The Influence of Age on the Activity of Selected Biochemical Parameters of the Mouflon (Ovis musimon L.)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Study Area
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lovegrove, B.G. The zoogeography of mammalian basal metabolic rate. Am. Nat. 2000, 156, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Veiga, A.M. Applications of haematology in wildlife monitoring and ecosystem health assessment. Sci. Total Environ. 2015, 514, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Prasum, T. Animal Physiology; Dominant: Daryaganj, India, 2010; p. 334. [Google Scholar]
- Kimáková, T.; Kuzmová, L.; Nevolná, Z.; Bencko, V. Fish and fish products as risk factors of mercury exposure. Ann. Agric. Environ. Med. 2018, 25, 488–493. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.B. Stress and immunity in wild vertebrates: Timing is everything. Gen. Comp. Endocrinol. 2009, 163, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, S.E. Encyclopedia of Ecology, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2008; p. 3120. [Google Scholar]
- Miller, E.R.; Murray, E.F. Fowler’s Zoo and Wild Animal Medicine; Elsevier: Maryland Heights, MO, USA, 2012; p. 688. [Google Scholar]
- Amy, D.A.; Sjorgen, J. Veterinary Technician’s Large Animal Daily Reference Guide; Wiley-Blackwell: Hoboken, NJ, USA, 2013; p. 464. [Google Scholar]
- Borjesson, D.L.; Christopher, M.M.; Boyce, W.M. Biochemical and haematological reference intervals for free ranging desert bighorns sheep. J. Wildl. Dis. 2000, 36, 294–300. [Google Scholar] [CrossRef]
- Vicente, J.; Pérez-Rodríguez, L.; Gortazar, C. Sex, age, spleen size, and kidney fat of red deer relative to infection intensities of the lungworm Elaphostrongylus cervi. Naturwissenschaften 2007, 94, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Randox. Biochemical Markers, Human Recombinant Proteins & Antibodies. 2018. Available online: www.randox.com (accessed on 2 January 2018).
- Hell, P.; Slamečka, J.; Gašparík, J. Danielia a muflonia zver na Slovensku; PaPRESS: Bratislava, Slovakia, 2008; p. 160. [Google Scholar]
- Rivrud, I.M.; Loe, L.E.; Mysterud, A. How does local weather predict red deer home range size at different temporal scales? J. Anim. Ecol. 2010, 79, 1280–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowen, D.; Frandson, W.; Lee, W.; Fails, A.D. Anatomy and Physiology of Farm Animals; Wiley-Blackwell: Hoboken, NJ, USA, 2009; p. 528. [Google Scholar]
- Kaneko, J.; Harvey, J.J.; Bruss, M.L. Clinical Biochemistry of Domestic Animals; Elsevier, Academic Press: Cambridge, MA, USA, 2008; p. 915. [Google Scholar]
- Yatoo, M.I.; Kumar, P. Effects of Climate Change on Animal Health and Diseases. Int. J. Liv. Res. 2012, 2, 15–24. [Google Scholar] [CrossRef]
- Vlčkova, R.; Valocky, I.; Lazar, G.; Sopková, D.; Maraček, I. Histological and ultrasonographic monitoring of folliculogenesis in puerperal ewes after spring lambing. Acta Vet. Brno 2008, 77, 65–72. [Google Scholar] [CrossRef]
- Kock, M.D.; Clark, R.K.; Franti, C.E.; Jessup, D.A.; Wehausen, J.D. Effect of capture on biological parameters in free ranging (Ovis canadiensis). Wild Dis. Sci. 1987, 23, 652–662. [Google Scholar] [CrossRef]
- Lincoln, G.A. Reproductive seasonality and maturation throughout the complete life-cycle in the mouflon (Ovis musimon). Anim. Reprod. Sci. 1998, 53, 87–105. [Google Scholar] [CrossRef]
- Brtek, Ľ. Poľovná zver I. cicavce; PaPRESS: Bratislava, Slovakia, 2010; p. 112. [Google Scholar]
- Krauss, J.G.; Nies, D.H. Ecological Biochemistry, Environmental and Interspecies Interactions; Wiley-Blackwell: Hoboken, NJ, USA, 2014; p. 440. [Google Scholar]
- Martinez-Pastor, F.; Diaz-Corujo, A.R.; Anel, E.; Herraez, P.; Anel, L.; de Paz, P. Post mortem time and season alter subpopulation characteristics of Iberian red deer epididymal sperm. Theriogenology 2005, 64, 958–974. [Google Scholar] [CrossRef]
- Rogers, K. Blood Physiology and Circulation; Rosen Publishing: New York, NY, USA, 2010; p. 239. [Google Scholar]
- Groves, C.; Grubb, P. Ungulate Taxonomy; Johns Hopkins University Press: Baltimore, MD, USA, 2011. [Google Scholar]
- Goddard, P.J.; Keay, G.; Grigor, P.N. Lactate dehydrogenase quantification and isoenzyme distribution in physiological response to stress in red deer (Cervus elaphus). Res. Vet. Sci. 1997, 63, 119–122. [Google Scholar] [CrossRef]
- Singh, H.R.; Kumar, N. Animal Physiology and Biochemistry; Vishal Publishing: Punjab, India, 2014; p. 517. [Google Scholar]
- Škultéty, J. Súčasný stav a perspektíva rozvoja chovu muflonej zveri na Slovensku. Lesnícky časopis 1973, 19, 75–80. [Google Scholar]
- Slamečka, J. Zvýšenie efektívnosti farmového chovu raticovej zveri na Slovensku; Enigma: Nitra, Slovakia, 2002; pp. 22–27. [Google Scholar]
- Romero, L.M. Physiological stress in ecology: Lessons from biomedical research. Trends Ecol. Evol. 2004, 19, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, C.P.; Lill, A.; Reina, R.D. Use of erythrocyte indicators of health and condition in vertebrate ecophysiology: A review and appraisal. Biol. Rev. 2017, 92, 150–168. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.I.; Lüthi, D.; Litschi, M.; Schäe, C. Land–atmosphere coupling and climate change in Europe. Nature 2006, 443, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Farkaš, C.; Dubcová, A.; Kramáreková, H. Geografia; Enigma: Nitra, Slovakia, 2003; p. 334. [Google Scholar]
- Rosche Slovakia, Cobas Integra®. The Compact System for Essential Testing. 2018. Available online: http://www.cobas.com (accessed on 2 January 2018).
- Štiglic, M. Neparametrické štatistické metódy a ich ekonomické aplikácie; STU: Bratislava, Slovakia, 2009; p. 41. [Google Scholar]
- Crook, M.A. Clinical Biochemistry and Metabolic Medicine, 5th ed.; CRC Press: Boca Raton, FL, USA, 2012; p. 416. [Google Scholar]
- Peters, T. All about Albumin; Elsevier Science, Academic Press: Amsterdam, The Netherlands, 1995; p. 432. [Google Scholar]
- Walker, S.; Beckett, G.; Rae, P.; Ashby, P. Clinical Biochemistry, 9th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; p. 290. [Google Scholar]
- Daramola, J.; Adeloye, O.A.A.; Fotoba, T.A.; Soladoye, A.O. Haematological and biochemical parameters of West African Dwarf goats. Livest. Res. Rural Dev. 2005, 17, 95–96. [Google Scholar]
- Stamler, Ch.; Basu, J.N.; Chan, H.M. Biochemical Markers of Neurotoxicity in Wildlife and Human Populations. J. Toxicol. Environ. Health Part A 2005, 68, 1413–1429. [Google Scholar] [CrossRef] [PubMed]
- Ciberej, J.; Kováč, G.; Link, R. Assesment of metabolic profile in mouflon. Folia Venatoria 2007, 36, 71–80. [Google Scholar]
- Didara, M.; Florijančić, T.; Šperanda, T.; Bošković, I.; Šperanda, M. Serum biochemical values of mouflon (Ovis orientalis musimon) according to age and sex. Eur. J. Wildl. Res. 2011, 57, 349–353. [Google Scholar] [CrossRef]
- Kiran, S.; Bhutta, A.M.; Khan, B.A.; Durrani, S.; Ali, M.; Ali, M.; Iqbal, F. Effect of age and gender on some blood biochemical parameters of apparently healthy small ruminants from Southern Punjab in Pakistan. Asian Pac. J. Trop. Biomed. 2012, 2, 304–306. [Google Scholar] [CrossRef] [Green Version]
- Marco, I.; Vinas, L. The Stress Response to Repeated Capture in Mouflon (Ovis ammon) Physiological, Haematological and Biochemical Parameters. J. Vet. Med. 1998, 45, 243–253. [Google Scholar] [CrossRef]
- Peinado, V.; Celdrán, I.; Palomeque, J.F. Blood biochemistry values in some wild ruminants in captivity. Comp. Haematol. Int. 1999, 9, 175–181. [Google Scholar] [CrossRef]
- Mostaghi, K.; Badiei, K.; Emadi, M. Haematology and serum biochemistry of captive wild sheep in Iran. J. Comp. Clin. Path 2005, 13, 58–161. [Google Scholar]
Parameters | x ± std (n = 57) | 25–75 Percentile | Spearman Correlation Coefficient |
---|---|---|---|
GLU (mmol/L) | 3.839 ± 1.696 | 2.46–4.835 | 0.6434 *** |
ALB (g/L) | 23.713 ± 8.578 | 17.15–28.78 | ns |
ALP (µkat/L) | 0.386 ± 0.169 | 0.262–0.490 | 0.3753 ** |
ALT (µkat/L) | 0.289 ± 0.137 | 0.153–0.408 | 0.3227 * |
AST (µkat/L) | 0.981 ± 0.505 | 0.624–1.138 | 0.2836 * |
BILT (µmol/L) | 0.523 ± 0.307 | 0.240–0.705 | 0.2602 * |
Ca (mmol/L) | 2.334 ± 0.554 | 1.982–2.602 | 0.2593 * |
CHOL (mmol/L) | 0.645 ± 0.318 | 0.380–0.900 | 0.3060 * |
CREA (µmol/L) | 45.731 ± 15.347 | 32.210–56.872 | 0.4692 ** |
HDL (mmol/L) | 0.443 ± 0.201 | 0.292–0.582 | 0.2855 * |
LDH (µkat/L) | 6.51 ± 2.73 | 4.16–8.82 | ns |
LDL (mmol/L) | 0.151 ± 0.126 | 0.080–0.187 | ns |
P (mmol/L) | 1.398 ± 0.747 | 0.772–2.147 | ns |
TRIGL (mmol/L) | 0.239 ± 0.140 | 0.140–0.317 | 0.4442 ** |
UREA (mmol/L) | 3.595 ± 1.725 | 2.010–5.095 | 0.2721 * |
Parameters | Young (1–3 Years) (n = 32) | Adult (4–6 Years) (n = 25) | Unpaired t-Test |
---|---|---|---|
x ± std | x ± std | ||
GLU (mmol/L) | 3.082 ± 1.070 | 4.897 ± 1.889 | <0.0001 *** |
ALB (g/L) | 23.368 ± 6.741 | 24.197 ± 10.917 | ns |
ALP (µkat/L) | 0.332 ± 0.152 | 0.461 ± 0.169 | 0.0015 ** |
ALT (µkat/L) | 0.262 ± 0.134 | 0.327 ± 0.137 | 0.0354 * |
AST (µkat/L) | 0.939 ± 0.578 | 1.041 ± 0.397 | ns |
BILT (µmol/L) | 0.439 ± 0.280 | 0.641 ± 0.317 | 0.0057 ** |
Ca (mmol/L) | 2.219 ± 0.439 | 2.494 ± 0.669 | 0.0301 * |
CHOL (mmol/L) | 0.539 ± 0.211 | 0.794 ± 0.389 | 0.0009 *** |
CREA (µmol/L) | 40.268 ± 11.551 | 53.379 ± 17.186 | 0.0004 *** |
HDL (mmol/L) | 0.375 ± 0.147 | 0.538 ± 0.234 | 0.0009 *** |
LDH (µkat/L) | 5.99 ± 2.52 | 7.24 ± 2.92 | 0.0405 * |
LDL (mmol/L) | 0.149 ± 0.152 | 0.154 ± 0.083 | ns |
P (mmol/L) | 1.263 ± 0.653 | 1.587 ± 0.853 | ns |
TRIGL (mmol/L) | 0.191 ± 0.102 | 0.306 ± 0.162 | 0.0006 *** |
UREA (mmol/L) | 3.197 ± 1.749 | 4.154 ± 1.596 | 0.0172 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pošiváková, T.; Švajlenka, J.; Pošivák, J.; Pokorádi, J.; Hromada, R.; Korim, P.; Molnár, L. The Influence of Age on the Activity of Selected Biochemical Parameters of the Mouflon (Ovis musimon L.). Animals 2019, 9, 242. https://doi.org/10.3390/ani9050242
Pošiváková T, Švajlenka J, Pošivák J, Pokorádi J, Hromada R, Korim P, Molnár L. The Influence of Age on the Activity of Selected Biochemical Parameters of the Mouflon (Ovis musimon L.). Animals. 2019; 9(5):242. https://doi.org/10.3390/ani9050242
Chicago/Turabian StylePošiváková, Terézia, Jozef Švajlenka, Ján Pošivák, Jaroslav Pokorádi, Rudolf Hromada, Peter Korim, and Ladislav Molnár. 2019. "The Influence of Age on the Activity of Selected Biochemical Parameters of the Mouflon (Ovis musimon L.)" Animals 9, no. 5: 242. https://doi.org/10.3390/ani9050242
APA StylePošiváková, T., Švajlenka, J., Pošivák, J., Pokorádi, J., Hromada, R., Korim, P., & Molnár, L. (2019). The Influence of Age on the Activity of Selected Biochemical Parameters of the Mouflon (Ovis musimon L.). Animals, 9(5), 242. https://doi.org/10.3390/ani9050242