Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Modelling the Change
2.1. The Correlative Approach
2.2. The Mechanistic Approach
3. Looking Beyond Climate: The Need for a Panoptic View
4. Conclusions and Recommendations
Acknowledgements
Conflict of Interest
References
- Mitchell, G.B.B.; Somerville, D.K. Effects of Climate Change on Helminth Diseases in Scotland. SAC Publication 2005, 1, 1–11. [Google Scholar] [CrossRef]
- de Waal, T.; Relf, V.; Good, B.; Gray, J.; Murphy, T.; Forbes, A.; Mulcahy, G. Developing models for the predicion of fasciolosis in Ireland. In Making Science Work on the Farm: A Workshop on Decision Support Systems for Irish Agriculture; Holden, N.M., Hochstrasser, T., Schulte, R.P.O., Walsh, S., Eds.; 2007; Joint Working Group in Applied Agricultural Meteorology: Dublin, Ireland, 2007.
- Kenyon, F.; Sargison, N.D.; Skuce, P.J.; Jackson, F. Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change. Vet. Parasitol. 2009, 163, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, G.C.; Forbes, A.B.; Williams, D.J.L.; Salimi-Bejestani, M.R.; Daniel, R.G. Emergence of fasciolosis in cattle in East Anglia. Vet. Record 2005, 157, 578–582. [Google Scholar]
- van Dijk, J.; David, G.P.; Baird, G.; Morgan, E.R. Back to the future: Developing hypotheses on the effects of climate change on ovine parasitic gastroenteritis from historical data. Vet. Parasitol. 2008, 158, 73–84. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.J.; Kahn, L.P.; Walkden-Brown, S.W. Moisture requirements for the free-living development of Haemonchus contortus: Quantitative and temporal effects under conditions of low evaporation. Vet. Parasitol. 2007, 150, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Coyne, M.J.; Smith, G. The development and mortality of the free-living stages of Haemonchus contortus in laboratory culture. Int. J. Parasitol. 1992, 22, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.H.; Dobson, R.J.; Donald, A.D.; Waller, P.J. Predicting populations of Trichostrongylus colubriformis infective larvae on pasture from meteorological data. Int. J. Parasitol. 1988, 18, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Armour, J. The epidemiology of helminth disease in farm animals. Vet. Parasitol. 1980, 6, 7–46. [Google Scholar] [CrossRef]
- Wilson, A.; Mellor, P. Bluetongue in Europe: Vectors, epidemiology and climate change. Parasitol. Res. 2008, 103, 69–77. [Google Scholar] [CrossRef]
- Beatty, D.; Barnes, A.; Taylor, E.; Maloney, S. Do changes in feed intake or ambient temperature cause changes in cattle rumen temperature relative to core temperature? J. Therm. Biol. 2008, 33, 12–19. [Google Scholar] [CrossRef]
- García-Ispierto, I.; López-Gatius, F.; Bech-Sabat, G.; Santolaria, P.; Yániz, J.L.; Nogareda, C.; De Rensis, F.; López-Béjar, M. Climate factors affecting conception rate of high producing dairy cows in northeastern Spain. Theriogenology 2007, 67, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- Harle, K.; Howden, S.; Hunt, L.; Dunlop, M. The potential impact of climate change on the Australian wool industry by 2030. Agr. Syst. 2007, 93, 61–89. [Google Scholar] [CrossRef]
- Kendall, P.E.; Nielsen, P.P.; Webster, J.R.; Verkerk, G.A.; Littlejohn, R.P.; Matthews, L.R. The effects of providing shade to lactating dairy cows in a temperate climate. Livestock Sci. 2006, 103, 148–157. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Bernabucci, U. Climatic Effects on Productive Traits in Livestock. Vet. Res. Commun. 2006, 30, 75–81. [Google Scholar] [CrossRef]
- Gregory, N.G. How climatic changes could affect meat quality. Food Res. Int. 2010, 43, 1866–1873. [Google Scholar] [CrossRef]
- Caligiuri, V.; Giuliano, G.A.; Vitale, V.; Chiavacci, L.; Travaglio, S.; Salute, V. Bluetongue surveillance in the Campania Region of Italy using a geographic information system to create risk maps. Epidemiol. Vect. 2004, 40, 385–389. [Google Scholar]
- de Koeijer, A.; Hartemink, N.; Boender, G.J.; Elbers, A.; Heesterbeek, H. Epidemiological analysis of the 2006 bluetongue virus serotype 8 epidemic in north-western Europe A risk map for epidemic potential in The Netherlands. Eur. Food Safety Author. 2007, 1, 1–18. [Google Scholar]
- Gubbins, S.; Carpenter, S.; Baylis, M.; Wood, J.L.N.; Mellor, P.S. Assessing the risk of bluetongue to UK livestock: Uncertainty and sensitivity analyses of a temperature-dependent model for the basic reproduction number. J. Roy. Soc. Interf. 2008, 5, 363–371. [Google Scholar] [CrossRef]
- Pili, E.; Ciucce, S.; Culurgioni, J.; Figus, V.; Pinna, G.; Marchi, A. Distribution and abundance of Bluetongue vectors in Sardinia: Comparison of field data with prediction maps. J. Vet. Med. 2006, 53, 312–316. [Google Scholar] [CrossRef]
- Purse, B.V.; Tatem, A.J.; Caracappa, S.; Rogers, D.J.; Mellow, P.S.; Baylis, M.; Torina, A. Modelling the distributions of Culicoides bluetongue virus vectors in Sicily in relation to satellite-derived climate variables. Med. Vet. Entomol. 2004, 18, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Racloz, V.; Presi, P.; Vounatsou, P.; Schwermer, H. Use of mapping and statistical modelling for the prediction of bluetongue occurrence in Switzerland based on vector biology. Vet. Ital. 2007, 43, 513–518. [Google Scholar] [PubMed]
- Abbott, K.A.; Taylor, P.M.; Stubbings, L.A. Sustainable Worm Control Strategies for Sheep, 2nd ed.; A Technical Manual for Veterinary Surgeons and Advisers; SCOPS (Sustainable Control of Parasites in Sheep),National Sheep Association: Malvern, UK, 2007; pp. 1–48. [Google Scholar]
- Mas-Coma, S.; Valero, M.A.A.; Bargues, M.D. Effects of climate change on animal and zoonotic helminthiases. Rev. Sci. Tech. Off. Int. Epiz 2008, 27, 443–457. [Google Scholar]
- O’Connor, L.J.; Walkden-Brown, S.W.; Kahn, L.P. Ecology of the free-living stages of major trichostrongylid parasites of sheep. Vet. Parasitol. 2006, 142, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lawler, J.J.; White, D.; Neilson, R.P.; Blaustein, A.R. Predicting climate-induced range shifts: Model differences and model reliability. Global Change Biol. 2006, 12, 1568–1584. [Google Scholar] [CrossRef]
- Leathwick, J.; Elith, J.; Hastie, T. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecol. Mode. 2006, 199, 188–196. [Google Scholar] [CrossRef]
- Heikkinen, R.K.; Luoto, M.; Araújo, M.B.; Virkkala, R.; Thuiller, W.; Sykes, M.T. Methods and uncertainties in bioclimatic envelope modelling under climate change. Progr. Phys. Geogr. 2006, 30, 1–27. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Ann. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Pagel, J.; Schurr, F.M. Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Global Ecol. Biogeogr. 2012, 21, 293–304. [Google Scholar] [CrossRef]
- Engler, R.; Guisan, A. MigClim: Predicting plant distribution and dispersal in a changing climate. Div. Distrib. 2009, 15, 590–601. [Google Scholar] [CrossRef]
- Thuiller, W. BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biol. 2003, 9, 1353–1362. [Google Scholar] [CrossRef]
- Hutchinson, G.E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 1957, 22, 415–427. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biol. 2005, 12, 2272–2281. [Google Scholar]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Maywald, G.F. A computerised system for matching climates in ecology. Agr. Ecosyst. Environ. 1985, 13, 281–299. [Google Scholar] [CrossRef]
- Walker, P.A.; Cocks, K.D. HABITAT: A procedure for modelling a disjoint environmental envelope for a plant or animal species. Global Ecol. Biogeogr. Lett. 1991, 1, 108–118. [Google Scholar] [CrossRef]
- Carpenter, G.; Gillison, A.N.; Winter, J. DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals. Biodiv. Conserv. 1993, 2, 667–680. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P.; Berry, P.M.; Harrison, P.A. SPECIES: A spatial evaluation of climate impact on the envelope of species. Ecol. Model. 2002, 154, 289–300. [Google Scholar] [CrossRef]
- Ollerenshaw, C.B. The approach to forecasting the incidence of fascioliasis over England and Wales 1958-1962. Agr. Meteorol. 1964, 3, 35–53. [Google Scholar]
- Ollerenshaw, C.B.; Rowlands, W. A method of forecasting the incidence of fascioliasis in Anglesey. Vet. Record 1959, 71, 591–598. [Google Scholar]
- Fox, N.J.; White, P.C.L.; McClean, C.J.; Marion, G.; Evans, A.; Hutchings, M.R. Predicting impacts of climate change on Fasciola hepatica risk. PloS One 2011, 6, e16126. [Google Scholar] [CrossRef] [PubMed]
- Austin, M. Species distribution models and ecological theory: A critical assessment and some possible new approaches. Ecol. Model. 2007, 200, 1–19. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; Li, J.; Lohmann, L.G.; Loiselle, B.; Manion, G.; Moritz, C.; Nakamura, M.; Nakazawa, Y.; Overton, J.M.; Peterson, A.T.; Phillips, S.J.; Richardson, K.; Scachetti-Pereira, R.; Schapire, R.E.; Soberon, J.; Williams, S.; Wisz, M.S.; Zimmermann, N.E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef]
- Bierman, S.M.; Butler, A.; Marion, G.; Kühn, I. Bayesian image restoration models for combining expert knowledge on recording activity with species distribution data. Ecography 2010, 33, 451–460. [Google Scholar]
- McInerny, G.J.; Purves, D.W. Fine-scale environmental variation in species distribution modelling: Regression dilution, latent variables and neighbourly advice. Meth. Ecol. Evol. 2011, 2, 248–257. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecol. Biogeogr. 2003, 12, 361–371. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Bourne, A.S. Modelling non-equilibrium distributions of invasive species: A tale of two modelling paradigms. Biol. Invas. 2008, 11, 1231–1237. [Google Scholar]
- Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Meth. Ecol. Evol. 2010, 4, 330–342. [Google Scholar]
- Kearney, M.; Porter, W. Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 2009, 12, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Huerta, M.A.; Peterson, A.T. Modeling ecological niches and predicting geographic distributions: A test of six presence-only methods. Revista Mexicana De Biodiversidad 2008, 79, 205–216. [Google Scholar]
- Pearson, R.G.; Thuiller, W.; Arau, M.B.; McClean, C.; Miles, L. Model-based uncertainty in species range prediction. J. Biogeogr. 2006, 33, 1704–1711. [Google Scholar] [CrossRef]
- Robertson, M.P.; Peter, C.I.; Villet, M.H.; Ripley, B.S. Comparing models for predicting species’ potential distributions: A case study using correlative and mechanistic predictive modelling techniques. Ecol. Model. 2003, 164, 153–167. [Google Scholar] [CrossRef]
- Anderson, R.M. The role of mathematical models in helminth population biology. Int. J. Parasitol. 1987, 17, 519–529. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E.H.; Dobson, R.J. Population dynamics ofTrichostrongylus colubriformis in sheep: Computer model to simulate grazing systems and the evolution of anthelmintic resistance. Int. J. Parasitol. 1990, 20, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Callinan, A.P.L.; Morley, F.H.W.; Arundel, J.H.; White, D.H. A model of the life cycle of sheep nematodes and the epidemiology of nematodiasis in sheep. Agr. Syst. 1982, 9, 199–225. [Google Scholar] [CrossRef]
- Cornell, S.J.; Isham, V.S.; Grenfell, B.T. Stochastic and spatial dynamics of nematode parasites in farmed ruminants. Proc. Roy. Soc. B 2004, 271, 1243–1250. [Google Scholar] [CrossRef]
- Dobson, R.J.; Donald, A.D.; Barnes, E.H.; Waller, P.J. Population dynamics ofTrichostrongylus colubriformis in sheep: Model to predict the worm population over time as a function of infection rate and host age. Int. J. Parasitol. 1990, 20, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Gordon, G.; O’Callaghan, M.; Tallis, G.M. A Deterministic Model for the Life Cycle of a Class of Internal Parasites of Sheep. Math. Biosci. 1970, 8, 209–226. [Google Scholar] [CrossRef]
- Learmount, J.; Taylor, M.A.; Smith, G.; Morgan, C. A computer model to simulate control of parasitic gastroenteritis in sheep on UK farms. Vet. Parasitol. 2006, 142, 312–329. [Google Scholar] [CrossRef] [PubMed]
- Leathwick, D.M.; Barlow, N.D.; Vlassoff, A. A model for nematodiasis in New Zealand lambs. Int. J. Parasitol. 1992, 22, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Paton, G.; Thomas, R.G.; Waller, P.J. A prediction model for parasitic gastro-enteritis in lambs. Int. J. Parasitol. 1984, 14, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.G.; Grenfell, B.T. The Population Dynamics of Nematode Infections of Ruminants: Periodic Perturbations as a Model for Management. J. Math. Appl. Med. Biol. 1991, 8, 83–93. [Google Scholar] [CrossRef]
- Tallis, G.M.; Donald, A.D. Further models for the distribution on pasture of infective larvae of the strongylid nematode parasites of sheep. Math. Biosci. 1970, 7, 179–190. [Google Scholar] [CrossRef]
- Dormann, C.F. Promising the future? Global change projections of species distributions. Basic Appl. Ecol. 2007, 8, 387–397. [Google Scholar] [CrossRef]
- Kearney, M.R.; Wintle, B.A.; Porter, W.P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 2010, 3, 203–213. [Google Scholar] [CrossRef]
- Mangal, T.D.; Paterson, S.; Fenton, A. Predicting the impact of long-term temperature changes on the epidemiology and control of Schistosomiasis: A mechanistic model. PLoS One 2008, 1, e1438. [Google Scholar]
- Smith, G. The economics of parasite control: Obstacles to creating reliable models. Vet. Parasitol. 1997, 72, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Gregory, R.D.; Woolhouse, M.E. Quantification of parasite aggregation: A simulation study. Acta tropica 1993, 54, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Barbour, A.D.; Kafetzaki, M. Modeling the Overdispersion of Parasite Loads. Math. Biosci. 1991, 107, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Cornell, S.J.; Isham, V.S.; Smith, G.; Grenfell, B.T. Spatial parasite transmission, drug resistance, and the spread of rare genes. PNAS 2003, 100, 7401–7405. [Google Scholar] [CrossRef] [PubMed]
- Louie, K.; Vlassoff, A.; Mackay, A. Nematode parasites of sheep: Extension of a simple model to include host variability. Parasitology 2005, 130, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.J.; Dobson, A.P. Patterns of macroparasite abundance and aggregation in wildlife populations: A quantitative review. Parasitology 1995, 111, 111–133. [Google Scholar] [CrossRef] [PubMed]
- Churcher, T.S.; Ferguson, N.M.; Basáñez, M.G. Density dependence and overdispersion in the transmission of helminth parasites. Parasitology 2005, 131, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Guerrero, J. Mathematical models for the population biology of Ostertagia ostertagi and the significance of aggregated parasite distributions. Vet. Parasitol. 1993, 46, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Esch, G.W.; Gibbons, J.W.; Bourque, J.E. An analysis of the relationship between stress and parasitism. Am. Midland Naturalist 1975, 93, 339–353. [Google Scholar] [CrossRef]
- O’Connor, L.J.; Kahn, L.P.; Walkden-Brown, S.W. Interaction between the effects of evaporation rate and amount of simulated rainfall on development of the free-living stages of Haemonchus contortus. Vet. Parasitol. 2008, 155, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 2006, 132, 143–151. [Google Scholar] [PubMed]
- Mas-Coma, S.; Valero, M.A.; Bargues, M.D. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet. Parasitol. 2009, 163, 264–280. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, J.; de Louw, M.D.E.; Kalis, L.P.A.; Morgan, E.R. Ultraviolet light increases mortality of nematode larvae and can explain patterns of larval availability at pasture. Int. J. Parasitol. 2009, 39, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Aurambout, J.P.; Finlay, K.J.; Luck, J.; Beattie, G.A.C. A concept model to estimate the potential distribution of the Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change—A means for assessing biosecurity risk. Ecol. Model. 2009, 220, 2512–2524. [Google Scholar] [CrossRef]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.J.; Jenkinson, L.S.; Lawton, J.H.; Shorrocks, B.; Wood, S. Making mistakes when predicting shifts in species range in response to global warming. Nature Lett. 1998, 391, 783–786. [Google Scholar] [CrossRef]
- Araújo, M.B.; Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Global Ecol. Biogeogr. 2007, 16, 743–753. [Google Scholar] [CrossRef]
- Hooten, M.B.; Wikle, C.K.; Dorazio, R.M.; Royle, J.A. Hierarchical spatiotemporal matrix models for characterizing invasions. Biometrics 2007, 63, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.L.; Davis, M.S. Effect of management strategies on reducing heat stress of feedlot cattle: Feed and water intake. J. Anim. Sci. 2004, 82, 3077–3087. [Google Scholar] [PubMed]
- Rivington, M.; Matthews, K.B.; Bellocchi, G.; Buchan, K.; Stöckle, C.O.; Donatelli, M. An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems. Environ. Model. Softw. 2007, 22, 202–210. [Google Scholar] [CrossRef]
- Eguale, T.; Mekonnen, G.A.; Chaka, H. Evaluation of variation in susceptibility of three Ethiopian sheep breeds to experimental infection with Fasciola hepatica. Small Rumin. Res. 2009, 82, 7–12. [Google Scholar] [CrossRef]
- Wolstenholme, A.J.; Fairweather, I.; Prichard, R.; Samson-Himmelstjerna, G.V.; Sangster, N.C. Drug resistance in veterinary helminths. Trends Parasitol. 2004, 20, 469–476. [Google Scholar] [CrossRef] [PubMed]
- DeVaney, J.A.; Craig, T.A.; Rowe, L.D. Resistance to ivermectin by Haemonchus contortus in goats and calves. Int. J. Parasitol. 1992, 22, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Le Jambre, L.F.; Southcott, W.H.; Dash, K.M. Resistance of selected lines of Haemonchus contortus to Thiabendazole, Morantel, Tartrate and Levamisole. Int. J. Parasitol. 1976, 6, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.S.; Sivaraj, S. Anthelmintic resistance in Haemonchus contortus from sheep in Malaysia. Vet. Parasitol. 1994, 53, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Yadav, C.L.; Kumar, R.; Uppal, R.P.; Verma, S.P. Multiple anthelmintic resistance in Haemonchus contortus on a sheep farm in India. Vet. Parasitol. 1995, 60, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Ketzis, J.K.; Vercruysse, J.; Stromberg, B.E.; Larsen, M.; Athanasiadou, S.; Houdijk, J.G.M. Evaluation of efficacy expectations for novel and non-chemical helminth control strategies in ruminants. Vet. Parasitol. 2006, 139, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Torres-Acosta, J.F.J.; Hoste, H. Alternative or improved methods to limit gastro-intestinal parasitism in grazing sheep and goats. Small Rumin. Res. 2008, 77, 159–173. [Google Scholar] [CrossRef]
- Waller, P.J. From discovery to development: Current industry perspectives for the development of novel methods of helminth control in livestock. Vet. Parasitol. 2006, 139, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Waller, P.J. Sustainable nematode parasite control strategies for ruminant livestock by grazing management and biological control. Anim. Feed Sci. Technol. 2006, 126, 277–289. [Google Scholar] [CrossRef]
- Barger, I.A. Prospects for integration of novel parasite control options into grazing systems. Int. J. Parasitol. 1996, 26, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Woolaston, R.; Barger, I.A.; Piper, L.R. Response to helminth infection of sheep selected for resistance to Haemonchus contortus. Int. J. Parasitol. 1990, 20, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Gicheha, M.; Kosgey, I.; Bebe, B.; Kahi, A. Efficiency of alternative schemes breeding for resistance to gastrointestinal helminths in meat sheep. Small Rumin. Res. 2007, 69, 167–179. [Google Scholar] [CrossRef]
- Windon, R.G. Genetic control of resistance to helminths in sheep. Vet. Immun. Immunopathol. 1996, 54, 245–54. [Google Scholar] [CrossRef]
- Woolaston, R.R.; Baker, R.L. Prospects of breeding small ruminants for resistance to internal parasites. Int. J. Parasitol. 1996, 26, 845–55. [Google Scholar] [PubMed]
- Monahan, W.B. A mechanistic niche model for measuring species’ distributional responses to seasonal temperature gradients. PloS One 2009, 4, e7921. [Google Scholar] [CrossRef] [PubMed]
- Rocchini, D.; Hortal, J.; Lengyel, S.; Lobo, J. M.; Jiménez-Valverde, A.; Ricotta, C.; Bacaro, G.; Chiarucci, A. Accounting for uncertainty when mapping species distributions: The need for maps of ignorance. Progr. Phys. Geogr. 2011, 35, 211–226. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Fox, N.J.; Marion, G.; Davidson, R.S.; White, P.C.L.; Hutchings, M.R. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions. Animals 2012, 2, 93-107. https://doi.org/10.3390/ani2010093
Fox NJ, Marion G, Davidson RS, White PCL, Hutchings MR. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions. Animals. 2012; 2(1):93-107. https://doi.org/10.3390/ani2010093
Chicago/Turabian StyleFox, Naomi J., Glenn Marion, Ross S. Davidson, Piran C. L. White, and Michael R. Hutchings. 2012. "Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions" Animals 2, no. 1: 93-107. https://doi.org/10.3390/ani2010093
APA StyleFox, N. J., Marion, G., Davidson, R. S., White, P. C. L., & Hutchings, M. R. (2012). Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions. Animals, 2(1), 93-107. https://doi.org/10.3390/ani2010093