A.C.S.; Borghi, L. Diferenciação das icnoespécies e variantes de Arthrophycus e sua utilização problemática em Icnoestratigrafia: O resultado de homoplasias comportamentais entre anelídeos e artrópodes? [Distinction between Arthrophycus ichnospecies and variants and their d. Rev. Española Paleontol. 2003, 18, 221–228. [Google Scholar]
- Plotnick, R.E. Behavioral biology of trace fossils. Paleobiology 2012, 38, 459–473. [Google Scholar] [CrossRef]
- Sims, D.W.; Reynolds, A.M.; Humphries, N.E.; Southall, E.J.; Wearmouth, V.J.; Metcalfe, B.; Twitchett, R.J. Hierarchical random walks in trace fossils and the origin of optimal search behavior. Proc. Natl. Acad. Sci. USA 2014, 111, 11073–11078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raup, D.M.; Seilacher, A. Fossil foraging behavior: Computer Simulation. Science 1969, 166, 994–995. [Google Scholar] [CrossRef] [PubMed]
- Berra, F.; Felletti, F. Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): Stratigraphic significance. Sediment. Geol. 2011, 235, 249–263. [Google Scholar] [CrossRef]
- Lowe, D.R.; LoPiccolo, R.D. The characteristics and origins of dish and pillar structures. J. Sediment. Res. 1974, 44, 484–501. [Google Scholar]
- Laubach, S.E.; Schultz-Ela, D.D.; Tyler, R. Differential compaction of interbedded sandstone and coal. Geol. Soc. Lond. Spec. Publ. 1999, 169, 51–60. [Google Scholar] [CrossRef]
- Virtasalo, J.J.; Löwemark, L.; Papunen, H.; Kotilainen, A.T.; Whitehouse, M.J. Pyritic and baritic burrows and microbial filaments in postglacial lacustrine clays in the northern Baltic Sea. J. Geol. Soc. Lond. 2010, 167, 1185–1198. [Google Scholar] [CrossRef]
- Virtasalo, J.J.; Whitehouse, M.J.; Kotilainen, A.T. Iron isotope heterogeneity in pyrite fillings of Holocene worm burrows. Geology 2013, 41, 39–42. [Google Scholar] [CrossRef]
- Baucon, A.; Ronchi, A.; Felletti, F.; Neto de Carvalho, C. Evolution of Crustaceans at the edge of the end-Permian crisis: Ichnonetwork analysis of the fluvial succession of Nurra (Permian-Triassic, Sardinia, Italy). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 410, 74–103. [Google Scholar] [CrossRef]
- Gingras, M.K.; MacEachern, J.A.; Dashtgard, S.E. Process ichnology and the elucidation of physico-chemical stress. Sediment. Geol. 2011, 237, 115–134. [Google Scholar] [CrossRef]
- Baucon, A.; Neto de Carvalho, C. Stars of the aftermath: Asteriacites beds from the Lower Triassic of the Carnic Alps (Werfen Formation, Sauris di Sopra), Italy. Palaios 2016, 31, 161–176. [Google Scholar] [CrossRef]
- Wacey, D. Early Life on Earth: A Practical Guide; Springer Science + Business Media B.V.: Berlin, Germany, 2009. [Google Scholar]
- Baumann, L.M.F.; Birgel, D.; Wagreich, M.; Peckmann, J. Microbially-driven formation of Cenozoic siderite and calcite concretions from eastern Austria. Austrian J. Earth Sci. 2016, 109. [Google Scholar] [CrossRef]
- Brown, B.J.; Farrow, G.E. Recent dolomitic concretions of crustacean burrow origin from Loch Sunart, west coast of Scotland. J. Sediment. Res. 1978, 48, 825–833. [Google Scholar]
- Cox, T.L.; Oze, C.; Horton, T.W. Iron concretions within a highly altered unit of the Berlins Porphyry, New Zealand: An abiotic or biotic story? Mineral. Petrol. 2017, 111, 173–181. [Google Scholar] [CrossRef]
- Nachon, M.; Mangold, N.; Forni, O.; Kah, L.C.; Cousin, A.; Wiens, R.C.; Anderson, R.; Blaney, D.; Blank, J.G.; Calef, F.; et al. Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, Gale crater, Mars. Icarus 2017, 281, 121–136. [Google Scholar] [CrossRef]
- Brasier, M.D.; Wacey, D. Fossils and astrobiology: New protocols for cell evolution in deep time. Int. J. Astrobiol. 2012, 11, 217–228. [Google Scholar] [CrossRef]
- Brasier, M.D. Towards a Null Hypothesis for Stromatolites. In Earliest Life on Earth: Habitats, Environments and Methods of Detection; Golding, S.D., Glikson, M., Eds.; Springer Science + Business Media B.V.: Dordecht, The Netherlands, 2011; pp. 115–125. ISBN 9789048187942. [Google Scholar]
- Zahnle, K.; Freedman, R.S.; Catling, D.C. Is there methane on Mars? Icarus 2011, 212, 493–503. [Google Scholar] [CrossRef] [Green Version]
- Mustard, J.F.; Adler, M.; Allwood, A.; Bass, D.S.; Beaty, D.W.; Bell, J.F., III; Brinckerhoff, W.B.; Carr, M.; Marais, D.J.D.; Drake, B.; et al. Report of the Mars 2020 Science Definition Team. Available online: http://mepag.jpl.nasa.gov/reports/MEP/Mars_2020_SDT_Report_Final.pdf (accessed on 21 January 2020).
- Ruff, S.W.; Farmer, J.D. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun. 2016, 7, 13554. [Google Scholar] [CrossRef]
- Jensen, S.; Droser, M.L.; Gehling, J.G. A Critical Look at the Ediacaran Trace Fossil Record. In Neoproterozoic Geobiology and Paleobiology; Xiao, S., Kaufman, A.J., Eds.; Springer: Dordecht, The Netherlands, 2006; pp. 115–157. [Google Scholar]
- Knaust, D.; Hauschke, N. Trace fossils versus pseudofossils in Lower Triassic playa deposits, Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 215, 87–97. [Google Scholar]
- Neto de Carvalho, C.; Couto, H.; Figueiredo, M.V.; Baucon, A. Microbial-related biogenic structures from the Middle Ordovician slates of Canelas (northern Portugal). Comun. Geológicas 2016, 103, 23–37. [Google Scholar]
- El Albani, A.; Mangano, M.G.; Buatois, L.A.; Bengtson, S.; Riboulleau, A.; Bekker, A.; Konhauser, K.; Lyons, T.; Rollion-Bard, C.; Bankole, O.; et al. Organism motility in an oxygenated shallow-marine. Proc. Natl. Acad. Sci. USA 2018, 116, 3431–3436. [Google Scholar] [CrossRef] [Green Version]
- Baucon, A.; Neto de Carvalho, C.; Barbieri, R.; Bernardini, F.; Cardini, A.; Cavalazzi, B.; Celani, A.; Felletti, F.; Ferretti, A.; Schoenlaub, H.P.; et al. Organism-substrate interactions and astrobiology: Potential, models, methods. Earth Sci. Rev. 2016, 171, 141–180. [Google Scholar] [CrossRef]
- Seilacher, A.; Buatois, L.A.; Mángano, G. Trace fossils in the Ediacaran-Cambrian transition: Behavioral diversification, ecological turnover and environmental shift. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 227, 323–356. [Google Scholar] [CrossRef]
- Neto de Carvalho, C.; Rodrigues, N.P.C.; Viegas, P.A.; Baucon, A.; Santos, V.F. Patterns of occurrence and distribution of crustacean ichnofossils in the Lower Jurassic-Upper Cretaceous of Atlantic occidental margin basins, Portugal. Acta Geol. Pol. 2010, 60, 19–28. [Google Scholar]
- Neto De Carvalho, C.; Baucon, A. Giant trilobite burrows and their paleobiological significance (Lower-to-Middle Ordovician from Penha Garcia, Portugal). Comun. Geol. 2016, 103, 71–82. [Google Scholar]
- Neto De Carvalho, C.; Baucon, A.; Gonçalves, D. Daedalus mega-ichnosite from the Muradal Mountain (Naturtejo Global Geopark, Central Portugal): Between the Agronomic Revolution and the Ordovician Radiation. Comun. Geol. 2016, 103, 59–70. [Google Scholar]
- Hollocher, K. A Pictorial Guide to Metamorphic Rocks in the Field; CRC Press/Balkema: Leiden, The Netherlands, 2014. [Google Scholar]
- Nutman, A.P.; Bennett, V.C.; Friend, C.R.L.; Van Kranendonk, M.J.; Chivas, A.R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 2016, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Chen, X.; Zhou, C.; Yuan, X.; Xiao, S. Late Ediacaran trackways produced by bilaterian animals with paired appendages. Sci. Adv. 2018, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Savrda, C.E. Taphonomy of trace fossils. In Trace Fossils. Concepts, Problems, Prospects; Miller, W., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 92–109. [Google Scholar]
- Seike, K.; Yanagishima, S.I.; Nara, M.; Sasaki, T. Large Macaronichnus in modern shoreface sediments: Identification of the producer, the mode of formation, and paleoenvironmental implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 311, 224–229. [Google Scholar] [CrossRef]
- Crippa, G.; Baucon, A.; Felletti, F.; Raineri, G.; Scarponi, D. A multidisciplinary study of ecosystem evolution through early Pleistocene climate change from the marine Arda River section, Italy. Quat. Res. 2018, 89, 533–562. [Google Scholar] [CrossRef]
- De Carvalho, C.N.; Pereira, B.; Klompmaker, A.; Baucon, A.; Moita, J.A.; Pereira, P. Running crabs, walking crinoids, grazing gastropods: Behavioral diversity and evolutionary implications of the Cabeço da Ladeira Lagerstätte (Middle Jurassic, Portugal). Comun. Geol. 2016, 103, 39–54. [Google Scholar]
- Vallon, L.H.; Rindsberg, A.K.; Bromley, R.G. An updated classification of animal behaviour preserved in substrates. Geodin. Acta 2016, 28, 5–20. [Google Scholar] [CrossRef]
Stick-Like Structures | Synaeresis Cracks | Euhedral Single Crystals | Bioturbational Ichnofossils | |
---|---|---|---|---|
Geological context | syngenetic with the host rock | always | always | always |
fluvial-lacustrine | often | often | often | |
Morphology | elongate shape in bedding plane view | usually | usually | usually |
curved | usually | rarely | usually | |
constant width (no tapering) | rarely | usually | usually | |
T-junctions, incomplete polygons | always | often | often | |
polygonal cross-section | usually | always | rarely | |
no tips with smooth flat faces | usually | rarely | usually | |
no tendency to split along definite planes of weakness | always | rarely (cleavage) | often | |
sharp contact with the host rock | always | always | usually | |
steep flanks | always | always | rarely | |
Topology | cross-cutting | rarely | usually (twinning) | usually (false branching) |
coalescing (change their curvature when encountering others) | rarely | rarely | often | |
straight segments are not parallel between each other | always | usually | usually | |
Other | metallic hues | never | often | rarely |
millimetric width | rarely | often | often | |
clustered distribution | often | often | often |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baucon, A.; Neto De Carvalho, C.; Felletti, F.; Cabella, R. Ichnofossils, Cracks or Crystals? A Test for Biogenicity of Stick-Like Structures from Vera Rubin Ridge, Mars. Geosciences 2020, 10, 39. https://doi.org/10.3390/geosciences10020039
Baucon A, Neto De Carvalho C, Felletti F, Cabella R. Ichnofossils, Cracks or Crystals? A Test for Biogenicity of Stick-Like Structures from Vera Rubin Ridge, Mars. Geosciences. 2020; 10(2):39. https://doi.org/10.3390/geosciences10020039
Chicago/Turabian StyleBaucon, Andrea, Carlos Neto De Carvalho, Fabrizio Felletti, and Roberto Cabella. 2020. "Ichnofossils, Cracks or Crystals? A Test for Biogenicity of Stick-Like Structures from Vera Rubin Ridge, Mars" Geosciences 10, no. 2: 39. https://doi.org/10.3390/geosciences10020039
APA StyleBaucon, A., Neto De Carvalho, C., Felletti, F., & Cabella, R. (2020). Ichnofossils, Cracks or Crystals? A Test for Biogenicity of Stick-Like Structures from Vera Rubin Ridge, Mars. Geosciences, 10(2), 39. https://doi.org/10.3390/geosciences10020039