Effect of Milk Intake, Its Composition, and Fatty Acid Profile Distribution on Live Weight of Suckling Wallachian Lambs until Their Weaning
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Connor, C.E.; Jay, N.P.; Nicol, A.M.; Beatson, P.R. Ewe maternal behaviour score and lamb survival. Proc. N. Z. Soc. Anim. Prod. 1985, 45, 159–162. [Google Scholar]
- Kenyon, P.R.; Maloney, S.K.; Blache, D. Review of sheep body condition score in relation to production characteristics. N. Z. J. Agr. Res. 2014, 57, 38–64. [Google Scholar] [CrossRef]
- Ptáček, M.; Ducháček, J.; Stádník, L.; Fantová, M. Effects of age and nutritional status at mating on the reproductive and productive traits in Suffolk sheep kept under permanent outdoor management system. Czech J. Anim. Sci. 2017, 62, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Ptáček, M.; Ducháček, J.; Stádník, L.; Hakl, J.; Fantová, M. Analysis of multivariate relations among birth weight, survivability traits, growth performance, and some important factors in Suffolk lambs. Arch. Anim. Breed. 2017, 60, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Pesántez-Pacheco, J.L.; Heras-Molina, A.; Torres-Rovira, L.; Sanz-Fernández, M.V.; García-Contreras, C.; Vázquez-Gómez, M.; Feyjoo, P.; Cáceres, E.; Frías-Mateo, M.; Hernández, F.; et al. Influence of maternal factors (Weight, Body Condition, Parity, and Pregnancy Rank) on plasma metabolites of dairy ewes and their lambs. Animals 2019, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Pesántez-Pacheco, J.L.; Heras-Molina, A.; Torres-Rovira, L.; Sanz-Fernández, M.V.; García-Contreras, C.; Vázquez-Gómez, M.; Feyjoo, P.; Cáceres, E.; Frías-Mateo, M.; Hernández, F.; et al. Maternal Metabolic Demands Caused by Pregnancy and Lactation: Association with Productivity and Offspring Phenotype in High-Yielding Dairy Ewes. Animals 2019, 9, 295. [Google Scholar] [CrossRef]
- Milerski, M. Methodology of Breeding Values Estimation in Sheep; Institute of Animal Science: Prague, Czech Republic, 2005; pp. 1–19. [Google Scholar]
- Ptáček, M.; Ducháček, J.; Schmidová, J.; Stádník, L. Response to selection of a breeding program for Suffolk sheep in the Czech Republic. Czech J. Anim. Sci. 2018, 63, 305–312. [Google Scholar]
- Snowder, G.D.; Knight, A.D.; Van Vleck, L.D.; Bromley, C.M.; Kellom, T.R. Usefulness of subjective ovine milk scores: I. Associations with range ewe characteristics and lamb production. J. Anim. Sci. 2001, 79, 811–818. [Google Scholar] [CrossRef]
- Jandurová, O.M.; Kott, T.; Kottová, B.; Czerneková, V.; Milerski, M. Genetic relationships among Šumava, Valachian and Improved Valachian sheep. Small Ruminant Res. 2005, 57, 157–165. [Google Scholar] [CrossRef]
- Milerski, M. Methodology of Wallachian Sheep Breeding; Ministry of Agriculture of the Czech Republic: Prague, Czech Republic, 2013; pp. 1–7.
- Ptáček, M.; Milerski, M.; Ducháček, J.; Schmidová, J.; Tančin, V.; Uhrinčať, M.; Stádník, L.; Michlová, T. Analysis of fatty acid profile in milk fat of Wallachian sheep during lactation. J. Dairy Res. 2019, 86, 233–237. [Google Scholar] [CrossRef]
- Geenty, K.G.; Clarke, J.N.; Wright, D.E. Lactation performance, growth, and carcass composition of sheep: 2. Relationships between ewe milk production, lamb water turnover, and lamb growth in Romney, Dorset, and crossbred sheep. N. Z. J. Agr. Res. 1985, 28, 249–255. [Google Scholar] [CrossRef]
- Dove, H.; Freer, M.; Foot, J.Z. The nutrition of grazing ewes during pregnancy and lactation: Relationships between herbage, supplement and milk intakes, and ewe and lamb liveweight and body composition. Anim. Prod. Sci. 2018, 58, 1253–1270. [Google Scholar] [CrossRef]
- Torres-Hernandez, G.; Hohenboken, W. Relationships between ewe milk production and composition and preweaning lamb weight gain. J. Anim. Sci. 1980, 50, 597–603. [Google Scholar] [CrossRef]
- Danso, A.S.; Morel, P.C.H.; Kenyon, P.R.; Blair, H.T. Relationships between prenatal ewe traits, milk production, and preweaning performance of twin lambs. J. Anim. Sci. 2016, 94, 3527–3539. [Google Scholar] [CrossRef] [PubMed]
- Toteda, F.; Facciolongo, F.; Ragni, F. Effect of suckling type and PUFA use on productive performances, quanti-qualitative characteristics of meat and fatty acid profile in lamb. Progr. Nutr. 2011, 13, 125–134. [Google Scholar]
- Vieira, C.; Rubio, B.; Martínez, B.; Mantecón, A.R.; Manso, T. Suckling lamb meat quality from ewes fed with different sources of fat, during storage under display conditions. Small Ruminant Res. 2019, 176, 47–54. [Google Scholar] [CrossRef]
- Le, H.; Nguyen, Q.; Nguyen, D.; Malau-Aduli, B.; Nichols, P.; Malau-Aduli, A. Nutritional Supplements Fortified with Oils from Canola, Flaxseed, Safflower and Rice Bran Improve Feedlot Performance and Carcass Characteristics of Australian Prime Lambs. Animals 2018, 8, 231. [Google Scholar] [CrossRef] [PubMed]
- Ptáček, M.; Milerski, M.; Schmidová, J.; Ducháček, J.; Tančin, V.; Uhrinčať, M.; Hakl, J.; Stádník, L. Relationship between body mass index, body energy reserves, milk, and meat production of original Wallachian sheep. Small Ruminant Res. 2018, 165, 131–133. [Google Scholar] [CrossRef]
- SAS. Statistical Analysis System. SAS/STAT User’s Guide: Statistics. Version 9.2. Edition; SAS Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Morgan, J.E.; Fogarty, N.M.; Nielsen, S.; Gilmour, A.R. The relationship of lamb growth from birth to weaning and the milk production of their primiparous crossbred dams. Aust. J. Exp. Agr. 2007, 47, 899–904. [Google Scholar] [CrossRef]
- Burgos-González, C.; Huerta-Aparicio, M.; Aguirre, V.; Vázquez, R.; Orihuela, A.; Pedernera, M. Milk production and lamb development in Saint Croix and Katahdin hair sheep breeds (Ovis aries). Trop. Anim. Health Prod. 2018, 50, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Afolayan, R.A.; Fogarty, N.M.; Morgan, J.E.; Gaunt, G.M.; Cummins, L.J.; Gilmour, A.R. Preliminary genetic correlations of milk production and milk composition with reproduction, growth, wool traits and worm resistance in crossbred ewes. Small Ruminant Res. 2009, 82, 27–33. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Pfeuffer, M.; Schrezenmeir, J. Bioactive substances in milk with properties decreasing risk of cardiovascular diseases. Br. J. Nutr. 2000, 84, 155–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ducháček, J.; Stádník, L.; Ptáček, M.; Beran, J.; Okrouhlá, M.; Čítek, J.; Stupka, R. Effect of cow energy status on the hypercholesterolaemic fatty acid proportion in raw milk. Czech J. Food Sci. 2014, 32, 273–279. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. Goat milk in human nutrition. Small Ruminant Res. 2004, 51, 155–163. [Google Scholar] [CrossRef]
Linear Regression | p-Values for Fixed and Nested Factors in Model | Pearson Partial Correlations (r) | ||||
---|---|---|---|---|---|---|
DAY | AGEewe | LS | SEX | AGElamb (DAY) | ||
LW = 22.22 + 5.93 × MILK * | *** | n.s. | *** | *** | n.s. | r = 0.257 ** |
LW = 22.48 + 0.06 × FAT n.s. | *** | n.s. | *** | *** | n.s. | r = 0.248 ** |
LW = 21.73 + 0.13 × PROT ** | *** | n.s. | *** | *** | n.s. | r = 0.305 *** |
LW = 22.40 + 0.11 × LACT * | *** | n.s. | *** | *** | n.s | r = 0.261 ** |
LW = 52.01 − 0.45 × SFA *** | *** | n.s. | ** | *** | n.s. | r = −0.078 n.s. |
LW = 13.20 + 1.37 × PUFA *** | *** | n.s. | *** | *** | n.s. | r = 0.037 n.s. |
LW = 8.20 + 0.51 × MUFA ** | *** | n.s. | ** | *** | n.s. | r = 0.194 * |
Linear Regression | p-Values for Fixed and Nested Factors in Model | Linear Regression | ||||
---|---|---|---|---|---|---|
DAY | AGEewe | DAY | SEX | DAY | ||
LW = 24.14 − 0.72 × C4:0 n.s. | *** | n.s. | *** | *** | n.s. | r = 0.086 n.s. |
LW = 28.53 − 4.25 × C6:0 * | *** | n.s. | *** | *** | n.s. | r = 0.050 n.s. |
LW = 28.15 − 3.74 × C8:0 * | *** | n.s. | ** | *** | n.s. | r = 0.048 n.s. |
LW = 29.05 − 1.32 × C10:0 ** | *** | n.s. | *** | *** | n.s. | r = 0.043 n.s. |
LW = 29.03 − 1.88 × C12:0 * | *** | n.s. | *** | *** | n.s. | r = 0.061 n.s. |
LW = 32.72 − 0.88 × C14:0 * | *** | n.s. | *** | *** | n.s. | r = 0.061 n.s. |
LW = 23.68 − 1.27 × C14:1 n.s. | *** | n.s. | *** | *** | n.s. | r = −0.005 n.s. |
LW = 42.12 − 0.80 × C16:0 * | *** | n.s. | *** | *** | n.s. | r = 0.061 n.s. |
LW = 7.86 + 19.33 × C16:1T *** | *** | * | *** | *** | n.s. | r = 0.129 n.s. |
LW = 28.73 − 5.60 × C16:1 * | *** | n.s. | *** | *** | n.s. | r = −0.130 n.s. |
LW = 16.30 + 7.81 × C17:0 n.s. | *** | n.s. | *** | *** | n.s. | r = −0.156 n.s. |
LW = 21.25 + 7.29 × C17:1 n.s. | *** | n.s. | ** | *** | n.s. | r = −0.104 n.s. |
LW = 24.94 – 0.10 × C18:0 n.s. | *** | n.s. | ** | *** | n.s. | r = −0.195 * |
LW = 20.22 + 0.55 × ∑ C18:1T * | *** | n.s. | *** | *** | n.s. | r = 0.305 *** |
LW = 18.46 + 0.26 × C18:1n9c n.s. | *** | n.s. | *** | *** | n.s. | r = −0.128 n.s. |
LW = 14.24 + 5.25 × ∑ C18:1C * | *** | n.s. | *** | *** | n.s. | r = −0.051 n.s. |
LW = 14.52 + 5.59 × ∑ C18:2T ** | *** | n.s. | *** | *** | n.s. | r = 0.033 n.s. |
LW = 17.89 + 2.81 × C18:2n6c n.s. | *** | n.s. | *** | *** | n.s. | r = −0.096 n.s. |
LW = 19.95 + 2.31 × C18:3n3 n.s. | *** | n.s. | *** | *** | n.s. | r = −0.111 n.s. |
LW = 21.18 + 1.39 × CLA * | *** | n.s. | ** | *** | n.s. | r = 0.347 *** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptáček, M.; Milerski, M.; Stádník, L.; Ducháček, J.; Tančin, V.; Schmidová, J.; Uhrinčať, M.; Michlová, T.; Nohejlová, L. Effect of Milk Intake, Its Composition, and Fatty Acid Profile Distribution on Live Weight of Suckling Wallachian Lambs until Their Weaning. Animals 2019, 9, 718. https://doi.org/10.3390/ani9100718
Ptáček M, Milerski M, Stádník L, Ducháček J, Tančin V, Schmidová J, Uhrinčať M, Michlová T, Nohejlová L. Effect of Milk Intake, Its Composition, and Fatty Acid Profile Distribution on Live Weight of Suckling Wallachian Lambs until Their Weaning. Animals. 2019; 9(10):718. https://doi.org/10.3390/ani9100718
Chicago/Turabian StylePtáček, Martin, Michal Milerski, Luděk Stádník, Jaromír Ducháček, Vladimír Tančin, Jitka Schmidová, Michal Uhrinčať, Tereza Michlová, and Lenka Nohejlová. 2019. "Effect of Milk Intake, Its Composition, and Fatty Acid Profile Distribution on Live Weight of Suckling Wallachian Lambs until Their Weaning" Animals 9, no. 10: 718. https://doi.org/10.3390/ani9100718
APA StylePtáček, M., Milerski, M., Stádník, L., Ducháček, J., Tančin, V., Schmidová, J., Uhrinčať, M., Michlová, T., & Nohejlová, L. (2019). Effect of Milk Intake, Its Composition, and Fatty Acid Profile Distribution on Live Weight of Suckling Wallachian Lambs until Their Weaning. Animals, 9(10), 718. https://doi.org/10.3390/ani9100718