Challenges and Methodologies to Assess Protein Requirement and Quality Across Different Life Stages in Dogs: A Review
Simple Summary
Abstract
1. Introduction
2. Review Methodology
3. Growing Dogs
4. Adult Dogs
5. Senescence
6. Late Gestation and Peak Lactation
7. Methods for Measuring Protein Quality
8. Determination of Protein Requirement Through Zootechnical Indices and Nitrogen Balance
- B is the nitrogen balance;
- I is the nitrogen intake (protein equivalent);
- U is the nitrogen content excreted in urine;
- F is the nitrogen content excreted in feces;
- S are the insensible nitrogen losses.
9. Stable Isotope Methods to Assess Protein Requirement
10. Future Research Directions
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AAFCO | American Association of Feed Control Officials |
| CP | Crude protein |
| DIAAS | Digestible Indispensable Amino Acid Score |
| FAO | Food and Agriculture Organization |
| FEDIAF | European Pet Food Industry Federation |
| g | Gram |
| IAAO | Indirect amino acid oxidation |
| ME | Metabolizable energy |
| MR | Minimum requirement |
| NB | Nitrogen balance |
| NRC | National Research Council |
| PDCAAS | Protein Digestibility-Corrected Amino Acid Score |
| PR | Protein requirement |
| RA | Recommended allowance |
| WHO | World Health Organization |
| ZI | Zootechnical indices |
References
- Millward, D.J. Optimal intakes of protein in the human diet. Proc. Nutr. Soc. 1999, 58, 403–413. [Google Scholar] [CrossRef]
- Wang, C.; Law, A.; Hegsted, D. Studies on the minimum protein requirements of adult dogs. J. Lab. Clin. Med. 1948, 33, 462–479. [Google Scholar]
- Wannemacher, R.; McCoy, J.R. Determination of optimal dietary protein requirements of young and old dogs. J. Nutr. 1966, 88, 66–74. [Google Scholar] [CrossRef]
- Pratt-Phillips, S.; Olsen, R.; Geor, R.; Zirkle, A.; Moore, A.; Harkins, C.; Davis, M. Effect of reduced protein intake on endurance performance and water turnover during low intensity long duration exercise in Alaskan sled dogs. Comp. Exerc. Physiol. 2018, 14, 19–26. [Google Scholar] [CrossRef]
- Fascetti, A.J. Nutritional management and disease prevention in healthy dogs and cats. Rev. Bras. Zootec. 2010, 39, 42–51. [Google Scholar] [CrossRef][Green Version]
- Laflamme, D. Companion animals symposium: Obesity in dogs and cats: What is wrong with being fat? J. Anim. Sci. 2012, 90, 1653–1662. [Google Scholar] [CrossRef]
- Goloni, C.; Pacheco, L.G.; Luis, L.W.; Theodoro, S.S.; Scarpim, L.B.; Dalpubel, D.; Rosenburg, M.G.; Jeusette, I.C.; Torre, C.; Pereira, G.T. High starch intake favours bodyweight control in neutered and spayed cats living in homes fed ad libitum. Br. J. Nutr. 2024, 131, 1786–1802. [Google Scholar] [CrossRef] [PubMed]
- Wills, J.; Simpson, K.W. Waltham Book of Clinical Nutrition of the Dog and Cat; Pergamon Press: Oxford, UK, 1994. [Google Scholar]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary protein–its role in satiety, energetics, weight loss and health. Br. J. Nutr. 2012, 108, S105–S112. [Google Scholar] [CrossRef]
- Morris, J.G.; Rogers, Q.R. Assessment of the nutritional adequacy of pet foods through the life cycle. J. Nutr. 1994, 124, 2520S–2534S. [Google Scholar] [CrossRef]
- Humbert, B.; Bleis, P.; Martin, L.; Dumon, H.; Darmaun, D.; Nguyen, P. Effects of dietary protein restriction and amino acids deficiency on protein metabolism in dogs. J. Anim. Physiol. Anim. Nutr. 2001, 85, 255–262. [Google Scholar] [CrossRef]
- Hendriks, W.; Bakker, E.; Bosch, G. Protein and amino acid bioavailability estimates for canine foods. J. Anim. Sci. 2015, 93, 4788–4795. [Google Scholar] [CrossRef]
- Templeman, J.R.; Shoveller, A.K. Digestible indispensable amino acid scores of animal and plant ingredients potentially used in dog diet formulation: How this protein quality metric is affected by ingredient characteristics and reference amino acid profile. J. Anim. Sci. 2022, 100, skac279. [Google Scholar] [CrossRef]
- Butterwick, R.F.; Erdman, J.W.; Hill, R.C.; Lewis, A.J.; Whittemore, C.T. Challenges in developing nutrient guidelines for companion animals. Br. J. Nutr. 2011, 106, S24–S31. [Google Scholar] [CrossRef]
- Afonso, M.V.R.; de Jesus, N.G.; de Souza Oliveira, N.; de Oliveira Rabelo, W.; Jorge, A.L.T.A.; de Almeida, G.M. Avaliação e composição nutricional de rações secas para cães adultos. Pubvet 2021, 15, 1–7. [Google Scholar] [CrossRef]
- Daumas, C.; Paragon, B.-M.; Thorin, C.; Martin, L.; Dumon, H.; Ninet, S.; Nguyen, P. Evaluation of eight commercial dog diets. J. Nutr. Sci. 2014, 3, e63. [Google Scholar] [CrossRef]
- Li, P.; Wu, G. Amino acid nutrition and metabolism in domestic cats and dogs. J. Anim. Sci. Biotechnol. 2023, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Alexander, P.; Berri, A.; Moran, D.; Reay, D.; Rounsevell, M.D. The global environmental paw print of pet food. Glob. Environ. Change 2020, 65, 102153. [Google Scholar] [CrossRef]
- van Prooijen, A.-M.; Smeets, A.E.; Yang, K.X.; Hoppezak, P. Consumer Considerations of Carbon Paw Prints in Evaluations of Dog Food Products. Soc. Anim. 2024, 1, 1–22. [Google Scholar] [CrossRef]
- National Research Council; Division on Earth, Life Studies; Committee on Animal Nutrition, Subcommittee on Dog; Cat Nutrition. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Elango, R.; Humayun, M.A.; Ball, R.O.; Pencharz, P.B. Evidence that protein requirements have been significantly underestimated. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Humayun, M.A.; Elango, R.; Ball, R.O.; Pencharz, P.B. Reevaluation of the protein requirement in young men with the indicator amino acid oxidation technique. Am. J. Clin. Nutr. 2007, 86, 995–1002. [Google Scholar] [CrossRef]
- Pacheco, L.G.; Goloni, C.; Di Santo, L.G.; Scarpim, L.B.; Eugênio, D.A.; de Castro, A.; Costa, V.E.; Carciofi, A.C. Comparison of the precursor, amino acid oxidation, and end-product methods for the evaluation of protein turnover in senior dogs. PLoS ONE 2024, 19, e0305073. [Google Scholar] [CrossRef]
- Ogawa, A.; Murayama, H.; Hayamizu, K.; Kobayashi, Y.; Kuwahata, M.; Kido, Y. A simple evaluation method for the quality of dietary protein in rats using an indicator amino acid oxidation technique. J. Nutr. Sci. Vitaminol. 2015, 61, 123–130. [Google Scholar] [CrossRef][Green Version]
- Fuller, M.; Chamberlain, A. Protein Requirements of Pigs; Butterworths: London, UK, 1985; Volume 85. [Google Scholar]
- Delaney, S.; Hill, A.; Backus, R.; Czarnecki-Maulden, G.; Rogers, Q. Dietary crude protein concentration does not affect the leucine requirement of growing dogs. J. Anim. Physiol. Anim. Nutr. 2001, 85, 88–100. [Google Scholar] [CrossRef]
- Heiman, V. The protein requirements of growing puppies. J. Am. Vet. Med. Assoc. 1947, 111, 304–308. [Google Scholar]
- Gessert, C.; Phillips, P. Adverse effects of some amino acid supplements in low-protein diets for growing dogs. J. Nutr. 1956, 58, 423–431. [Google Scholar] [CrossRef]
- Burns, R.A.; LeFaivre, M.H.; Milner, J.A. Effects of dietary protein quantity and quality on the growth of dogs and rats. J. Nutr. 1982, 112, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Case, L.P.; Czarnecki-Maulden, G.L. Protein requirements of growing pups fed practical dry-type diets containing mixed-protein sources. Am. J. Vet. Res. 1990, 51, 808–812. [Google Scholar] [CrossRef]
- Tirapegui, J.; Rogero, M.M. Metabolismo de proteínas. In Fisiologia da Nutrição Humana: Aspectos Básicos, Aplicados e Funcionais; Editora Atheneu: São Paulo, Brazil, 2007; pp. 69–109. [Google Scholar]
- Exton, J. Gluconeogenesis. Metabolism 1972, 21, 945–990. [Google Scholar] [CrossRef]
- Veldhorst, M.A.; Westerterp-Plantenga, M.S.; Westerterp, K.R. Gluconeogenesis and energy expenditure after a high-protein, carbohydrate-free diet. Am. J. Clin. Nutr. 2009, 90, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Kang, T.; Maeng, W.; Kim, M.; Lee, S.-R. Effects of Protein Levels on Growth and Nitrogen Balance in Growing Jindo Dog. J. Anim. Sci. Technol. 2007, 49, 633–638. [Google Scholar] [CrossRef]
- Allison, J.B. Optimal nutrition correlated with nitrogen retention. Am. J. Clin. Nutr. 1956, 4, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Ontko, J.A.; Wuthier, R.E.; Phillips, P.H. The effect of increased dietary fat upon the protein requirement of the growing dog. J. Nutr. 1957, 62, 163–169. [Google Scholar] [CrossRef]
- Association of American Feed Control Officials (AAFCO). Official Publication-Association of American Feed Control Officials; Association of American Feed Control Officials: Champaign, IL, USA, 2020. [Google Scholar]
- European Pet Food Industry Federation (FEDIAF). Nutritional Guidelines for Cats and Dogs; The European Pet Food Industry Federation: Brussels, Belgium, 2021. [Google Scholar]
- Ephraim, E.; Cochrane, C.-Y.; Jewell, D.E. Varying protein levels influence metabolomics and the gut microbiome in healthy adult dogs. Toxins 2020, 12, 517. [Google Scholar] [CrossRef]
- Swanson, K.S.; Carter, R.A.; Yount, T.P.; Aretz, J.; Buff, P.R. Nutritional sustainability of pet foods. Adv. Nutr. 2013, 4, 141–150. [Google Scholar] [CrossRef]
- Melnick, D.; Cowgill, G.R. The Protein Minima for Nitrogen Equilibrium with Different Proteins: Four Figures. J. Nutr. 1937, 13, 401–424. [Google Scholar] [CrossRef]
- Kade, C.F., Jr.; Phillips, J.H.; Phillips, W.A. The Determination of the Minimum Nitrogen Requirement of the Adult Dog for Maintenance of Nitrogen Balance: Nineteen Figures. J. Nutr. 1948, 36, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.; Schad, J.S. Nitrogen balance studies with dogs on casein or methionine-supplemented casein. J. Nutr. 1954, 53, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Wagenmakers, A.J. Tracers to investigate protein and amino acid metabolism in human subjects. Proc. Nutr. Soc. 1999, 58, 987–1000. [Google Scholar] [CrossRef]
- Sanderson, S.L.; Gross, K.L.; Ogburn, P.N.; Calvert, C.; Jacobs, G.; Lowry, S.R.; Bird, K.A.; Koehler, L.A.; Swanson, L.L. Effects of dietary fat and L-carnitine on plasma and whole blood taurine concentrations and cardiac function in healthy dogs fed protein-restricted diets. Am. J. Vet. Res. 2001, 62, 1616–1623. [Google Scholar] [CrossRef]
- Williams, C.; Cummins, K.; Hayek, M.; Davenport, G. Effects of dietary protein on whole-body protein turnover and endocrine function in young-adult and aging dogs. J. Anim. Sci. 2001, 79, 3128–3136. [Google Scholar] [CrossRef]
- Young, V.R.; Borgonha, S. Nitrogen and amino acid requirements: The Massachusetts Institute of Technology amino acid requirement pattern. J. Nutr. 2000, 130, 1841S–1849S. [Google Scholar] [CrossRef]
- Reeds, P.J.; Garlick, P.J. Protein and amino acid requirements and the composition of complementary foods. J. Nutr. 2003, 133, 2953S–2961S. [Google Scholar] [CrossRef] [PubMed]
- Templeman, J.R.; Mansilla, W.D.; Fortener, L.; Shoveller, A.K. Tryptophan requirements in small, medium, and large breed adult dogs using the indicator amino acid oxidation technique. J. Anim. Sci. 2019, 97, 3274–3285. [Google Scholar] [CrossRef]
- Mansilla, W.D.; Templeman, J.R.; Fortener, L.; Shoveller, A.K. Minimum dietary methionine requirements in Miniature Dachshund, Beagle, and Labrador Retriever adult dogs using the indicator amino acid oxidation technique. J. Anim. Sci. 2020, 98, skaa324. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, K.A.; Mansilla, W.D.; Fortener, L.; Shoveller, A.K. Lysine requirements in small, medium, and large breed adult dogs using the indicator amino acid oxidation technique. Transl. Anim. Sci. 2020, 4, txaa082. [Google Scholar] [CrossRef]
- Nap, R.C.; Hazewinkel, H.A.W.; Voorhout, G.; Biewenga, W.J.; Koeman, J.P.; Goedegebuure, S.A. The influence of the dietary protein content on growth in giant breed dogs. Vet. Comp. Orthop. Traumatol. 1993, 6, 1–8. [Google Scholar] [CrossRef]
- Böswald, L.; Kienzle, E.; Dobenecker, B. Observation about phosphorus and protein supply in cats and dogs prior to the diagnosis of chronic kidney disease. J. Anim. Physiol. Anim. Nutr. 2018, 102, 31–36. [Google Scholar] [CrossRef]
- Luis, L.W.; Goloni, C.; Theodoro, S.d.S.; Tozato, M.E.; Pacheco, L.G.; Monti, M.; Carciofi, A.C. Intake of energy, protein, amino acids and minerals by dogs under energy restriction for body weight loss when fed with commercial weight loss diets. J. Anim. Physiol. Anim. Nutr. 2023, 107, 1–10. [Google Scholar] [CrossRef]
- Thompson, A. Ingredients: Where pet food starts. Top. Companion Anim. Med. 2008, 23, 127–132. [Google Scholar] [CrossRef]
- Donadelli, R.; Jones, C.; Beyer, R. The amino acid composition and protein quality of various egg, poultry meal by-products, and vegetable proteins used in the production of dog and cat diets. Poult. Sci. 2019, 98, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Muir, H.E.; Murray, S.; Fahey, G., Jr.; Merchen, N.; Reinhart, G. Nutrient digestion by ileal cannulated dogs as affected by dietary fibers with various fermentation characteristics. J. Anim. Sci. 1996, 74, 1641–1648. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Parsons, C.; Fahey, G., Jr.; Merchen, N.; Aldrich, C. Effects of species raw material source, ash content, and processing temperature on amino acid digestibility of animal by-product meals by cecectomized roosters and ileally cannulated dogs. J. Anim. Sci. 1998, 76, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, W.; Thomas, D.; Bosch, G.; Fahey, G., Jr. Comparison of ileal and total tract nutrient digestibility of dry dog foods. J. Anim. Sci. 2013, 91, 3807–3814. [Google Scholar] [CrossRef]
- Clapper, G.; Grieshop, C.; Merchen, N.; Russett, J.; Brent, J., Jr.; Fahey, G., Jr. Ileal and total tract nutrient digestibilities and fecal characteristics of dogs as affected by soybean protein inclusion in dry, extruded diets. J. Anim. Sci. 2001, 79, 1523–1532. [Google Scholar] [CrossRef]
- Tessari, P. Nitrogen balance and protein requirements: Definition and measurements. In Cachexia and Wasting: A Modern Approach; Springer: Berlin, Germany, 2006; pp. 73–79. [Google Scholar] [CrossRef]
- Maria, A.P.J.; Ayane, L.; Putarov, T.C.; Loureiro, B.A.; Neto, B.P.; Casagrande, M.F.; Gomes, M.d.O.S.; Glória, M.; Carciofi, A.C. The effect of age and carbohydrate and protein sources on digestibility, fecal microbiota, fermentation products, fecal IgA, and immunological blood parameters in dogs. J. Anim. Sci. 2017, 95, 2452–2466. [Google Scholar] [CrossRef]
- Ribeiro, E.d.M.; Peixoto, M.C.; Putarov, T.C.; Monti, M.; Pacheco, P.D.G.; Loureiro, B.A.; Pereira, G.T.; Carciofi, A.C. The effects of age and dietary resistant starch on digestibility, fermentation end products in faeces and postprandial glucose and insulin responses of dogs. Arch. Anim. Nutr. 2019, 73, 485–504. [Google Scholar] [CrossRef]
- Fefer, G.; Khan, M.Z.; Panek, W.K.; Case, B.; Gruen, M.E.; Olby, N.J. Relationship between hearing, cognitive function, and quality of life in aging companion dogs. J. Vet. Intern. Med. 2022, 36, 1708–1718. [Google Scholar] [CrossRef]
- Finco, D.R.; Brawn, S.A.; Crowell, W.A.; Brown, C.A.; Barsanti, J.A.; Carey, D.P.; Hirakawa, D.A. Effects of aging and dietary protein intake on uninephrectomized geriatric dogs. Am. J. Vet. Res. 1994, 55, 1282–1290. [Google Scholar] [CrossRef]
- Bovée, K.C. Influence of dietary protein on renal function in dogs. J. Nutr. 1991, 121, S128–S139. [Google Scholar] [CrossRef]
- Laflamme, D. Pet food safety: Dietary protein. Top. Companion Anim. Med. 2008, 23, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L. Cachexia and sarcopenia: Emerging syndromes of importance in dogs and cats. J. Vet. Intern. Med. 2012, 26, 3–17. [Google Scholar] [CrossRef]
- Saker, K.E. Nutritional concerns for cancer, cachexia, frailty, and sarcopenia in canine and feline pets. Vet. Clin. Small Anim. Pract. 2021, 51, 729–744. [Google Scholar] [CrossRef]
- Harper, E.J. Changing perspectives on aging and energy requirements: Aging and energy intakes in humans, dogs and cats. J. Nutr. 1998, 128, 2623S–2626S. [Google Scholar] [CrossRef]
- Laflamme, D. Developmental and validation of a body condition score system for dogs. CABI Agric. Biosci. 1997, 22, 10–15. [Google Scholar]
- Hutchinson, D.; Sutherland-Smith, J.; Watson, A.L.; Freeman, L.M. Assessment of methods of evaluating sarcopenia in old dogs. Am. J. Vet. Res. 2012, 73, 1794–1800. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.A.; Farcas, A. Nutrition of aging dogs. Vet. Clin. Small Anim. Pract. 2014, 44, 741–759. [Google Scholar] [CrossRef] [PubMed]
- Herring, C.M.; Bazer, F.W.; Johnson, G.A.; Wu, G. Impacts of maternal dietary protein intake on fetal survival, growth, and development. Exp. Biol. Med. 2018, 243, 525–533. [Google Scholar] [CrossRef]
- Wu, G.; Li, P. The “ideal protein” concept is not ideal in animal nutrition. Exp. Biol. Med. 2022, 247, 1191–1201. [Google Scholar] [CrossRef]
- Meyer, H.; Kienzle, E.; Dammers, C. Yield and composition of milk from bitches, and feed intake and weight change pre-and post-partum. CABI Agric. Biosci. 1986, 16, 51–72. [Google Scholar]
- Ontko, J.A.; Phillips, P. Reproduction and lactation studies with bitches fed semipurified diets. J. Nutr. 1958, 65, 211–218. [Google Scholar] [CrossRef]
- Cowgill, G.R. The energy factor in relation to food intake: Experiments on the dog. Am. J. Physiol.-Leg. Content 1928, 85, 45–64. [Google Scholar] [CrossRef]
- Campbell, J.E. Nutritional Requirements of the Dog with Special Emphasis on Reproduction; University of Wisconsin-Madison: Madison, WI, USA, 1951. [Google Scholar]
- Sones, J.; Balogh, O. Body condition and fertility in dogs. Vet. Clin. Small Anim. Pract. 2023, 53, 1031–1045. [Google Scholar] [CrossRef]
- Kirk, C.A. New concepts in pediatric nutrition. Vet. Clin. Small Anim. Pract. 2001, 31, 369–392. [Google Scholar] [CrossRef] [PubMed]
- Romsos, D.R.; Palmer, H.J.; Muiruri, K.L.; Bennink, M.R. Influence of a low carbohydrate diet on performance of pregnant and lactating dogs. J. Nutr. 1981, 111, 678–689. [Google Scholar] [CrossRef] [PubMed]
- Orlandi, R.; Vallesi, E.; Calabrò, S.; Vastolo, A.; Musco, N.; Troisi, A.; Polisca, A.; Lombardi, P.; Cutrignelli, M.I. Effects of two commercial diets on several reproductive parameters in bitches: Note one—From estrous cycle to parturition. Animals 2020, 11, 23. [Google Scholar] [CrossRef]
- Kienzle, E.; Meyer, H.; Lohrie, H. Einfluss kohlenhydratfreier Rationen mit unterschiedlichen Protein/Energierelationen auf foetale Entwicklung und Vitalitaet von Welpen sowie die Milchzusammensetzung von Huendinnen. Z. Fuer Tierphysiol. Tierernaehrung Futtermittelkunde 1985, 54, 76–77. [Google Scholar]
- Ajuogu, P.K.; Al-Aqbi, M.A.; Hart, R.A.; Wolden, M.; Smart, N.A.; McFarlane, J.R. The effect of dietary protein intake on factors associated with male infertility: A systematic literature review and meta-analysis of animal clinical trials in rats. Nutr. Health 2020, 26, 53–64. [Google Scholar] [CrossRef]
- Ajuogu, P.K.; Al-Aqbi, M.A.; Hart, R.A.; McFarlane, J.R.; Smart, N.A. A low protein maternal diet during gestation has negative effects on male fertility markers in rats–A Systematic Review and Meta-analysis. J. Anim. Physiol. Anim. Nutr. 2021, 105, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, E.; Rodriguez-Gonzalez, G.; Guzman, C.; Garcia-Becerra, R.; Boeck, L.; Diaz, L.; Menjivar, M.; Larrea, F.; Nathanielsz, P. A maternal low protein diet during pregnancy and lactation in the rat impairs male reproductive development. J. Physiol. 2005, 563, 275–284. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Washington, DC, USA, 2010. [Google Scholar]
- Lucas, B.; Sotelo, A. Effect of different alkalies, temperature, and hydrolysis times on tryptophan determination of pure proteins and of foods. Anal. Biochem. 1980, 109, 192–197. [Google Scholar] [CrossRef]
- D’Onofrio, F.; Longo, F.; Mauti, T.; Pagani, E.; Baravalle, P.; Neri, B. Determination of eleven total amino acids including cyst (e) ine by HPLC-DAD/FLD in complete dry and wet pet foods and their feed materials. Anim. Feed. Sci. Technol. 2023, 303, 115720. [Google Scholar] [CrossRef]
- Szkudzińska, K.; Smutniak, I.; Rubaj, J.; Korol, W.; Bielecka, G. Method validation for determination of amino acids in feed by UPLC. Accredit. Qual. Assur. 2017, 22, 247–252. [Google Scholar] [CrossRef]
- Carciofi, A.C. Fontes de proteína e carboidratos para cães e gatos. Rev. Bras. Zootec. 2008, 37, 28–41. [Google Scholar] [CrossRef]
- Kawauchi, I.M.; Sakomura, N.K.; Pontieri, C.F.; Rebelato, A.; Putarov, T.C.; Malheiros, E.B.; de OS Gomes, M.; Castrillo, C.; Carciofi, A.C. Prediction of crude protein digestibility of animal by-product meals for dogs by the protein solubility in pepsin method. J. Nutr. Sci. 2014, 3, e36. [Google Scholar] [CrossRef] [PubMed]
- Pencharz, P.B.; Elango, R.; Wolfe, R.R. Recent developments in understanding protein needs–How much and what kind should we eat? Appl. Physiol. Nutr. Metab. 2016, 41, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, G. The protein digestibility–corrected amino acid score. J. Nutr. 2000, 130, 1865S–1867S. [Google Scholar] [CrossRef]
- Mathai, J.K.; Liu, Y.; Stein, H.H. Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br. J. Nutr. 2017, 117, 490–499. [Google Scholar] [CrossRef]
- Reilly, L.M.; von Schaumburg, P.C.; Hoke, J.M.; Davenport, G.M.; Utterback, P.L.; Parsons, C.M.; de Godoy, M.R. Use of precision-fed cecectomized rooster assay and digestible indispensable amino acid scores to characterize plant-and yeast-concentrated proteins for inclusion in canine and feline diets. Transl. Anim. Sci. 2020, 4, txaa133. [Google Scholar] [CrossRef]
- Matsuoka, R.; Kurihara, H.; Nishijima, N.; Oda, Y.; Handa, A. Egg white hydrolysate retains the nutritional value of proteins and is quickly absorbed in rats. Sci. World J. 2019, 2019, 5475302. [Google Scholar] [CrossRef]
- Hsu, C.; Utterback, P.L.; Parsons, C.M.; Marx, F.; Guldenpfennig, R.; de Godoy, M.R. Standardized amino acid digestibility and protein quality in extruded canine diets containing hydrolyzed protein using a precision-fed rooster assay. J. Anim. Sci. 2023, 101, skad289. [Google Scholar] [CrossRef] [PubMed]
- Rutherfurd, S.M.; Fanning, A.C.; Miller, B.J.; Moughan, P.J. Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats. J. Nutr. 2015, 145, 372–379. [Google Scholar] [CrossRef]
- Elango, R.; Ball, R.O.; Pencharz, P.B. Indicator amino acid oxidation: Concept and application. J. Nutr. 2008, 138, 243–246. [Google Scholar] [CrossRef]
- Matsumoto, M.; Narumi-Hyakutake, A.; Kakutani, Y.; Tsuji, M.; Hatamoto, Y.; Higaki, Y.; Sasaki, S. Evaluation of protein requirements using the indicator amino acid oxidation method: A scoping review. J. Nutr. 2023, 53, 3472–3489. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Bünzen, S.; Sakomura, N.K.; Albino, L.F. Avanços metodológicos na avaliação de alimentos e de exigências nutricionais para aves e suínos. Rev. Bras. Zootec. 2007, 36, 295–304. [Google Scholar] [CrossRef][Green Version]
- Elango, R.; Ball, R.O.; Pencharz, P.B. Recent advances in determining protein and amino acid requirements in humans. Br. J. Nutr. 2012, 108, S22–S30. [Google Scholar] [CrossRef]
- Robbins, K.; Saxton, A.; Southern, L. Estimation of nutrient requirements using broken-line regression analysis. J. Anim. Sci. 2006, 84, E155–E165. [Google Scholar] [CrossRef] [PubMed]
- Young, V.R.; Marchini, J.S. Mechanisms and nutritional significance of metabolic responses to altered intakes of protein and amino acids, with reference to nutritional adaptation in humans. Am. J. Clin. Nutr. 1990, 51, 270–289. [Google Scholar] [CrossRef]
- Reeds, P.; Hutchens, T. Protein requirements: From nitrogen balance to functional impact. J. Nutr. 1994, 124, 1754S–1763S. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.R.; Garlick, P.J. Introduction to protein summit 2007: Exploring the impact of high-quality protein on optimal health1. Am. J. Clin. Nutr. 2008, 87, 1551S–1553S. [Google Scholar] [CrossRef]
- Allison, J.B.; Wannemacher JR, R.W. The concept and significance of labile and over-all protein reserves of the body. Am. J. Clin. Nutr. 1965, 16, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Rand, W.M.; Pellett, P.L.; Young, V.R. Meta-analysis of nitrogen balance studies for estimating protein requirements in healthy adults. Am. J. Clin. Nutr. 2003, 77, 109–127. [Google Scholar] [CrossRef]
- Barboza, P.S.; Parker, K.L. Body protein stores and isotopic indicators of N balance in female reindeer (Rangifer tarandus) during winter. Physiol. Biochem. Zool. 2006, 79, 628–644. [Google Scholar] [CrossRef]
- Lechtig, A.; Martorell, R.; Yarbrough, C.; Delgado, H.; Klein, R.E. The urea/creatinine ratio: Is it useful for field studies? J. Trop. Pediatr. 1976, 22, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Waterlow, J. Protein turnover with special reference to man. Q. J. Exp. Physiol. Transl. Integr. 1984, 69, 409–438. [Google Scholar] [CrossRef]
- Adibi, S.A. Metabolism of branched-chain amino acids in altered nutrition. Metabolism 1976, 25, 1287–1302. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.; Bier, D.; Rennie, M.; Edwards, R.; Halliday, D.; Millward, D.; Clugston, G. Regulation of leucine metabolism in man: A stable isotope study. Science 1981, 214, 1129–1131. [Google Scholar] [CrossRef] [PubMed]
- Van Goudoever, J.; Colen, T.; Wattimena, J.; Huijmans, J.; Carnielli, V.P.; Sauer, P. Immediate commencement of amino acid supplementation in preterm infants: Effect on serum amino acid concentrations and protein kinetics on the first day of life. J. Pediatr. 1995, 127, 458–465. [Google Scholar] [CrossRef]
- Tannus, A.F.S.; Darmaun, D.; Ribas, D.F.; Oliveira, J.E.D.; Marchini, J.S. Glutamine supplementation does not improve protein synthesis rate by the jejunal mucosa of the malnourished rat. Nutr. Res. 2009, 29, 596–601. [Google Scholar] [CrossRef]
- Matthews, D.; Schwarz, H.; Yang, R.; Motil, K.; Young, V.; Bier, D. Relationship of plasma leucine and α-ketoisocaproate during a L-[1-13C] leucine infusion in man: A method for measuring human intracellular leucine tracer enrichment. Metabolism 1982, 31, 1105–1112. [Google Scholar] [CrossRef]
- Tissot, S.; Delafosse, B.; Normand, S.; Bouffard, Y.; Annat, G.; Viale, J.-P.; Pachiaudi, C.; Riou, J.-P.; Motin, J. Recovery of [13C] bicarbonate as respiratory 13CO2 in mechanically ventilated patients. Am. J. Clin. Nutr. 1993, 57, 202–206. [Google Scholar] [CrossRef]
- Wolfe, R.R.; Chinkes, D.L. Isotope Tracers in Metabolic Research: Principles and Practice of Kinetic Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Fern, E.; Garlick, P.; McNurlan, M.A.; Waterlow, J. The excretion of isotope in urea and ammonia for estimating protein turnover in man with [15N] glycine. Clin. Sci. 1981, 61, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Garlick, P.; Fern, E. Whole-body protein turnover: Theoretical considerations. Substrate Energy Metab. 1985, 7, 101–108. [Google Scholar]
- Kriengsinyos, W.; Wykes, L.J.; Ball, R.O.; Pencharz, P.B. Oral and intravenous tracer protocols of the indicator amino acid oxidation method provide the same estimate of the lysine requirement in healthy men. J. Nutr. 2002, 132, 2251–2257. [Google Scholar] [CrossRef]
- Shoveller, A.; Danelon, J.; Atkinson, J.; Davenport, G.; Ball, R.; Pencharz, P. Calibration and validation of a carbon oxidation system and determination of the bicarbonate retention factor and the dietary phenylalanine requirement, in the presence of excess tyrosine, of adult, female, mixed-breed dogs. J. Anim. Sci. 2017, 95, 2917–2927. [Google Scholar] [CrossRef] [PubMed]
- Pencharz, P.B.; Ball, R.O. Different approaches to define individual amino acid requirements. Annu. Rev. Nutr. 2003, 23, 101–116. [Google Scholar] [CrossRef] [PubMed]
| Authors | Age (Weeks) | Crude Protein (g/kg Diet) |
|---|---|---|
| [17] | 4–14 | 180 |
| [25] | 6–10 | 172 |
| [24] | 7–40 | 200 |
| [26] | 8–10 | 150–200 |
| [23] | 8–14 | 140 |
| [27] | 8–16 | 230–275 |
| [26] | 13–17 | 117 |
| [17] | >14 | 140 |
| [29] | 18–20 | 250 |
| Authors | Crude Protein (g/kg Diet) |
|---|---|
| [3] | 35 to 90 1 |
| [17] | |
| [36] | |
| [37] | |
| [38] | |
| [11] | 138 |
| [41] | <160 |
| Authors | Age (Years) | Crude Protein (g/kg Diet) |
|---|---|---|
| [3] | 12–13 | 188 |
| [41] | 8 | <160 |
| Authors | Crude Protein (g/kg Diet) |
|---|---|
| [80] | 197 |
| [17] | 200 |
| [79] | 260 |
| [81] | 400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Scarpim, L.B.; Pacheco, L.G. Challenges and Methodologies to Assess Protein Requirement and Quality Across Different Life Stages in Dogs: A Review. Animals 2026, 16, 228. https://doi.org/10.3390/ani16020228
Scarpim LB, Pacheco LG. Challenges and Methodologies to Assess Protein Requirement and Quality Across Different Life Stages in Dogs: A Review. Animals. 2026; 16(2):228. https://doi.org/10.3390/ani16020228
Chicago/Turabian StyleScarpim, Lucas Bassi, and Leticia Graziele Pacheco. 2026. "Challenges and Methodologies to Assess Protein Requirement and Quality Across Different Life Stages in Dogs: A Review" Animals 16, no. 2: 228. https://doi.org/10.3390/ani16020228
APA StyleScarpim, L. B., & Pacheco, L. G. (2026). Challenges and Methodologies to Assess Protein Requirement and Quality Across Different Life Stages in Dogs: A Review. Animals, 16(2), 228. https://doi.org/10.3390/ani16020228

