Does the Acknowledgement of αS1-Casein Genotype Affect the Estimation of Genetic Parameters and Prediction of Breeding Values for Milk Yield and Composition Quality-Related Traits in Murciano-Granadina?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. First Phase: Study Sample Selection Process
2.1.1. Study Sample
2.1.2. Lactation Standardization
2.1.3. Milk Composition Evaluation
2.2. Second Phase: Determining the Effect of Genotype
DNA Bank, αS1-Casein (CNS1) Genotyping and Mutation Identification
2.3. Statistical Analysis of Non-Genetic and Genetic Factors
2.4. Genetic Analyses: Genetic Model Comparison, Phenotypic and Genetic Parameters and Predicted Breeding Value Estimation
2.4.1. Genetic Model Comparison, Phenotypic and Genetic Parameter Estimation
2.4.2. Non-Genetic Factors Estimation (BLUES) and Breeding Value Prediction (BLUPS, PBVs)
2.4.3. Model Comparison
2.5. Ethics Committee Statement
3. Results
3.1. Statistical Analysis of Non-Genetic and Genetic Factors
3.2. Genetic Analyses
3.2.1. Genetic Model Comparison, Phenotypic and Genetic Parameters Estimation
3.2.2. Breeding Value Prediction and Comparative Descriptive Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Camacho, M.E.; Barba, C.J.; Leon, J.M.; Vallecillo, A.; Pleguezuelos, J. Especie Caprina: Murciano Granadina. In Guía de Campo de Razas Autóctonas Españolas; Fernández, M., Goméz, M., Delgado, J.V., Adán, M., Jiménez, M., Eds.; Ministerio de Medio Ambiente y Medio Rural y Marino: Madrid, Spain, 2010; pp. 220–222. [Google Scholar]
- Alderson, G. Conservation of breeds and maintenance of biodiversity: Justification and methodology for the conservation of Animal Genetic Resources. Arch. Zootec. 2018, 67, 300–309. [Google Scholar] [CrossRef]
- León, J.M.; Macciotta, N.P.P.; Gama, L.T.; Barba, C.; Delgado, J.V. Characterization of the lactation curve in Murciano-Granadina dairy goats. Small Rumin. Res. 2012, 107, 76–84. [Google Scholar] [CrossRef]
- Delgado, J.; Gómez, M.; Pleguezuelos, J. Catálogo de Sementales 2011 de la Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina; Asociación Nacional de Criadores de Caprino de Raza Murciano-Granadina: FuenteVaqueros, Spain, 2012. [Google Scholar]
- Lopes, F.B.; de los Reyes Borjas, A.; da Silva, M.C.; Facó, O.; Lôbo, R.N.; Fiorvanti, M.C.S.; McManus, C. Breeding goals and selection criteria for intensive and semi-intensive dairy goat system in Brazil. Small Rumin. Res. 2012, 106, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Bett, R.; Kosgey, I.; Bebe, B.; Kahi, A. Genetic improvement of the Kenya dual purpose goat: Influence of economic values and prospects for a practical breeding programme. Trop. Sci. 2007, 47, 105–119. [Google Scholar] [CrossRef]
- Haenlein, G. Goat milk in human nutrition. Small Rumin. Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
- Rout, P.K.; Matika, O.; Kaushik, R.; Dige, M.S.; Dass, G.; Singh, S.K. Estimation of genetic parameters and genetic trends for milk yield traits in Jamunapari goats in semiarid tropics. Small Rumin. Res. 2017, 153, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Miglior, F.; Fleming, A.; Malchiodi, F.; Brito, L.F.; Martin, P.; Baes, C.F. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 2017, 100, 10251–10271. [Google Scholar] [CrossRef]
- Barillet, F. Genetic improvement for dairy production in sheep and goats. Small Rumin. Res. 2007, 70, 60–75. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Zhang, Y.; Sun, D.; Zhang, Y. Estimation of economic values for production and functional traits in Chinese Holstein. J. Anim. Vet. Adv. 2009, 8, 2125–2132. [Google Scholar]
- Tozer, P.; Stokes, J. Producer breeding objectives and optimal sire selection. J. Dairy Sci. 2002, 85, 3518–3525. [Google Scholar] [CrossRef]
- Montaldo, H.; Valencia-Posadas, M.; Wiggans, G.; Shepard, L.; Torres-Vázquez, J. Genetic and environmental relationships between milk yield and kidding interval in dairy goats. J. Dairy Sci. 2010, 93, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Torres-Vázquez, J.; Valencia-Posadas, M.; Castillo-Juarez, H.; Montaldo, H.H. Genetic and phenotypic trends for milk yield and milk composition traits of Saanen goats from Mexico. Rev. Mex. Cienc. Pecu. 2010, 1, 337–348. [Google Scholar]
- Andonov, S.; Ødegård, J.; Boman, I.; Svendsen, M.; Holme, I.; Ådnøy, T.; Vukovic, V.; Klemetsdal, G. Validation of test-day models for genetic evaluation of dairy goats in Norway. J. Dairy Sci. 2007, 90, 4863–4871. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.; Wheeler, M.; Lanuzel, M. Genetic trend and parameter estimates for milk yield traits and kidding date in a Saanen goat herd in New Zealand. N. Z. J. Agric. Res. 2006, 49, 175–181. [Google Scholar] [CrossRef]
- Muller, C.; Cloet, S.; Schoeman, S. Estimation of genetic parameters for milk yield and milk composition of South African Saanen goats. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002; pp. 259–262. [Google Scholar]
- Hristov, J.P.; Teofanova, D.; Georgieva, A.; Radoslavov, G. Effect of genetic polymorphism of αS1-casein gene on qualitative and quantitative milk traits in native Bulgarian Rhodopean cattle breed. Genet. Mol. Res. 2018, 17, gmr16039868. [Google Scholar] [CrossRef]
- Caroli, A.; Chiatti, F.; Chessa, S.; Rignanese, D.; Bolla, P.; Pagnacco, G. Focusing on the goat casein complex. J. Dairy Sci. 2006, 89, 3178–3187. [Google Scholar] [CrossRef]
- Ramunno, L.; Cosenza, G.; Rando, A.; Illario, R.; Gallo, D.; Di Berardino, D.; Masina, P. The goat αs1-casein gene: Gene structure and promoter analysis. Gene 2004, 334, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Grosclaude, F. Improvement of milk protein quality by gene technology. Livest. Prod. Sci. 1993, 35, 95–115. [Google Scholar] [CrossRef]
- Giorgio, D.; Di Trana, A.; Claps, S. Oligosaccharides, polyamines and sphingolipids in ruminant milk. Small Rumin. Res. 2018, 160, 23–30. [Google Scholar] [CrossRef]
- Bonanno, A.; Di Grigoli, A.; Di Trana, A.; Di Gregorio, P.; Tornambè, G.; Bellina, V.; Claps, S.; Maggio, G.; Todaro, M. Influence of fresh forage-based diets and αS1-casein (CSN1S1) genotype on nutrient intake and productive, metabolic, and hormonal responses in milking goats. J. Dairy Sci. 2013, 96, 2107–2117. [Google Scholar] [CrossRef]
- Quiles, A.; Hevia, M.; Fuentes, F.; Barcina, Y.; Ramírez, A. Fraccionamiento electroforético de las proteínas de leche de cabra de raza Murciano-Granadina. Anales de Veterinaria de Murcia 1992, 8, 7–14. [Google Scholar]
- Chiatti, F.; Chessa, S.; Bolla, P.; Cigalino, G.; Caroli, A.; Pagnacco, G. Effect of κ-casein polymorphism on milk composition in the Orobica goat. J. Dairy Sci. 2007, 90, 1962–1966. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, G.; Landi, V.; León Jurado, J.M.; Navas González, F.J.; Delgado Bermejo, J.V. Non-parametric analysis of the effects of αS1-casein genotype and parturition nongenetic factors on milk yield and composition in Murciano-Granadina goats. Ital. J. Anim. Sci. 2019, 18, 1021–1034. [Google Scholar] [CrossRef]
- Boldman, K.G.; Kriese, L.A.; Vleck, T.; Kachman, S.D. A Manual for Use of MTDFREML. A Set of Programs to Obtain Estimates of Variances and Covariances, 1st ed.; US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1995; p. 114.
- Van Vleck, L.D. Selection Index and Introduction to Mixed Model Methods, 1st ed.; CRC Press: London, UK, 1993. [Google Scholar]
- Brito, L.; Silva, F.; Melo, A.; Caetano, G.; Torres, R.; Rodrigues, M.; Menezes, G. Genetic and environmental factors that influence production and quality of milk of Alpine and Saanen goats. Genet. Mol. Res. 2011, 10, 3794–3802. [Google Scholar] [CrossRef] [PubMed]
- Samson, T.; Olajumoke, O. Genetic and non-genetic factors affecting yield and milk composition in goats. J. Adv. Dairy Res. 2017, 5, 2. [Google Scholar]
- Delgado, J.V.; Landi, V.; Barba, C.J.; Fernández, J.; Gómez, M.M.; Camacho, M.E.; Martínez, M.A.; Navas, F.J.; León, J.M. Murciano-Granadina Goat: A Spanish Local Breed Ready for the Challenges of the Twenty-First Century. In Sustainable Goat Production in Adverse Environments: Volume II; Springer: Berlin/Heidelberg, Germany, 2017; pp. 205–219. [Google Scholar]
- Caravaca, F.; Carrizosa, J.; Urrutia, B.; Baena, F.; Jordana, J.; Amills, M.; Badaoui, B.; Sánchez, A.; Angiolillo, A.; Serradilla, J. Effect of αS1-casein (CSN1S1) and κ-casein (CSN3) genotypes on milk composition in Murciano-Granadina goats. J. Dairy Sci. 2009, 92, 2960–2964. [Google Scholar] [CrossRef]
- Maga, E.; Daftari, P.; Kültz, D.; Penedo, M. Prevalence of αs1-casein genotypes in American dairy goats. J. Anim. Sci. 2009, 87, 3464–3469. [Google Scholar] [CrossRef]
- Young, A.L. Analysis of Lactation Curves Using Probability Distributions and Non-Linear Analysis; Utah State University, State Agricultural Experiment Station Utah: Logan, UT, USA, 2017. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- International Beef Recording Scheme. A Basic Guide to BREEDPLAN PBVs; University of New England: Biddeford, ME, USA, 2015; p. 28. [Google Scholar]
- KWPN (Royal Dutch Sport Horse). Genetic Profile & Statistics 2016–2017, KWPN-Approved and KWPN-Recognized Stallions; KWPN (Royal Dutch Sport Horse): Ermelo, The Netherlands, 2016; p. 132. [Google Scholar]
- Van Vleck, L.D. EPDs and Risk. In Proceedings of the Beef Improvement Federation Annual Meeting & Symposium, New York, NY, USA, 14–17 June 2019; p. 9. [Google Scholar]
- Brown, J.D. Effect size and eta squared. JALT Test. Eval. Sig News 2008, 12, 38–43. [Google Scholar]
- Rodríguez, C.; López-Herrera, A.; Echeverri, Z. Effect of the interaction of level nutritional diet and gene polymorphisms BGH, PRL e IGF2α on percentage of fat and protein in milk of Holstein cattle. Arch. Zootec. 2017, 66, 499–507. [Google Scholar] [CrossRef]
- Schmitz, S.; Cherny, S.S.; Fulker, D.W. Increase in power through multivariate analyses. Behav. Genet. 1998, 28, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Neale, M.C.; Eaves, L.J.; Kendler, K.S. The power of the classical twin study to resolve variation in threshold traits. Behav. Genet. 1994, 24, 239–258. [Google Scholar] [CrossRef] [PubMed]
- Martínez Niño, C.A.; Manrique Perdomo, C.; Elzo, M.A. La evaluación genética de vacunos: Una percepción histórica. Rev. Colomb. Cienc. Pecu. 2012, 25, 293–311. [Google Scholar]
- Moioli, B.; D’andrea, M.; Pilla, F. Candidate genes affecting sheep and goat milk quality. Small Rumin. Res. 2007, 68, 179–192. [Google Scholar] [CrossRef]
- Analla, M.; Jiménez-Gamero, I.; Muñoz-Serrano, A.; Serradilla, J.M.; Falagán, A. Estimation of Genetic Parameters for Milk Yield and Fat and Protein Contents of Milk from Murciano-Granadina Goats. J. Dairy Sci. 1996, 79, 1895–1898. [Google Scholar] [CrossRef]
- Valencia, M.; Dobler, J.; Montaldo, H. Genetic and phenotypic parameters for lactation traits in a flock of Saanen goats in Mexico. Small Rumin. Res. 2007, 68, 318–322. [Google Scholar] [CrossRef]
- Torres-Vázquez, J.; Valencia-Posadas, M.; Castillo-Juárez, H.; Montaldo, H. Genetic and phenotypic parameters of milk yield, milk composition and age at first kidding in Saanen goats from Mexico. Livest. Sci. 2009, 126, 147–153. [Google Scholar] [CrossRef]
- Montaldo, H.H.; Torres-Hernández, G.; Valencia-Posadas, M. Goat breeding research in Mexico. Small Rumin. Res. 2010, 89, 155–163. [Google Scholar] [CrossRef]
- Rupp, R.; Clément, V.; Piacere, A.; Robert-Granié, C.; Manfredi, E. Genetic parameters for milk somatic cell score and relationship with production and udder type traits in dairy Alpine and Saanen primiparous goats. J. Dairy Sci. 2011, 94, 3629–3634. [Google Scholar] [CrossRef] [Green Version]
- García-Peniche, T.; Montaldo, H.H.; Valencia-Posadas, M.; Wiggans, G.; Hubbard, S.; Torres-Vázquez, J.; Shepard, L. Breed differences over time and heritability estimates for production and reproduction traits of dairy goats in the United States. J. Dairy Sci. 2012, 95, 2707–2717. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Bustos, V.; Montaldo, H.; Torres-Hernández, G.; Pérez-Elizalde, S.; Valencia-Posadas, M.; Hernández-Mendo, O.; Shepard, L. Estimation of genetic parameters for productive life, reproduction, and milk-production traits in US dairy goats. J. Dairy Sci. 2014, 97, 2462–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiggans, G. Animal model evaluation of dairy goats for milk, fat, and protein yields with crossbred animals included. J. Dairy Sci. 1989, 72, 2411–2416. [Google Scholar] [CrossRef]
- Martínez, R.A.; Pérez, J.E.; Herazo, T. Evaluación fenotípica y genética para características de crecimiento en la raza criolla colombiana Costeño con Cuernos. Corpoica. Cienc. Tecnol. Agropecu. 2006, 7, 12–20. [Google Scholar] [CrossRef]
- Gervais, O.; Pong-Wong, R.; Navarro, P.; Haley, C.S.; Nagamine, Y. Antagonistic genetic correlations for milking traits within the genome of dairy cattle. PLoS ONE 2017, 12, e0175105. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, A.; Bezerril, F.; Madruga, M.; Batista, A.; Magnani, M.; Souza, E.; Queiroga, R. Nutritional and sensory characteristics of Minas fresh cheese made with goat milk, cow milk, or a mixture of both. J. Dairy Sci. 2013, 96, 7442–7453. [Google Scholar] [CrossRef]
- Delgado, J.; León, J.; Gama, L.; Lozano, J.; Quiroz, J.; Camacho, M. Genetic parameters for milk traits in Murciano-Granadina goats in the high lands. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Minas Gerais, Brazil, 13–18 August 2006; pp. 2–13. [Google Scholar]
- Boichard, D.; Bouloc, N.; Ricordeau, G.; Piacere, A.; Barillet, F. Genetic parameters for first lactation dairy traits in the Alpine and Saanen goat breeds. Genet. Sel. Evol. 1989, 21, 205. [Google Scholar] [CrossRef]
- Bagnicka, E.; Distl, O.; Hamann, H.; Lukaszewicz, M. Heritabilities and genetic correlations between the dairy traits in goats estimated in first vs later lactations. Anim. Sci. Pap. Rep. 2004, 2, 205–213. [Google Scholar]
- Bömkes, D.; Hamann, H.; Distl, O. Estimation of genetic parameters for test day records of milk yield traits in German Improved Eawn. Arch. Tierz. 2004, 47, 193–202. [Google Scholar]
- Sneddon, N.; Lopez-Villalobos, N.; Davis, S.; Hickson, R.; Shalloo, L. Genetic parameters for milk components including lactose from test day records in the New Zealand dairy herd. N. Z. J. Agric. Res. 2015, 58, 97–107. [Google Scholar] [CrossRef]
- Haile-Mariam, M.; Pryce, J. Genetic parameters for lactose and its correlation with other milk production traits and fitness traits in pasture-based production systems. J. Dairy Sci. 2017, 100, 3754–3766. [Google Scholar] [CrossRef]
- Verdier-Metz, I.; Coulon, J.-B.; Pradel, P. Relationship between milk fat and protein contents and cheese yield. Anim. Res. 2001, 50, 365–371. [Google Scholar] [CrossRef]
- Lourenco, D.A.L.; Fragomeni, B.O.; Tsuruta, S.; Aguilar, I.; Zumbach, B.; Hawken, R.J.; Legarra, A.; Misztal, I. Accuracy of estimated breeding values with genomic information on males, females, or both: An example on broiler chicken. Genet. Sel. Evol. 2015, 47, 56. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.A.; Hickey, J.M.; Daetwyler, H.D.; van der Werf, J.H.J. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet. Sel. Evol. 2012, 44, 4. [Google Scholar] [CrossRef] [PubMed]
- Iraqi, M.; El-Labban, A.; Khalil, M. Estimation of breeding values and their accuracies using multivariates animal model analysis for growth traits in three local strains of chickens. Egypt. Poult. Sci. 2000, 20, 981–1002. [Google Scholar]
- Piccardi, M.; Macchiavelli, R.; Funes, A.C.; Bó, G.A.; Balzarini, M. Fitting milk production curves through nonlinear mixed models. J. Dairy Sci. 2017, 84, 146–153. [Google Scholar] [CrossRef]
- Pallete, A.E. Evaluación y selección de toros lecheros. Rev. Investig. Vet. Peru 2001, 12, 150–160. [Google Scholar] [CrossRef]
- Carillier-Jacquin, C.; Larroque, H.; Robert-Granié, C. Including αs1casein gene information in genomic evaluations of French dairy goats. Genet. Sel. Evol. 2016, 48, 54. [Google Scholar] [CrossRef]
Factor | Variable (in kg) | χ2 | P-Value | Dfn,Dfd | F | Partial Eta Squared |
---|---|---|---|---|---|---|
Farm | Milk yield | 537.74 | 0.00 | 58,2031 | 9.27 | 0.206 |
Protein | 457.88 | 0.00 | 58,2031 | 7.89 | 0.181 | |
Fat | 449.63 | 0.00 | 58,2031 | 7.75 | 0.178 | |
Dry matter | 455.05 | 0.00 | 58,2031 | 7.85 | 0.180 | |
Parturition year | Milk yield | 115.11 | 0.00 | 11,2078 | 10.46 | 0.052 |
Protein | 139.80 | 0.00 | 11,2078 | 12.71 | 0.062 | |
Fat | 89.13 | 0.00 | 11,2078 | 8.10 | 0.040 | |
Dry matter | 111.83 | 0.00 | 11,2078 | 10.17 | 0.050 | |
Parturition month | Milk yield | 33.54 | 0.00 | 11,2078 | 3.05 | 0.016 |
Protein | 26.66 | 0.01 | 11,2078 | 2.42 | 0.012 | |
Fat | 40.01 | 0.00 | 11,2078 | 3.64 | 0.019 | |
Dry matter | 27.41 | 0.01 | 11,2078 | 2.49 | 0.013 | |
Birth season | Milk yield | 20.10 | 0.00 | 3,2086 | 6.70 | 0.009 |
Protein | 10.38 | 0.02 | 3,2086 | 3.46 | 0.005 | |
Fat | 13.21 | 0.01 | 3,2086 | 4.40 | 0.006 | |
Dry matter | 9.10 | 0.03 | 3,2086 | 3.03 | 0.004 | |
Birth type | Milk yield | 122.25 | 0.00 | 4,2085 | 30.56 | 0.054 |
Protein | 116.29 | 0.00 | 4,2085 | 29.07 | 0.052 | |
Fat | 104.78 | 0.00 | 4,2085 | 26.20 | 0.047 | |
Dry matter | 110.70 | 0.00 | 4,2085 | 27.68 | 0.050 | |
Genotype | Milk yield | 16.74 | 0.02 | 7,2082 | 2.39 | 0.008 |
Protein | 17.12 | 0.02 | 7,2082 | 2.45 | 0.008 | |
Fat | 19.57 | 0.02 | 7,2082 | 2.80 | 0.009 | |
Dry matter | 17.44 | 0.01 | 7,2082 | 2.49 | 0.008 | |
Age | Milk yield | 330.97 | 0.00 | 92,1997 | 3.60 | 0.140 |
Protein | 326.97 | 0.00 | 92,1997 | 3.55 | 0.138 | |
Fat | 323.54 | 0.00 | 92,1997 | 3.52 | 0.137 | |
Dry matter | 325.76 | 0.00 | 92,1997 | 3.54 | 0.138 |
Model/Genotype as a Fixed Effect | Trait (in kg) | h2 ± SE | ||||
---|---|---|---|---|---|---|
Including genotype | Milk yield | 11,511.83 | 28,779.57 | 1689.51 | 15,578.23 | 0.40 ± 0.06 |
Fat | 16.87 | 58.83 | 16.22 | 25.74 | 0.29 ± 0.05 | |
Protein | 9.45 | 17.96 | 0.36 | 8.14 | 0.53 ± 0.02 | |
Dry matter | 57.45 | 351.07 | 82.03 | 211.58 | 0.16 ± 0.04 | |
Excluding genotype | Milk yield | 9525.84 | 23,814.6 | 68.74 | 14,220.02 | 0.40 ± 0.07 |
Fat | 14.55 | 46.57 | 2.25 | 29.77 | 0.31 ± 0.05 | |
Protein | 7.25 | 24.56 | 2.99 | 14.32 | 0.30 ± 0.03 | |
Dry matter | 49.60 | 327.25 | 25.80 | 251.85 | 0.15 ± 0.05 |
Model/Genotype as a Fixed Effect | Trait (kg) | Milk Yield | Fat | Protein | Dry Matter |
---|---|---|---|---|---|
Including genotype | Milk yield | 0.40 a | 0.01 b | −0.02 b | 0.01 b |
Fat | 0.01 c | 0.29 a | 0.97 b | −0.09 b | |
Protein | −0.02 c | 0.97 c | 0.53 a | 0.14 b | |
Dry matter | 0.01 c | −0.09 c | 0.14 c | 0.16 a | |
Excluding genotype | Milk yield | 0.40 a | −0.01 b | −0.01 b | 0.00 b |
Fat | −0.01 c | 0.31 a | 0.93 b | 0.23 b | |
Protein | −0.01 c | 0.93 c | 0.30 a | −0.15 b | |
Dry matter | 0.01 c | 0.23 c | −0.15 c | 0.02 a |
Sex | Model | Trait (kg) | Parameter | Minimum | Maximum | Median | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
Buck (N = 2404) | Including genotype | Milk yield | PBV | −161.54 | 137.41 | 0.00 | 6.76 | 1.21 |
SEP | 61.71 | 119.96 | 106.86 | 16.36 | −3.17 | |||
RTi | 0.00 | 0.82 | 0.09 | 0.35 | 1.01 | |||
RAP | 0.00 | 0.67 | 0.01 | 11.09 | 2.83 | |||
Fat | PBV | −5.37 | 6.77 | 0.00 | 6.71 | 1.40 | ||
SEP | 2.21 | 4.59 | 4.09 | 14.76 | −3.09 | |||
RTi | 0.00 | 0.84 | 0.10 | 0.24 | 0.98 | |||
RAP | 0.00 | 0.71 | 0.01 | 9.71 | 2.70 | |||
Protein | PBV | −4.88 | 5.96 | 0.00 | 6.39 | 1.34 | ||
SEP | 1.65 | 3.44 | 3.06 | 14.73 | −3.08 | |||
RTi | 0.00 | 0.84 | 0.10 | 0.24 | 0.98 | |||
RAP | 0.00 | 0.71 | 0.01 | 9.77 | 2.71 | |||
Dry matter | PBV | −10.97 | 11.22 | 0.00 | 5.51 | 1.14 | ||
SEP | 5.61 | 8.47 | 7.57 | 20.98 | -2.85 | |||
RTi | 0.00 | 0.67 | 0.06 | 0.67 | 1.08 | |||
RAP | 0.00 | 0.45 | 0.00 | 16.36 | 3.23 | |||
Excluding genotype | Milk yield | PBV | −242.51 | 156.94 | 0.00 | 18.49 | 1.24 | |
SEP | 46.46 | 109.12 | 107.29 | 27.44 | −4.92 | |||
RTi | 0.00 | 0.88 | 0.00 | 3.55 | 2.03 | |||
RAP | 0.00 | 0.77 | 0.00 | 22.49 | 90.77 | |||
Fat | PBV | −9.09 | 6.07 | 0.00 | 19.55 | 1.72 | ||
SEP | 2.19 | 4.26 | 4.11 | 29.38 | 12.32 | |||
RTi | 0.00 | 0.82 | 0.00 | 3.87 | 2.09 | |||
RAP | 0.00 | 0.67 | 0.00 | 23.05 | 77.45 | |||
Protein | PBV | −6.11 | 3.78 | 0.00 | 17.98 | 1.77 | ||
SEP | 1.69 | 3.01 | 3.08 | 29.01 | 28.35 | |||
RTi | 0.00 | 0.78 | 0.00 | 3.88 | 2.09 | |||
RAP | 0.00 | 0.61 | 0.00 | 22.96 | 76.56 | |||
Dry matter | PBV | −4.60 | 4.35 | 0.00 | 11.71 | 1.26 | ||
SEP | 2.01 | 3.59 | 7.58 | 18.43 | 3.22 | |||
RTi | 0.00 | 0.78 | 0.00 | 2.51 | 1.87 | |||
RAP | 0.00 | 0.61 | 0.00 | 17.95 | 129.83 | |||
Doe (N = 26,993) | Including genotype | Milk yield | PBV | −215.76 | 249.04 | 0.00 | 16.26 | 1.19 |
SEP | 55.03 | 119.96 | 97.60 | 30.51 | −5.14 | |||
RTi | 0.00 | 0.86 | 0.00 | 3.52 | 1.98 | |||
RAP | 0.00 | 0.74 | 0.00 | 23.74 | 91.65 | |||
Fat | PBV | −9.30 | 10.19 | 0.00 | 14.94 | 1.37 | ||
SEP | 1.55 | 4.59 | 3.81 | 28.94 | 39.22 | |||
RTi | 0.00 | 0.93 | 0.00 | 3.27 | 1.95 | |||
RAP | 0.00 | 0.86 | 0.00 | 23.20 | 103.84 | |||
Protein | PBV | −7.94 | 8.65 | 0.00 | 12.94 | 1.57 | ||
SEP | 1.17 | 3.44 | 2.69 | 25.88 | 73.71 | |||
RTi | 0.00 | 0.92 | 0.00 | 3.07 | 1.90 | |||
RAP | 0.00 | 0.85 | 0.00 | 21.75 | 106.92 | |||
Dry matter | PBV | −13.68 | 14.89 | 0.00 | 20.59 | 1.40 | ||
SEP | 6.01 | 8.47 | 3.21 | 24.97 | 49.89 | |||
RTi | 0.00 | 0.61 | 0.00 | 3.23 | 1.98 | |||
RAP | 0.00 | 0.37 | 0.00 | 21.67 | 105.64 | |||
Excluding genotype | Milk yield | PBV | −196.97 | 265.12 | 0.00 | 18.49 | 1.24 | |
SEP | 41.55 | 109.12 | 107.29 | 27.44 | −4.92 | |||
RTi | 0.00 | 0.90 | 0.00 | 3.55 | 2.03 | |||
RAP | 0.00 | 0.81 | 0.00 | 22.49 | 90.77 | |||
Fat | PBV | −8.44 | 10.66 | 0.00 | 19.55 | 1.72 | ||
SEP | 2.04 | 4.26 | 4.11 | 29.38 | 12.32 | |||
RTi | 0.00 | 0.85 | 0.00 | 3.87 | 2.09 | |||
RAP | 0.00 | 0.72 | 0.00 | 23.05 | 77.45 | |||
Protein | PBV | −5.53 | 6.65 | 0.00 | 17.98 | 1.77 | ||
SEP | 1.67 | 3.01 | 3.08 | 29.01 | 28.35 | |||
RTi | 0.00 | 0.79 | 0.00 | 3.88 | 2.09 | |||
RAP | 0.00 | 0.62 | 0.00 | 22.96 | 76.56 | |||
Dry matter | PBV | −6.27 | 7.92 | 0.00 | 11.71 | 1.26 | ||
SEP | 1.98 | 3.59 | 7.58 | 18.43 | 3.22 | |||
RTi | 0.00 | 0.79 | 0.00 | 2.51 | 1.87 | |||
RAP | 0.00 | 0.62 | 0.00 | 17.95 | 129.83 |
Milk Yield | Fat | Protein | Dry Matter |
---|---|---|---|
0.061 ** | 0.049 ** | 0.056 ** | 0.151 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizarro Inostroza, M.G.; Landi, V.; Navas González, F.J.; León Jurado, J.M.; Martínez Martínez, A.; Fernández Álvarez, J.; Delgado Bermejo, J.V. Does the Acknowledgement of αS1-Casein Genotype Affect the Estimation of Genetic Parameters and Prediction of Breeding Values for Milk Yield and Composition Quality-Related Traits in Murciano-Granadina? Animals 2019, 9, 679. https://doi.org/10.3390/ani9090679
Pizarro Inostroza MG, Landi V, Navas González FJ, León Jurado JM, Martínez Martínez A, Fernández Álvarez J, Delgado Bermejo JV. Does the Acknowledgement of αS1-Casein Genotype Affect the Estimation of Genetic Parameters and Prediction of Breeding Values for Milk Yield and Composition Quality-Related Traits in Murciano-Granadina? Animals. 2019; 9(9):679. https://doi.org/10.3390/ani9090679
Chicago/Turabian StylePizarro Inostroza, María Gabriela, Vincenzo Landi, Francisco Javier Navas González, Jose Manuel León Jurado, Amparo Martínez Martínez, Javier Fernández Álvarez, and Juan Vicente Delgado Bermejo. 2019. "Does the Acknowledgement of αS1-Casein Genotype Affect the Estimation of Genetic Parameters and Prediction of Breeding Values for Milk Yield and Composition Quality-Related Traits in Murciano-Granadina?" Animals 9, no. 9: 679. https://doi.org/10.3390/ani9090679
APA StylePizarro Inostroza, M. G., Landi, V., Navas González, F. J., León Jurado, J. M., Martínez Martínez, A., Fernández Álvarez, J., & Delgado Bermejo, J. V. (2019). Does the Acknowledgement of αS1-Casein Genotype Affect the Estimation of Genetic Parameters and Prediction of Breeding Values for Milk Yield and Composition Quality-Related Traits in Murciano-Granadina? Animals, 9(9), 679. https://doi.org/10.3390/ani9090679