Sonar Estimation of Methane Bubble Flux from Thawing Subsea Permafrost: A Case Study from the Laptev Sea Shelf
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of Gas Flux within Water Column Using Sonar: Theoretical Background
2.2. Evaluation of Gas Flux within Water Column Using Sonar: Field Calibration Method
2.3. Calibration of the Sonar
2.4. Relationship between Gas Flux and Measured Response
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, O. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef]
- Romanovskii, N.; Hubberten, H.W.; Gavrilov, A.; Eliseeva, A.; Tipenko, G. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo Mar. Lett. 2002, 25, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Soloviev, V.A.; Ginzburg, G.D.; Telepnev, E.V.; Mikhaluk, Y.N. Cryothermia and Gas Hydrates in the Arctic Ocean; Sevmorgeologia: Leningrad, Russia, 1987. [Google Scholar]
- Kvenvolden, K.A. Methane hydrate—A major reservoir of carbon in the shallow geosphere? Chem. Geol. 1988, 71, 41–51. [Google Scholar] [CrossRef]
- Kvenvolden, K. Gas hydrates—Geological perspective and global change. Rev. Geophys. 1993, 31, 173–187. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Salyuk, A.; Rekant, P.; Kosmach, D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J. Geophys. Res. Ocean. 2010, 115, C08007. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Chuvilin, E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geoscience 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Osterkamp, T.E. Sub-Sea Permafrost. In Encyclopedia of Ocean Sciences, 2nd ed.; Steele, J.H., Ed.; Academic Press: Oxford, UK, 2001; pp. 559–569. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Shakhova, N.E.; Semiletov, I.P. Methane Hydrate Feedbacks. In Arctic Climate Feedbacks: Global Implications; Sommerkorn, M., Hassol, S.J., Eds.; WWF International Arctic Programme: Gland, Switzerland, 2009; pp. 81–92. ISBN 978-2-88085-305-1. [Google Scholar]
- State of the Arctic Report. Available online: http://editors.eol.org/eoearth/wiki/State_of_the_Arctic_Report (accessed on 12 August 2020).
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G.; et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140451. [Google Scholar] [CrossRef]
- Leifer, I.; Chernykh, D.; Shakhova, N.; Semiletov, I. Sonar gas flux estimation by bubble insonification: Application to methane bubble flux from seep areas in the outer Laptev Sea. Cryosphere 2017, 11, 1333–1350. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Gustafsson, O.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, V.; Grigoriev, M.; Mazurov, A.; Salyuk, A.; et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017, 8, 15872. [Google Scholar] [CrossRef]
- Salomatin, A.S.; Yusupov, V.I. Acoustic Investigations of Gas “Flares” in the Sea of Okhotsk. Oceanology 2011, 51, 857–865. [Google Scholar] [CrossRef]
- Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-Faverola, A.; Gudlaugsson, E.; Serov, P.; Deryabin, A.; Mattingsdal, R.; et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science 2017, 356, 948–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetrov, A.; Lobus, N.; Drozdova, A.; Belyaev, N.; Romankevich, E. Methane in Water and Bottom Sediments in Three Sections in the Kara and Laptev Seas. Oceanology 2018, 58, 198–204. [Google Scholar] [CrossRef]
- Judd, A. The global importance and context of methane escape from the seabed. Geo Mar. Lett. 2003, 23, 147–154. [Google Scholar] [CrossRef]
- Kasatkin, S.A.; Obzhirov, A.I. Fluid-Controlling Significance of the Nosappu Fracture Zone and Conditions for the Formation of Methane Fluxes and Gas Hydrates (Sea of Okhotsk Region). Russ. J. Pac. Geol. 2018, 12, 57–62. [Google Scholar] [CrossRef]
- Shakirov, R.B.; Obzhirov, A.I.; Salomatin, A.S.; Makarov, M.M. New Data on Lineament Control of Modern Centers of Methane Degassing in East Asian Seas. Dokl. Earth Sci. 2017, 477, 1287–1290. [Google Scholar] [CrossRef]
- Greinert, J.; Artemov, Y.; Egorov, V.; De Batist, M.; McGinnis, D. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability. Earth Planet. Sci. Lett. 2006, 244, 1–15. [Google Scholar] [CrossRef]
- Chernykh, D.V.; Yusupov, V.I.; Salomatin, A.S.; Kosmach, D.A.; Konstantinov, A.V.; Silionov, V.I.; Mazurov, A.K.; Salyuk, A.N.; Shakhova, N.E.; Gustafsson, O.; et al. New acoustical technique to quantify methane ebullition in sediment water column: A case study in the Laptev sea, the Arctic ocean. Bull. Tomsk Polytech. Univ. Geo Assets Eng. 2018, 329, 153–167. [Google Scholar]
- Weidner, E.; Weber, T.C.; Mayer, L.; Jakobsson, M.; Chernykh, D.; Semiletov, I. A wideband acoustic method for direct assessment of bubble-mediated methane flux. Cont. Shelf Res. 2019, 173, 104–115. [Google Scholar] [CrossRef] [Green Version]
- James, R.H.; Bousquet, P.; Bussmann, I.; Haeckel, M.; Kipfer, R.; Leifer, I.; Niemann, H.; Ostrovsky, I.; Piskozub, J.; Rehder, G.; et al. Effects of climate change on methane emissions from seafloor sediments in the Arctic Ocean: A review. Limnol. Oceanogr. 2016, 61, S283–S299. [Google Scholar] [CrossRef] [Green Version]
- Makarov, M.; Muyakshin, S.; Kucher, K.; Aslamov, I.; Granin, N. A study of the gas seep Istok in the Selenga shoal using active acoustic, passive acoustic and optical methods. J. Great Lakes Res. 2020, 46. [Google Scholar] [CrossRef]
- Makarov, M.; Muyakshin, S.; Kucher, K.; Aslamov, I.; Gnatovsky, R.; Granin, N. Bubble gas escapes from the bottom of lake Baikal: Observation with help of the echosounder, estimation of methane flux and connection of this flux with bubble flare height. Fundam. I Prikl. Gidrofiz. 2015, 9, 32–41. [Google Scholar]
- Salomatin, A.S.; Yusupov, V.I.; Vereshchagina, O.F.; Chernykh, D.V. An acoustic estimate of methane concentration in a water column in regions of methane bubble release. Acoust. Phys. 2014, 60, 671–677. [Google Scholar] [CrossRef]
- Muyakshin, S.; Sauter, E. The hydroacoustic method for the quantification of the gas flux from a submersed bubble plume. Oceanology 2010, 50, 995–1001. [Google Scholar] [CrossRef]
- Medwin, H.; Clay, C.S. Fundamentals of Acoustical Oceanography; Academic Press: San Diego, CA, USA, 1997; ISBN 978-0-12-487570-8. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; Peninsula Publishing: Westport, CT, USA, 1996. [Google Scholar]
- Leifer, I.; Patro, R.K. The bubble mechanism for methane transport from the shallow sea bed to the surface: A review and sensitivity study. Cont. Shelf Res. 2002, 22, 2409–2428. [Google Scholar] [CrossRef]
- Veloso, M.; Greinert, J.; Mienert, J.; De Batist, M. A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard. Limnol. Oceanogr. Methods 2015, 13, 267–287. [Google Scholar] [CrossRef] [Green Version]
- Munk, W.; Wunsch, C. Ocean acoustic tomography: A scheme for large scale monitoring. Deep Sea Res. Part A Oceanogr. Res. Pap. 1979, 26, 123–161. [Google Scholar] [CrossRef]
- Greinert, J.; Nutzel, B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps. Geo Mar. Lett. 2004, 24, 75–85. [Google Scholar] [CrossRef]
- Leifer, I.; Culling, D. Formation of seep bubble plumes in the Coal Oil Point seep field. Geo Mar. Lett. 2010, 30, 339–353. [Google Scholar] [CrossRef]
- Wang, B.; Socolofsky, S.A.; Breier, J.A.; Seewald, J.S. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging. J. Geophys. Res. Ocean. 2016, 121, 2203–2230. [Google Scholar] [CrossRef] [Green Version]
- McGinnis, D.F.; Greinert, J.; Artemov, Y.; Beaubien, S.E.; Wuest, A. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? J. Geophys. Res.—Ocean. 2006, 111, C09007. [Google Scholar] [CrossRef] [Green Version]
- Maksimov, A.O.; Burov, B.A.; Salomatin, A.S.; Chernykh, D.V. Sounds of marine seeps: A study of bubble activity near a rigid boundary. J. Acoust. Soc. Am. 2014, 136, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Yusupov, V.I.; Salyuk, A.N.; Karnaukh, V.N.; Semiletov, I.P.; Shakhova, N.E. Detection of methane ebullition in shelf waters of the Laptev Sea in the Eastern Arctic Region. Dokl. Earth Sci. 2010, 430, 261–264. [Google Scholar] [CrossRef]
- Ishimaru, A. Wave Propagation and Scattering in Random Media; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Granin, N.; Muyakshin, S.; Makarov, M.; Kucher, K.; Aslamov, I.; Granina, L.; Mizandrontsev, I. Estimation of methane fluxes from bottom sediments of Lake Baikal. Geo Mar. Lett. 2012, 32. [Google Scholar] [CrossRef]
- Ainslie, M.; Leighton, T. Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble. J. Acoust. Soc. Am. 2011, 130, 3184–3208. [Google Scholar] [CrossRef]
- Foote, K.G.; Knudsen, H.P.; Vestnes, G. Improved Calibration of Hydroacoustic Equipment with Copper Spheres. Available online: https://imr.brage.unit.no/imr-xmlui/bitstream/handle/11250/102773/CM_1981_B_20.pdf?sequence=1 (accessed on 17 August 2020).
- MacLennan, D.N. The Theory of Solid Spheres as Sonar Calibration Targets; Department of Agriculture and Fisheries for Scotland: Edinburgh, Scotland, 1981. [Google Scholar]
- MacLennan, D.N.; Dunn, J.R. Estimation of sound velocities from resonance measurements on tungsten carbide calibration spheres. J. Sound Vib. 1984, 97, 321–331. [Google Scholar] [CrossRef]
- Sergienko, V.I.; Lobkovskii, L.I.; Semiletov, I.P.; Dudarev, O.V.; Dmitrievskii, N.N.; Shakhova, N.E.; Romanovskii, N.N.; Kosmach, D.A.; Nikol’skii, D.N.; Nikiforov, S.L.; et al. The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the ‘Methane Catastrophe’. Dokl. Earth Sci. 2012, 446, 1132–1137. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernykh, D.; Yusupov, V.; Salomatin, A.; Kosmach, D.; Shakhova, N.; Gershelis, E.; Konstantinov, A.; Grinko, A.; Chuvilin, E.; Dudarev, O.; et al. Sonar Estimation of Methane Bubble Flux from Thawing Subsea Permafrost: A Case Study from the Laptev Sea Shelf. Geosciences 2020, 10, 411. https://doi.org/10.3390/geosciences10100411
Chernykh D, Yusupov V, Salomatin A, Kosmach D, Shakhova N, Gershelis E, Konstantinov A, Grinko A, Chuvilin E, Dudarev O, et al. Sonar Estimation of Methane Bubble Flux from Thawing Subsea Permafrost: A Case Study from the Laptev Sea Shelf. Geosciences. 2020; 10(10):411. https://doi.org/10.3390/geosciences10100411
Chicago/Turabian StyleChernykh, Denis, Vladimir Yusupov, Aleksandr Salomatin, Denis Kosmach, Natalia Shakhova, Elena Gershelis, Anton Konstantinov, Andrey Grinko, Evgeny Chuvilin, Oleg Dudarev, and et al. 2020. "Sonar Estimation of Methane Bubble Flux from Thawing Subsea Permafrost: A Case Study from the Laptev Sea Shelf" Geosciences 10, no. 10: 411. https://doi.org/10.3390/geosciences10100411
APA StyleChernykh, D., Yusupov, V., Salomatin, A., Kosmach, D., Shakhova, N., Gershelis, E., Konstantinov, A., Grinko, A., Chuvilin, E., Dudarev, O., Koshurnikov, A., & Semiletov, I. (2020). Sonar Estimation of Methane Bubble Flux from Thawing Subsea Permafrost: A Case Study from the Laptev Sea Shelf. Geosciences, 10(10), 411. https://doi.org/10.3390/geosciences10100411