The Effect of Yellow and White Lupine Meals on the Growth Performance, Carcass Composition, and Meat Quality of Fleckvieh Finishing Bulls
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Animal Performance, Slaughter, and Carcass Characteristics
2.3. Blood Sample Collection and Analyses
2.4. Meat Sample Collection and Analyses
2.5. Statistical Analyses
3. Results
3.1. Animal Performance
3.2. Blood Biochemical Parameters
3.3. Slaughter and Carcass Characteristics
3.4. Physical Meat Quality Parameters and Chemical Composition of Muscle Samples
3.5. Fatty Acid Composition of Muscle Samples
3.6. Sensory Properties of Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Notz, I.; Topp, C.F.E.; Schuler, J.; Alves, S.; Gallardo, L.A.; Dauber, J.; Haase, T.; Hargreaves, P.R.; Hennessy, M.; Iantcheva, A.; et al. Transition to legume-supported farming in Europe through redesigning cropping systems. Agron. Sustain. Dev. 2023, 43, 12. [Google Scholar] [CrossRef]
- EC. Common Agricultural Policy Strategic Plans. Available online: https://agriculture.ec.europa.eu/system/files/2022-12/csp-at-a-glance-eu-countries_en.pdf (accessed on 24 September 2024).
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T.; Lindstrom, K.; Nemecek, T.; Topp, C.F.E.; Vanhatalo, A.; et al. Grain Legume Production and Use in European Agricultural Systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar]
- Nemecek, T.; von Richthofen, J.S.; Dubois, G.; Casta, P.; Charles, R.; Pahl, H. Environmental impacts of introducing grain legumes into European crop rotations. Eur. J. Agron. 2008, 28, 380–393. [Google Scholar] [CrossRef]
- Musco, N.; Cutrignelli, M.I.; Calabro, S.; Tudisco, R.; Infascelli, F.; Grazioli, R.; Lo Presti, V.; Gresta, F.; Chiofalo, B. Comparison of nutritional and antinutritional traits among different species (Lupinus albus L., Lupinus luteus L., Lupinus angustifolius L.) and varieties of lupin seeds. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1227–1241. [Google Scholar] [CrossRef]
- Jarecki, W.; Migut, D. Comparison of Yield and Important Seed Quality Traits of Selected Legume Species. Agronomy 2022, 12, 2667. [Google Scholar] [CrossRef]
- Chiofalo, B.; Lo Presti, V.; Chiofalo, V.; Gresta, F. The productive traits, fatty acid profile and nutritional indices of three lupin (Lupinus spp.) species cultivated in a Mediterranean environment for the livestock. Anim. Feed Sci. Technol. 2012, 171, 230–239. [Google Scholar] [CrossRef]
- White, C.L.; Staines, V.E.; Staines, M.V. A review of the nutritional value of lupins for dairy cows. Aust. J. Agric. Res. 2007, 58, 185–202. [Google Scholar] [CrossRef]
- Abraham, E.M.; Ganopoulos, I.; Madesis, P.; Mavromatis, A.; Mylona, P.; Nianiou-Obeidat, I.; Parissi, Z.; Polidoros, A.; Tani, E.; Vlachostergios, D. The Use of Lupin as a Source of Protein in Animal Feeding: Genomic Tools and Breeding Approaches. Int. J. Mol. Sci. 2019, 20, 851. [Google Scholar] [CrossRef]
- Froidmont, E.; Bartiaux-Thill, N. Suitability of lupin and pea seeds as a substitute for soybean meal in high-producing dairy cow feed. Anim. Res. 2004, 53, 475–487. [Google Scholar] [CrossRef]
- Ragni, M.; Colonna, M.A.; Lestingi, A.; Tarricone, S.; Giannico, F.; Marsico, G.; Facciolongo, A.M. Effects of protein sources on performance, carcass composition, blood parameters and meat quality in Charolais heifers. S. Afr. J. Anim. Sci. 2018, 48, 683–694. [Google Scholar] [CrossRef]
- Vicenti, A.; Toteda, F.; Di Turi, L.; Cocca, C.; Perrucci, M.; Melodia, L.; Ragni, M. Use of sweet lupin (Lupinus albus L. var. Multitalia) in feeding for Podolian young bulls and influence on productive performances and meat quality traits. Meat Sci. 2009, 82, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, E.; Waszkowska, E.; Zimny, T.; Sowa, S.; Twardowski, T. The Rapeseed Potential in Poland and Germany in the Context of Production, Legislation, and Intellectual Property Rights. Front. Plant Sci. 2019, 10, 1423. [Google Scholar] [CrossRef] [PubMed]
- Muszynski, S.; Dajnowska, A.; Arciszewski, M.B.; Rudyk, H.; Sliwa, J.; Krakowiak, D.; Piech, M.; Nowakowicz-Debek, B.; Czech, A. Effect of Fermented Rapeseed Meal in Feeds for Growing Piglets on Bone Morphological Traits, Mechanical Properties, and Bone Metabolism. Animals 2023, 13, 1080. [Google Scholar] [CrossRef] [PubMed]
- Good, A.C. Evaluation of Canola Meal Versus Soybean Meal as a Protein Supplement for Beef Cattle: Effects on Growth Performance, Carcass Characteristics, Rument Fermentation, and Nutrient Digestion. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2018. [Google Scholar]
- AOAC International. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Vérité, R.; Peyraud, J.L. Protein: The PDI system. In Ruminant Nutrition: Recommended Allowances and Feed Tables; Jarrige, R., Ed.; INRA: Paris, France, 1989; pp. 33–44. [Google Scholar]
- Vermorel, M. Energy: The feed unit systems. In Ruminant Nutrition: Recommended Allowances and Feed Tables; Jarrige, R., Ed.; INRA: Paris, France, 1989; pp. 23–32. [Google Scholar]
- EU. Commission Delegated Regulation (EU) 2017/1182 of 20 April 2017 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards the Union scales for the classification of beef, pig and sheep carcasses and as regards the reporting of market prices of certain categories of carcasses and live animals. Off. J. Eur. Union 2017, L171, 74. [Google Scholar]
- Drachmann, F.F.; Christensen, M.; Esberg, J.; Lauridsen, T.; Fogh, A.; Young, J.F.; Therkildsen, M. Beef-on-dairy: Meat quality of veal and prediction of intramuscular fat using the Q-FOMtm Beef camera at the 5th-6th thoracis vertebra. Meat Sci. 2024, 213, 109503. [Google Scholar] [CrossRef]
- Menéndez, L.G.; Fernández, A.L.; Enguix, A.; Ciriza, C.; Amador, J. Effect of storage of plasma and serum on enzymatic determination of non-esterified fatty acids. Ann. Clin. Biochem. 2001, 38, 252–255. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- ISO 1444:1996; Meat and Meat Products—Determination of Free Fat Content. International Organization for Standardization: Geneva, Switzerland, 1996.
- Lebedova, N.; Bures, D.; Needham, T.; Fortova, J.; Rehak, D.; Barton, L. Histological composition, physiochemical parameters, and organoleptic properties of three muscles from Fleckvieh bulls and heifers. Meat Sci. 2022, 188, 108807. [Google Scholar] [CrossRef]
- Barton, L.; Bures, D.; Kotrba, R.; Sales, J. Comparison of meat quality between eland (Taurotragus oryx) and cattle (Bos taurus) raised under similar conditions. Meat Sci. 2014, 96, 346–352. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease—7 dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef] [PubMed]
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2023.
- Honig, A.C.; Inhuber, V.; Spiekers, H.; Windisch, W.; Götz, K.U.; Ettle, T. Influence of dietary energy concentration and body weight at slaughter on carcass tissue composition and beef cuts of modern type Fleckvieh (German Simmental) bulls. Meat Sci. 2020, 169, 108209. [Google Scholar] [CrossRef]
- Bureš, D.; Bartoň, L. Performance, carcass traits and meat quality of Aberdeen Angus, Gascon, Holstein and Fleckvieh finishing bulls. Livest. Sci. 2018, 214, 231–237. [Google Scholar] [CrossRef]
- Wiese, S.C.; White, C.L.; Masters, D.G.; Milton, J.T.B.; Davidson, R.H. Growth and carcass characteristics of prime lambs fed diets containing urea, lupins or canola meal as a crude protein source. Aust. J. Exp. Agric. 2003, 43, 1193–1197. [Google Scholar] [CrossRef]
- Sami, A.S.; Schuster, M.; Schwarz, F.J. Performance, Carcass Characteristics and Chemical Composition of Beef Affected by Lupine Seed, Rapeseed Meal and Soybean Meal. J. Anim. Physiol. Anim. Nutr. 2010, 94, 465–473. [Google Scholar] [CrossRef]
- Murphy, S.R.; McNiven, M.A. Raw or roasted lupin supplementation of grass silage diets for beef steers. Anim. Feed Sci. Technol. 1994, 46, 23–35. [Google Scholar] [CrossRef]
- Almeida, M.; Garcia-Santos, S.; Nunes, A.; Rito, S.; Azevedo, J.; Guedes, C.; Silva, S.; Ferreira, L. Introducing Mediterranean Lupins in Lambs’ Diets: Effects on Growth and Digestibility. Animals 2021, 11, 942. [Google Scholar] [CrossRef]
- Robinson, P.H.; McNiven, M.A. Nutritive value of raw and roasted sweet white lupins (Lupinus albus) for lactating dairy cows. Anim. Feed Sci. Technol. 1993, 43, 275–290. [Google Scholar] [CrossRef]
- Buzek, A.; Zaworska-Zakrzewska, A.; Muzolf-Panek, M.; Łodyga, D.; Lisiak, D.; Kasprowicz-Potocka, M. Phytase Supplementation of Growing-Finishing Pig Diets with Extruded Soya Seeds and Rapeseed Meal Improves Bone Mineralization and Carcass and Meat Quality. Life 2023, 13, 1275. [Google Scholar] [CrossRef]
- Sujak, A.; Kotlarz, A.; Strobel, W. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 2006, 98, 711–719. [Google Scholar] [CrossRef]
- Magalhaes, S.C.Q.; Fernandes, F.; Cabrita, A.R.J.; Fonseca, A.J.M.; Valentao, P.; Andrade, P.B. Alkaloids in the valorization of European Lupinus spp. seeds crop. Ind. Crops Prod. 2017, 95, 286–295. [Google Scholar] [CrossRef]
- Oregon State University. Available online: https://vetmed.oregonstate.edu/sites/vetmed.oregonstate.edu/files/biochemistry_reference_intervals_1.pdf (accessed on 30 October 2024).
- Janiszewski, P.; Borzuta, K.; Lisiak, D.; Grzeskowiak, E.; Powalowski, K. Meat quality of beef from young bull carcases varying in conformation or fatness according to the EUROP classification system. Ital. J. Anim. Sci. 2018, 17, 289–293. [Google Scholar] [CrossRef]
- Sartori, A.G.D.; Antonelo, D.S.; Ribeiro, G.H.; Colnago, L.A.; Balieiro, J.C.D.; Delgado, E.F.; Castillo, C.J.C. Lipidome and metabolome profiling of longissimus lumborum beef with different ultimate pH and postmortem aging. Meat Sci. 2024, 217, 109621. [Google Scholar] [CrossRef] [PubMed]
- Sami, A.S.; Augustin, C.; Schwarz, F.J. Effects of Feeding Intensity and Time on Feed on Performance, Carcass Characteristics and Meat Quality of Simmental Bulls. Meat Sci. 2004, 67, 195–201. [Google Scholar] [CrossRef]
- Keller, M.; Reidy, B.; Scheurer, A.; Eggerschwiler, L.; Morel, I.; Giller, K. Soybean Meal Can Be Replaced by Faba Beans, Pumpkin Seed Cake, Spirulina or Be Completely Omitted in a Forage-Based Diet for Fattening Bulls to Achieve Comparable Performance, Carcass and Meat Quality. Animals 2021, 11, 1588. [Google Scholar] [CrossRef]
- Almeida, M.; Garcia-Santos, S.; Carloto, D.; Arantes, A.; Lorenzo, J.M.; Silva, J.A.; Santos, V.; Azevedo, J.; Guedes, C.; Ferreira, L.; et al. Introducing Mediterranean Lupins in Lamb Diets: Effects on Carcass Composition, Meat Quality, and Intramuscular Fatty Acid Profile. Animals 2022, 12, 1758. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef]
- De Smet, S.; Raes, K.; Demeyer, D. Meat fatty acid composition as affected by fatness and genetic factors: A review. Anim. Res. 2004, 53, 81–98. [Google Scholar] [CrossRef]
- Chen, J.P.; Liu, H.B. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef]
- Ragni, M.; Piasentier, E.; Valussol, R.; Morgante, M.; Vicenti, A. Sensory quality of meat from lambs fed on different diets. Ital. J. Anim. Sci. 2005, 4, 369–371. [Google Scholar] [CrossRef]
- Volek, Z.; Bures, D.; Uhlírová, L. Effect of dietary dehulled white lupine seed supplementation on the growth, carcass traits and chemical, physical and sensory meat quality parameters of growing-fattening rabbits. Meat Sci. 2018, 141, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, K.H.; Vasconcelos, J.T.; Hinkle, J.B.; Furman, S.A.; de Mello, A.S.; Senaratne, L.S.; Pokharel, S.; Calkins, C.R. Evaluation of performance, carcass characteristics, and sensory attributes of beef from finishing steers fed field peas. J. Anim. Sci. 2011, 89, 1167–1172. [Google Scholar] [CrossRef] [PubMed]
- Carlin, K.R.M.; Anderson, V.L.; Larson, D.M.; Ilse, B.R.; Maddock, R.J.; Bauer, M.L.; Lardy, G.P. Effects of increasing field pea (Pisum sativum) level in highconcentrate diets on meat tenderness and sensory taste panel attributes in finishing steers and heifers. Prof. Anim. Sci. 2013, 29, 33–38. [Google Scholar] [CrossRef]
- Hall, H.R.; Domenech, K.I.; Wilkerson, E.K.; Ribeiro, F.A.; Jenkins, K.H.; MacDonald, J.C.; Calkins, C.R. Fresh beef quality from cattle fed field peas during pasture and finishing phases of production. Meat Muscle Biol. 2020, 4, 11. [Google Scholar] [CrossRef]
Treatment Group | |||
---|---|---|---|
Item | YL 1 | WL 2 | RS 3 |
Diet ingredient composition (% DM) | |||
Maize silage | 50.5 | 50.1 | 50.2 |
Alfalfa silage | 8.7 | 8.7 | 8.7 |
Wheat straw | 3.4 | 3.4 | 3.4 |
Wheat grain meal | 26.3 | 26.1 | 26.2 |
Oat grain meal | 2.6 | 2.56 | 2.6 |
Yellow lupine grain meal | 7.0 | ||
White lupine grain meal | 7.7 | ||
Rapeseed meal | 7.5 | ||
Vitamin–mineral supplement with urea 4 | 1.4 | 1.4 | 1.4 |
Diet nutrient composition | |||
Dry matter (% fresh weight) | 52.3 | 52.5 | 52.3 |
Crude protein (% DM) | 13.3 | 13.2 | 13.2 |
Organic matter (% DM) | 94.7 | 94.8 | 94.3 |
Ether extract (% DM) | 3.5 | 4.0 | 3.0 |
Neutral detergent fibre (% DM) | 32.7 | 31.6 | 31.9 |
Acid detergent fibre (% DM) | 19.3 | 19.1 | 19.5 |
PDI (% DM) 5 | 8.6 | 8.6 | 8.6 |
NEF (MJ/kg DM) 6 | 6.64 | 6.63 | 6.52 |
Nutrient composition of YL, WL and RS meal | |||
Dry matter (% fresh weight) | 94.4 | 93.0 | 87.6 |
Crude protein (% DM) | 39.5 | 36.0 | 36.7 |
Organic matter (% DM) | 93.7 | 95.2 | 87.9 |
Ether extract (% DM) | 7.2 | 13.4 | 0.4 |
Neutral detergent fibre (% DM) | 35.2 | 20.8 | 23.9 |
Acid detergent fibre (% DM) | 19.1 | 16.5 | 22.7 |
PDI (% DM) 5 | 25.2 | 22.9 | 23.4 |
NEF (MJ/kg DM) 6 | 7.53 | 7.40 | 6.00 |
Fatty acid composition of YL, WL and RS meal (g/100 g fatty acids determined) | |||
C16:0 | 7.78 | 8.03 | 8.56 |
C18:0 | 3.81 | 2.38 | 1.36 |
C18:1 n-9 | 25.4 | 55.6 | 45.8 |
C18:2 n-6 | 47.5 | 15.6 | 29.3 |
C18:3 n-3 | 7.90 | 7.10 | 6.06 |
Attribute | Definition | Scale |
---|---|---|
Beef aroma intensity | The strength of aroma typical for cooked meat | 0 = cannot be identified 100 = extremely strong |
Off-odour intensity | The strength or richness of unusual odour | 0 = cannot be identified 100 = extremely strong |
Tenderness | The force required to bite through the sample with molars | 0 = very though 100 = very tender |
Juiciness | The amount of moisture released by the sample | 0 = very low 100 = very high |
Fineness | Fineness or coarseness of fibres | 0 = very coarse 100 = very fine |
Chewability | The amount of residual tissue after most of sample has been masticated | 0 = scarcely chewable 100 = easily chewable |
Beef flavour intensity | The presence of flavour typical for cooked beef | 0 = cannot be identified 100 = extremely strong |
Off-flavour intensity | The strength or richness of unusual flavour | 0 = cannot be identified 100 = extremely strong |
Liver flavour | Flavour typical of cooked liver | 0 = cannot be identified 100 = extremely strong |
Sour flavour | Strength or richness of sour flavour | 0 = cannot be identified 100 = extremely strong |
Nutty flavour | Flavour reminiscent of hazelnuts | 0 = cannot be identified 100 = extremely strong |
Treatment Group | |||||
---|---|---|---|---|---|
Trait | YL 1 | WL 2 | RS 3 | SEM | p-Value |
Slaughter weight (kg) | 563.3 c | 581.2 b | 606.1 a | 5.221 | <0.001 |
Daily gain (kg/day) | 1.462 b | 1.672 ab | 1.934 a | 0.100 | 0.014 |
DM 4 intake (kg/day) | 10.98 | 10.75 | 11.23 | 0.276 | 0.118 |
F:G 5 (kg DM/kg gain) | 8.16 a | 6.49 ab | 5.79 b | 0.472 | <0.001 |
Treatment Group (Sampling at Day 1) | Treatment Group (Sampling at Day 63) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Trait | YL 1 | WL 2 | RS 3 | SEM | p-Value | YL | WL | RS | SEM | p-Value |
Total protein (g/L) | 65.46 | 62.79 | 62.05 | 1.385 | 0.177 | 65.80 | 65.49 | 66.05 | 1.068 | 0.872 |
Albumin (g/L) | 31.79 | 32.61 | 31.68 | 0.657 | 0.545 | 33.09 | 34.33 | 34.00 | 0.383 | 0.066 |
Globulin (g/L) | 33.67 | 30.18 | 30.37 | 1.356 | 0.122 | 32.71 | 31.16 | 31.05 | 1.166 | 0.508 |
AGR 4 | 0.97 | 1.09 | 1.06 | 0.051 | 0.206 | 1.03 | 1.11 | 1.11 | 0.046 | 0.303 |
Creatinine (μmol/L) | 119.0 | 119.0 | 119.4 | 4.357 | 0.997 | 132.6 | 136.2 | 140.7 | 5.570 | 0.665 |
Urea (mmol/L) | 3.70 | 3.81 | 3.88 | 0.189 | 0.772 | 3.83 b | 4.76 a | 4.24 ab | 0.359 | 0.043 |
ALP 5 (μkat/L) | 2.23 | 2.67 | 2.03 | 0.213 | 0.105 | 2.55 | 2.64 | 2.34 | 0.259 | 0.690 |
AST 6 (μkat/L) | 1.59 | 1.41 | 1.44 | 0.213 | 0.862 | 1.38 | 1.26 | 1.17 | 0.060 | 0.057 |
GGT 7 (μkat/L) | 0.30 | 0.30 | 0.22 | 0.028 | 0.073 | 0.34 | 0.35 | 0.34 | 0.021 | 0.946 |
Cholesterol (mmol/L) | 1.74 | 1.76 | 1.75 | 0.138 | 0.996 | 1.80 | 1.96 | 1.91 | 0.198 | 0.644 |
TG 8 (mmol/L) | 0.16 | 0.18 | 0.14 | 0.012 | 0.069 | 0.14 | 0.16 | 0.14 | 0.016 | 0.694 |
Treatment Group | |||||
---|---|---|---|---|---|
Trait | YL 1 | WL 2 | RS 3 | SEM | p-Value |
HCW 4 (kg) | 307.7 c | 322.5 b | 337.3 a | 3.822 | <0.001 |
Dressing percentage | 54.77 | 55.50 | 55.53 | 0.382 | 0.268 |
Conformation | 7.70 b | 7.89 ab | 8.30 a | 0.148 | 0.024 |
Fatness | 5.10 | 4.78 | 5.30 | 0.167 | 0.093 |
Internal fat (kg) | 15.89 | 18.98 | 17.83 | 1.443 | 0.305 |
Internal fat (% of SW 5) | 2.83 | 3.27 | 2.93 | 0.247 | 0.410 |
LT 6 area/100 kg HCW (cm2) | 12.41 | 12.53 | 12.83 | 0.707 | 0.901 |
LT meat (%) | 37.81 | 36.87 | 36.90 | 0.865 | 0.671 |
Loin fat (%) | 3.57 | 4.14 | 4.14 | 0.47 | 0.592 |
Loin bones + tendons (%) | 27.36 | 27.33 | 27.63 | 0.571 | 0.915 |
Treatment Group | |||||
---|---|---|---|---|---|
Trait | YL 1 | WL 2 | RS 3 | SEM | p-Value |
LT | |||||
pH | 5.59 | 5.51 | 5.61 | 0.034 | 0.049 |
Colour L* | 40.45 | 39.88 | 40.28 | 0.765 | 0.799 |
Colour a* | 13.74 | 13.25 | 13.35 | 0.594 | 0.732 |
Colour b* | 13.47 | 12.94 | 13.12 | 0.457 | 0.400 |
Shear force (N/cm2) | 78.94 | 73.54 | 74.57 | 3.644 | 0.441 |
Cooking loss (%) | 29.96 | 29.19 | 27.80 | 1.613 | 0.473 |
Dry matter (g) | 248.2 | 252.8 | 245.8 | 2.02 | 0.058 |
Protein (g) | 207.3 | 208.9 | 208.0 | 1.09 | 0.562 |
Intramuscular fat (g) | 21.6 | 24.9 | 18.8 | 2.29 | 0.171 |
Total collagen (g) | 3.69 | 3.54 | 3.68 | 0.14 | 0.708 |
Soluble collagen (%) | 26.28 | 27.22 | 29.28 | 2.62 | 0.220 |
RA | |||||
pH | 5.63 | 5.59 | 5.71 | 0.067 | 0.314 |
Colour L* | 39.91 | 41.01 | 40.65 | 0.833 | 0.620 |
Colour a* | 13.23 | 14.55 | 14.87 | 0.714 | 0.057 |
Colour b* | 13.76 | 14.64 | 15.17 | 0.545 | 0.099 |
Shear force (N/cm2) | 80.8 | 78.9 | 83.5 | 3.53 | 0.586 |
Cooking loss (%) | 28.53 | 29.16 | 31.44 | 1.488 | 0.104 |
Dry matter (g) | 241.8 | 243.6 | 239.6 | 3.22 | 0.299 |
Protein (g) | 203.5 | 203.1 | 202.0 | 1.74 | 0.506 |
Intramuscular fat (g) | 17.6 | 20.0 | 17.7 | 2.93 | 0.558 |
Total collagen (g) | 4.7 | 4.9 | 5.0 | 0.28 | 0.575 |
Soluble collagen (%) | 21.67 | 20.35 | 21.53 | 1.29 | 0.572 |
Treatment Group | Treatment Group | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Trait | YL 1 | WL 2 | RS 3 | SEM | p-Value | YL | WL | RS | SEM | p-Value |
Fatty acid proportions | Fatty acid contents | |||||||||
C14:0 | 2.75 a | 2.70 a | 2.49 b | 0.057 | 0.003 | 33.8 ab | 39.2 a | 22.9 b | 3.706 | 0.011 |
C16:0 | 27.10 | 27.31 | 27.41 | 0.136 | 0.181 | 325.9 ab | 395.6 a | 250.3 b | 32.33 | 0.012 |
C18:0 | 17.97 a | 18.15 a | 16.69 b | 0.110 | <0.001 | 216.1 ab | 264.0 a | 152.6 b | 21.92 | 0.004 |
C14:1 n-5 | 0.34 b | 0.41 a | 0.28 c | 0.006 | <0.001 | 4.12 ab | 5.91 a | 2.56 b | 0.478 | <0.001 |
C16:1 n-7 | 3.18 a | 2.69 b | 3.08 a | 0.036 | <0.001 | 38.4 | 39.3 | 28.2 | 3.805 | 0.075 |
C18:1 n-7 | 1.40 b | 1.35 b | 1.49 a | 0.026 | 0.003 | 16.9 | 19.7 | 13.7 | 1.796 | 0.072 |
C18:1 n-9 | 36.66 a | 35.95 b | 32.85 c | 0.1358 | <0.001 | 440.3 ab | 520.9 a | 300.3 b | 42.47 | 0.003 |
C18:2 n-6 | 4.63 b | 4.66 b | 7.29 a | 0.058 | <0.001 | 55.85 | 67.4 | 66.7 | 5.999 | 0.293 |
c-9, t-11 CLA 4 | 0.25 a | 0.21 b | 0.20 b | 0.006 | <0.001 | 3.01 a | 3.06 a | 1.86 b | 0.331 | 0.019 |
C18:3 n-3 | 0.55 b | 0.54 b | 0.81 a | 0.008 | <0.001 | 6.58 | 7.89 | 7.48 | 0.756 | 0.442 |
∑SFA 5 | 49.38 b | 50.14 a | 48.44 c | 0.130 | <0.001 | 594.9 ab | 727.6 a | 442.8 b | 60.24 | 0.008 |
∑MUFA 6 | 43.12 a | 41.95 b | 39.23 c | 0.119 | <0.001 | 518.4 ab | 608.2 a | 358.7 b | 50.37 | 0.005 |
∑PUFA 7 | 7.50 c | 7.92 b | 12.33 a | 0.076 | <0.001 | 90.5 | 114.9 | 113.2 | 10.41 | 0.175 |
∑n-6 PUFA | 6.54 c | 6.86 b | 10.66 a | 0.070 | <0.001 | 78.9 | 99.5 | 97.8 | 8.984 | 0.193 |
∑n-3 PUFA | 0.96 c | 1.05 b | 1.68 a | 0.013 | <0.001 | 11.6 | 15.4 | 15.4 | 1.430 | 0.090 |
∑FA 8 | 1204 ab | 1451 a | 915 b | 120.7 | 0.012 | |||||
∑PUFA/∑SFA | 0.15 b | 0.16 b | 0.26 a | 0.002 | <0.001 | |||||
∑MUFA/∑SFA | 0.87 a | 0.84 b | 0.81 c | 0.004 | <0.001 | |||||
n-6/n-3 9 | 6.85 a | 6.51 b | 6.35 b | 0.074 | <0.001 | |||||
IA 10 | 0.75 a | 0.77 a | 0.73 b | 0.009 | <0.001 | |||||
IT 11 | 1.71 a | 1.74 a | 1.55 b | 0.005 | <0.001 |
Treatment Group | |||||
---|---|---|---|---|---|
Trait | YL 1 | WL 2 | RS 3 | SEM | p-Value |
LT | |||||
Beef aroma intensity | 54.2 | 55.9 | 51.9 | 3.83 | 0.326 |
Abnormal odour intensity | 24.2 | 22.2 | 23.9 | 5.88 | 0.602 |
Tenderness | 66.1 | 63.2 | 59.4 | 3.23 | 0.072 |
Juiciness | 59.7 ab | 60.3 a | 53.1 b | 3.39 | 0.029 |
Fineness | 61.9 | 63.7 | 58.8 | 3.76 | 0.179 |
Chewability | 62.4 | 64.8 | 62.0 | 3.09 | 0.573 |
Beef flavour intensity | 56.7 | 59.9 | 59.6 | 3.50 | 0.277 |
Abnormal flavour intensity | 19.6 | 20.2 | 19.9 | 5.25 | 0.961 |
Liver flavour | 32.8 | 35.5 | 34.7 | 5.26 | 0.603 |
Sour flavour | 28.2 | 29.7 | 30.2 | 4.10 | 0.704 |
Nutty flavour | 60.8 | 61.4 | 57.5 | 3.37 | 0.289 |
RA | |||||
Beef aroma intensity | 58.1 | 54.1 | 58.3 | 3.70 | 0.140 |
Abnormal odour intensity | 22.8 | 21.8 | 20.4 | 6.43 | 0.369 |
Tenderness | 61.9 a | 52.3 b | 57.4 ab | 4.56 | 0.003 |
Juiciness | 68.4 | 65.0 | 63.9 | 3.78 | 0.152 |
Fineness | 60.3 | 55.3 | 58.2 | 2.32 | 0.193 |
Chewability | 59.5 a | 53.6 ab | 52.2 b | 2.65 | 0.016 |
Beef flavour intensity | 60.7 | 58.6 | 59.9 | 3.89 | 0.629 |
Abnormal flavour intensity | 21.1 | 25.0 | 22.3 | 6.08 | 0.122 |
Liver flavour | 32.7 | 32.7 | 33.1 | 5.55 | 0.978 |
Sour flavour | 25.6 | 26.4 | 24.7 | 4.49 | 0.800 |
Nutty flavour | 60.6 a | 52.4 b | 56.0 ab | 3.42 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartoň, L.; Bureš, D.; Lebedová, N.; Jančík, F.; Štolcová, M.; Consolacion, J.; Kokošková, T. The Effect of Yellow and White Lupine Meals on the Growth Performance, Carcass Composition, and Meat Quality of Fleckvieh Finishing Bulls. Animals 2025, 15, 790. https://doi.org/10.3390/ani15060790
Bartoň L, Bureš D, Lebedová N, Jančík F, Štolcová M, Consolacion J, Kokošková T. The Effect of Yellow and White Lupine Meals on the Growth Performance, Carcass Composition, and Meat Quality of Fleckvieh Finishing Bulls. Animals. 2025; 15(6):790. https://doi.org/10.3390/ani15060790
Chicago/Turabian StyleBartoň, Luděk, Daniel Bureš, Nicole Lebedová, Filip Jančík, Magdaléna Štolcová, Jerico Consolacion, and Tersia Kokošková. 2025. "The Effect of Yellow and White Lupine Meals on the Growth Performance, Carcass Composition, and Meat Quality of Fleckvieh Finishing Bulls" Animals 15, no. 6: 790. https://doi.org/10.3390/ani15060790
APA StyleBartoň, L., Bureš, D., Lebedová, N., Jančík, F., Štolcová, M., Consolacion, J., & Kokošková, T. (2025). The Effect of Yellow and White Lupine Meals on the Growth Performance, Carcass Composition, and Meat Quality of Fleckvieh Finishing Bulls. Animals, 15(6), 790. https://doi.org/10.3390/ani15060790