Effect of Palm Kernel Meal and Malic Acid on Rumen Characteristics of Growing Naemi Lambs Fed Total Mixed Ration
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals Selection and Experimental Design
2.2. Rumen pH
2.3. Colour Intensity of Rumen and Reticulum
2.4. Histology of Rumen
2.5. Volatile fatty Acids Determination
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, M.R.; Merry, R.J.; Davies, D.R.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; MacRae, J.C.; Scollan, N.D. Effect of increasing availability of water–soluble carbohydrates on in vitro rumen fermentation. Anim. Feed Sci. Technol. 2004, 104, 59–70. [Google Scholar] [CrossRef]
- Lee, S.S.; Choi, C.K.; Ahn, B.H.; Moon, Y.H.; Kim, C.H.; Ha, J.K. In vitro stimulation of rumen microbial fermentation by a rumen anaerobic fungal culture. Anim Feed Sci. Technol. 2004, 115, 215–226. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, I. Advancing parity is associated with higher milk production at the cost of body condition and increase periparturient disorders in dairy herds. J. Vet. Sci. 2008, 7, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Maciel, R.P.; Neiva, J.N.; Araujo, V.L.; Cunha, O.F.; Paiva, J.; Restle, J.; Mendes, C.Q.; Lôbo, R.N. Intake, nutrient digestibility and performance of dairy heifers fed diets containing palm kernel cake. Rev. Bras. Zootec. 2012, 41, 698–706. [Google Scholar] [CrossRef]
- Valadares Filho, S.C.; Machado, P.A.S.; Furtado, T.; Chizzotti, M.L.; Amaral, H.F. Tabelas brasileiras de composição de alimentos para ruminantes; Editora UFV: Viçosa, MG, Brazil, 2015. [Google Scholar]
- Alhidary, I.A.; Abdelrahman, M.M.; Alyemni, A.H.; Khan, R.U.; Al-Saiady, M.Y.; Amran, R.A.; Alshamiry, F.A. Effect of alfalfa hay on growth performance, carcass characteristics, and meat quality of growing lambs with ad libitum access to total mixed rations. Rev. Bras. Zootec. 2016, 45, 302–308. [Google Scholar] [CrossRef]
- Abdelrahman, M.M.; Alhidary, I.; Alyemni, A.H.; Khan, R.U.; Bello, A.R.; Al-Saiady, M.Y.; Amran, R.A. Effect of alfalfa hay on rumen fermentation patterns and serum biochemical profile of growing Naemi lambs with ad libitum access to total mixed rations. Pak. J. Zool. 2005, 49, 15–19. [Google Scholar] [CrossRef]
- Nisbet, D.J.; Martin, S.A. Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium. J. Anim. Sci. 1990, 69, 4628–4633. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Dhama, K.; Kathrik, K.; Tiwari, R.; Abdelrahman, M.M.; Alhidary, I.A.; Zahoor, A. Direct-fed microbial: Beneficial applications, modes of action and prospects as a safe tool for enhancing ruminant production and safeguarding health. Intern. J. Pharmacol. 2016, 12, 12–220. [Google Scholar]
- Gomez-Basauri, J.; de Ondarza, M.B.; Siciliano-Jones, J. Intake and milk production of dairy cows fed lactic acid bacteria and mannanoligosaccharide. J. Dairy Sci. 2005, 84, 283. [Google Scholar]
- Sahoo, A.; Jena, B. Organic acids as rumen modifiers. Intern J. Sci. Res. 2014, 3, 2262–2266. [Google Scholar]
- Alhidary, I.; Abdelrahman, M.M.; Alyemni, A.H.; Khan, R.U.; Al-Mubarak, A.H.; Albaadani, H.H. Characteristics of rumen in Naemi lamb: Morphological characteristics in response to altered feeding regimen. Acta Histochem. 2016, 118, 331–337. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. SAS User’s Guide. Statistics, 8th ed.; SAS Institute: Cary, NC, USA, 2002. [Google Scholar]
- Castillo, C.; Benedito, J.L.; Mendez, J.; Pereira, V.; Lopez-Alonso, M.; Miranda, M.; Hernandez, J. Organic acids as a substitute for monensin in diets for beef cattle. Anim. Feed Sci. Tec. 2004, 115, 101–116. [Google Scholar] [CrossRef]
- Martin, S.A. Effects of DL-malate on in vitro forage fiber digestion by mixed ruminal microorganisms. Curr. Microbiol. 2004, 48, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.A.; Streeter, M.N.; Nisbet, D.J.; Hill, G.M.; Williams, S.E. Effects of Dl-malate on ruminal metabolism andperformance of cattle fed high-concentrate diet. J. Anim. Sci. 1999, 77, 1008–1015. [Google Scholar] [CrossRef] [PubMed]
- McGinn, S.M.; Beauchemin, K.A.; Coates, T.; Colombatto, D. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 2004, 82, 3346–3356. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.A.; Kenny, D.A.; Callan, J.J.; Boland, T.M.; O’Mara, F.P. Effect of DL-malic acid supplementation on feed intake, methane emission, and rumen fermentation in beef cattle. J. Anim. Sci. 2009, 87, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Enermark, J.M. The monitoring, prevention and treatment of sub-acute ruminal acidosis (SARA): A review. Vet. J. 2008, 176, 32–43. [Google Scholar] [CrossRef]
- Hamada, T.; Maeda, S.; Kameoka, K. Effects of minerals on formation of color in the rumen epithelium of kids. J. Dairy Sci. 1969, 53, 588–591. [Google Scholar] [CrossRef]
- Shen, Z.; Seyfert, H.M.; Löhrke, B.; Schneider, F.; Zitnan, R.; Chudy, A.; Kuhla, S.; Hammon, H.M.; Blum, J.W.; Martens, H.; et al. An energy-rich diet causes rumen papillae proliferation associated with more IGF type 1 receptors and increased plasma IGF-1 concentrations in young goats. J. Nutr. 2004, 134, 11–17. [Google Scholar] [CrossRef]
- Suárez, B.J.; Van Reenen, C.G.; Beldman, G.; Van Delen, J.; Dijkstra, J.; Gerrits, W.J. Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets: II. Rumen development. J. Dairy Sci. 2009, 89, 4376–4386. [Google Scholar] [CrossRef]
- Alvarez-Rodríguez, J.; Monleón, E.; Sanz, A.; Badiola, J.J.; Joy, M. Rumen fermentation and histology in light lambs as affected by forage supply and lactation length. Res. Vet. Sci. 2012, 92, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Blanco, C.; Giraldez, F.J.; Prieto, N.; Benavides, J.; Wattegedera, S.; Moran, I.; Andres, S.; Bodas, R. Total mixed ration pellets for light fattening lambs: Effects on animal health. Animal 2015, 9, 258–266. [Google Scholar] [CrossRef] [PubMed]
Ingredients, % | Treatments 4 | ||||||
---|---|---|---|---|---|---|---|
AH 1 | BG 2 | PKM 3 | Control | T1 | T2 | T3 | |
Alfalfa Hay | 25.22 | - | - | - | |||
Barley | 74.78 | 27.0 | 17.0 | 17.0 | |||
Feed Wheat | - | 29.95 | 29.92 | 29.92 | |||
Wheat Bran | - | 5 | 5 | 5 | |||
Sunflower Meal | - | 17.35 | 10.05 | 10.05 | |||
Soya Hulls | - | 13.55 | 11.03 | 11.03 | |||
Palm Kernel Meal | - | 0 | 20 | 20 | |||
Salt | - | 0.54 | 0.47 | 0.47 | |||
Limestone | - | 2.51 | 2.58 | 2.58 | |||
Molasses | - | 3 | 3 | 3 | |||
Acid buffer5 | - | 0.95 | 0.80 | 0.80 | |||
Commercial Premix6 | - | 0.15 | 0.15 | 0.15 | |||
Organic acid | - | - | - | 4 mL/day | |||
Dry matter | 93.44 | 90.49 | 94.56 | 91.23 | 90.8 | 91.40 | 91.40 |
Crude protein | 15.69 | 12.79 | 15.33 | 13.53 | 13.24 | 13.79 | 13.79 |
Crude fat | 26.01 | 5.70 | 16.58 | 10.82 | 12.72 | 11.98 | 11.98 |
Ether extract | 11.27 | 1.40 | 2.61 | 2.61 | |||
Ash | 11.20 | 2.93 | 4.11 | 5.02 | 10.30 | 9.09 | 9.09 |
ME, Mcal/kg7 | 2.03 | 3.11 | 2.66 | 2.83 | 2.80 | 2.79 | 2.79 |
Macro-minerals, % | |||||||
Calcium | 1.41 | 0.05 | 0.31 | 0.39 | 1.90 | 1.7 | 1.7 |
Phosphorous | 0.24 | 0.38 | 0.50 | 0.35 | 0.39 | 0.42 | 0.42 |
Magnesium | 0.31 | 0.15 | 0.23 | 0.19 | 0.38 | 0.28 | 0.28 |
Potassium | 1.71 | 0.47 | 0.44 | 0.78 | 0.78 | 0.75 | 0.75 |
Micro-minerals, mg/kg | |||||||
Iron | 134 | 85 | 801 | 97 | 193 | 336 | 336 |
Copper | 14 | 9 | 21.6 | 10.3 | 12.4 | 26.8 | 26.8 |
Zinc | 23 | 19 | 34.5 | 20.0 | 39.3 | 269 | 269 |
Manganese | 28 | 18 | 259 | 20.5 | 133 | 99.2 | 99.2 |
Selenium | - | 0.22 | - | 0.16 | 0.48 | 0.25 | 0.25 |
Variables | VFA (g) | ||
---|---|---|---|
Acetic | Propionic | Butyric | |
Treatment 1 | |||
Control | 1515.9 | 1690.2 ab | 551.7 |
T1 | 1664.6 | 1923.2 a | 545.5 |
T2 | 1774.4 | 1414.4 b | 676.2 |
T3 | 1941.3 | 1989.2 a | 517.7 |
SEM 2 | 154.641 | 127.783 | 47.489 |
p-value | 0.2767 | 0.0136 | 0.1066 |
Time (h) | |||
0 | 1424.2 | 1412.5 b | 435.4 b |
2 | 1981.3 | 1724.3 ab | 596.4 a |
4 | 1661.9 | 1948.6 a | 602.6 a |
8 | 1828.7 | 1931.6 a | 656.7 a |
SEM2 | 154.640 | 47.489 | 127.783 |
p-value | 0.0878 | 0.0191 | 0.0151 |
Treatment × Time | |||
p-value | 0.7990 | 0.0188 | 0.7232 |
Variables | Parameters | |
---|---|---|
Lactic Acid | pH | |
Treatment 1 | ||
Control | 1.94 b | 7.23 a |
T1 | 1.82 b | 6.55 b |
T2 | 3.83 a | 6.34 c |
T3 | 1.86 b | 6.42 b |
SEM 2 | 0.2924 | 0.1045 |
p-value | <0.0001 | <0.0001 |
Times (h) | ||
0 | 2.63 a | 7.07 a |
2 | 2.62 a | 6.18 c |
4 | 2.62 a | 6.72 b |
8 | 1.59 b | 6.56 b |
SEM2 | 0.2920 | 0.1040 |
p-value | 0.0405 | <0.0001 |
Treatment × Time | ||
p-value | 0.2150 | 0.2460 |
Parameter 3 | Treatments 2 | SEM 1 | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | T1 | T2 | T3 | ||||
Rumen | L* | 53.81 a | 33.38 b | 32.19 c | 35.24 b | 0.807 | <0.0001 |
a* | 4.94 a | 2.20 b | 2.63 b | 4.63 a | 0.265 | 0.0002 | |
b* | 15.06 a | 6.63 bc | 6.34 c | 7.89 b | 0.449 | <0.0001 | |
Reticulum | L* | 62.09 a | 43.21 b | 42.90 b | 38.18 b | 2.512 | 0.0007 |
a* | 4.60 | 2.91 | 3.47 | 3.39 | 0.480 | 0.1622 | |
b* | 15.75 a | 8.00 b | 8.39 b | 7.61 b | 1.085 | 0.0020 |
Parameter 3 | Treatments 2 | SEM 1 | p-Value | |||
---|---|---|---|---|---|---|
Control | T1 | T2 | T3 | |||
L (mm) | 3.73 bc | 4.67 ab | 2.75 c | 5.49 a | 0.375 | 0.005 |
W (mm) | 0.75 a | 0.67 ab | 0.49 c | 0.56 bc | 0.035 | 0.004 |
SA (mm2) | 8.84 a | 10.00 a | 4.20 b | 9.89 a | 0.971 | 0.009 |
Density (N/cm2) | 77.79 a | 70.33 ab | 64.66 bc | 56.33 c | 3.791 | 0.022 |
TSP (mm2/cm2) | 436.67 a | 439.99 a | 172.35 c | 348.09 b | 20.742 | <0.0001 |
SC (mm) | 0.041 | 0.032 | 0.046 | 0.040 | 0.005 | 0.335 |
WE (mm) | 0.205 | 0.190 | 0.141 | 0.196 | 0.0181 | 0.133 |
LP (mm) | 0.374 a | 0.241 b | 0.162 b | 0.183 b | 0.031 | 0.006 |
Submucosa (mm) | 0.761 | 0.814 | 0.648 | 0.608 | 0.069 | 0.208 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, M.M.; Alhidary, I.; Albaadani, H.H.; Alobre, M.; Khan, R.U.; Aljumaah, R.S. Effect of Palm Kernel Meal and Malic Acid on Rumen Characteristics of Growing Naemi Lambs Fed Total Mixed Ration. Animals 2019, 9, 408. https://doi.org/10.3390/ani9070408
Abdelrahman MM, Alhidary I, Albaadani HH, Alobre M, Khan RU, Aljumaah RS. Effect of Palm Kernel Meal and Malic Acid on Rumen Characteristics of Growing Naemi Lambs Fed Total Mixed Ration. Animals. 2019; 9(7):408. https://doi.org/10.3390/ani9070408
Chicago/Turabian StyleAbdelrahman, Mutassim M., Ibrahim Alhidary, Hani H. Albaadani, Mohsen Alobre, Rifat Ullah Khan, and Riyadh S. Aljumaah. 2019. "Effect of Palm Kernel Meal and Malic Acid on Rumen Characteristics of Growing Naemi Lambs Fed Total Mixed Ration" Animals 9, no. 7: 408. https://doi.org/10.3390/ani9070408
APA StyleAbdelrahman, M. M., Alhidary, I., Albaadani, H. H., Alobre, M., Khan, R. U., & Aljumaah, R. S. (2019). Effect of Palm Kernel Meal and Malic Acid on Rumen Characteristics of Growing Naemi Lambs Fed Total Mixed Ration. Animals, 9(7), 408. https://doi.org/10.3390/ani9070408