Use of Three Air Samplers for the Detection of PRRSV-1 under Experimental and Field Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection in the Experimental Chamber
2.2. Sample Collection in the Field
3. Results
3.1. Experimental Chamber
3.2. Field Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nieuwenhuis, N.; Duinhof, T.F.; Van Nes, A. Economic analysis of outbreaks of porcine reproductive and respiratory syndrome virus in nine sow herds. Vet. Rec. 2012, 170, 225. [Google Scholar] [CrossRef] [PubMed]
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmerman, J.J.; Rotto, H.F.; Yoder, T.K.; Wang, C.; Yeske, P.E.; Mowrer, C.L.; Haley, C.A. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar]
- Modrow, S.; Falke, D.; Truyen, U.; Schätzl, H. Arterieviren. In Molekulare Virologie, 3rd ed.; Modrow, S., Falke, D., Truyen, U., Schätzl, H., Eds.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2010; pp. 239–246. ISBN 382741833X. [Google Scholar]
- Adams, M.J.; Lefkowitz, E.J.; King, A.M.Q.; Harrach, B.; Harrison, R.L.; Knowles, N.J.; Kropinski, A.M.; Krupovic, M.; Kuhn, J.H.; Mushegian, A.R.; et al. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch. Virol. 2016, 161, 2921–2949. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.; Raynor, P.C.; Davies, P.R.; Torremorell, M. Concentration, Size Distribution, and Infectivity of Airborne Particles Carrying Swine Viruses. PLoS ONE 2015, 10, e0135675. [Google Scholar] [CrossRef] [PubMed]
- Otake, S.; Dee, S.; Corzo, C.; Oliveira, S.; Deen, J. Long-distance airborne transport of infectious PRRSV and Mycoplasma hyopneumoniae from a swine population infected with multiple viral variants. Vet. Microbiol. 2010, 145, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.Y.; Wang, J.; Pui, D.Y. Measurement of retention efficiency of filters against nanoparticles in liquids using an aerosolization technique. Environ. Sci. Technol. 2009, 44, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Sinn, L.J.; Zieglowski, L.; Koinig, H.; Lamp, B.; Jansko, B.; Mößlacher, G.; Riedel, C.; Hennig-Pauka, I.; Rümenapf, T. Characterization of two Austrian porcine reproductive and respiratory syndrome virus (PRRSV) field isolates reveals relationship to East Asian strains. Vet. Res. 2016, 47, 17. [Google Scholar] [CrossRef] [PubMed]
- Priebe, A.; Kvisgaard, L.K.; Rathkjen, P.H.; Hjulsager, C.K.; Havn, K.; Larsen, L.E. Detection of PRRSV in air sampled inside and outside PRRSV-positive herds in Denmark. In Proceedings of the International Porcine Reproductive and Respiratory Syndrome Congress, Ghent, Belgium, 3–5 June 2015; p. 21. [Google Scholar]
- Trincado, C.; Dee, S.; Jacobson, L.; Otake, S.; Pijoan, C. Evaluation of an all-glass impringer for the detection of porcine reproductive and respiratory syndrome virus in natural and artificial aerosols. Vet. Rec. 2006, 158, 206–208. [Google Scholar] [CrossRef] [PubMed]
- Dee, S.A.; Deen, J.; Jacobson, L.; Rossow, K.D.; Mahlum, C.; Pijoan, C. Laboratory model to evaluate the role of aerosols in the transport of porcine reproductive and respiratory syndrome virus. Vet. Rec. 2005, 156, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Trincado, C.; Dee, S.; Jacobson, L.; Otake, S.; Rossow, K.; Pijoan, C. Attempts to transmit porcine reproductive and respiratory syndrome virus by aerosols under controlled field conditions. Vet. Rec. 2004, 154, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.G.; Deen, J.; Dee, S.A. Influence of isolate pathogenicity on the aerosol transmission of Porcine reproductive and respiratory syndrome virus. Can. J. Vet. Res. 2007, 71, 23–27. [Google Scholar] [PubMed]
- Cho, J.G.; Dee, S.A.; Deen, J.; Trincado, C.; Fano, E.; Jiang, Y.; Faaberg, K.; Murtaugh, M.P.; Guedes, A.; Collins, J.E.; et al. The impact of animal age, bacterial coinfection, and isolate pathogenicity on the shedding of Porcine reproductive and respiratory syndrome virus in aerosols from experimentally infected pigs. Can. J. Vet. Res. 2006, 70, 297–301. [Google Scholar] [PubMed]
Air Sampler | Time Point | qRT-PCR Copies/mL (Ct-Values) | Virus Isolation |
---|---|---|---|
t-valueCoriolis®μ | During nebulisation | 1.8 × 108 (20.74) | 1.5 × 10 TCID50 |
1 h after nebulisation | 4.7 × 107 (22.82) | negative | |
MD8 Airscan | During nebulisation | 1.5 × 107 (24.54) | negative |
1 h after nebulisation * | 5.5 × 106 (26.07) | negative | |
IOM Multidust sampler 1 | 2 h after start of nebulisation | 6.3 × 105 (29.37) | negative |
IOM Multidust sampler 2 | 2 h after start of nebulisation | 5.2 × 105 (29.64) | negative |
Samples/Unit | qRT-PCR Copies/mL (Ct-Values) | Virus Isolation |
---|---|---|
Air Coriolis®μ nursery unit | negative | negative |
Air MD8 Airscan nursery unit | negative | negative |
Air IOM Multidust nursery | negative | negative |
Oral fluid #1 nursery unit | 3.2 × 104 (33.83) | negative |
Oral fluid #2 nursery unit | 1.0 × 104 (35.58) | negative |
Serum pool 1–5 nursery | 6.8 × 103 (36.21) | 1 positive sample (#5) |
Serum pool 6–10 nursery | 1.7 × 105 (31.37) | 2 positive samples (#7, #8) |
Serum pool 11–15 nursery | 6.4 × 106 (25.86) | 2 positive samples (#13, #14) |
Air Coriolis®μ fattening unit 1 | negative | negative |
Air MD8 Airscan fattening unit 1 | negative | negative |
Air IOM Multidust fattening unit 1 | negative | negative |
Oral fluid #1 fattening unit 1 | negative | negative |
Oral fluid #2 fattening unit 1 | negative | negative |
Serum pool 16–20 fattening unit 1 | 1.1 × 104 (35.55) | 1 positive sample (#19) |
Serum pool 21–25 fattening unit 1 | negative | negative |
Serum pool 26–30 fattening unit 1 | 1.8 × 103 (38.17) | 1 positive sample (#27) |
Air Coriolis®μ fattening unit 2 | negative | negative |
Air MD8 Airscan fattening unit 2 | negative | negative |
Oral fluid #1 fattening unit 2 | 2.5 × 104 (34.22) | negative |
Oral fluid #2 fattening unit 2 | 1.1 × 104 (35.55) | negative |
Serum pool 31–35 fattening unit 2 | 1.4 × 105 (31.68) | 1 positive sample (#35) |
Serum pool 36–40 fattening unit 2 | 4.9 × 104 (33.21) | 2 positive samples (#36, #40) |
Serum pool 41–45 fattening unit 2 | 9.0 × 104 (32.29) | 5 positive samples |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stein, H.; Schulz, J.; Morgenstern, R.; Voglmayr, T.; Freymüller, G.; Sinn, L.; Rümenapf, T.; Hennig-Pauka, I.; Ladinig, A. Use of Three Air Samplers for the Detection of PRRSV-1 under Experimental and Field Conditions. Animals 2018, 8, 233. https://doi.org/10.3390/ani8120233
Stein H, Schulz J, Morgenstern R, Voglmayr T, Freymüller G, Sinn L, Rümenapf T, Hennig-Pauka I, Ladinig A. Use of Three Air Samplers for the Detection of PRRSV-1 under Experimental and Field Conditions. Animals. 2018; 8(12):233. https://doi.org/10.3390/ani8120233
Chicago/Turabian StyleStein, Heiko, Jochen Schulz, Rebecca Morgenstern, Thomas Voglmayr, Georg Freymüller, Leonie Sinn, Till Rümenapf, Isabel Hennig-Pauka, and Andrea Ladinig. 2018. "Use of Three Air Samplers for the Detection of PRRSV-1 under Experimental and Field Conditions" Animals 8, no. 12: 233. https://doi.org/10.3390/ani8120233
APA StyleStein, H., Schulz, J., Morgenstern, R., Voglmayr, T., Freymüller, G., Sinn, L., Rümenapf, T., Hennig-Pauka, I., & Ladinig, A. (2018). Use of Three Air Samplers for the Detection of PRRSV-1 under Experimental and Field Conditions. Animals, 8(12), 233. https://doi.org/10.3390/ani8120233