Effects of Resveratrol on Redox Status, Jejunal Injury, and Mitochondrial Function in Intrauterine Growth-Retarded Weaned Piglets
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Collection
2.3. Jejunal Morphology Analysis
2.4. Evaluation of Redox Status in Jejunum and Serum
2.5. Jejunal ATP and Mitochondrial Electron Transport Chain Complexes Contents Analysis
2.6. Jejunal Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Jejunal Morphology
3.3. Jejunal Tight Junction Proteins mRNA Expression
3.4. Redox Status in Serum and Jejunum
3.5. Jejunal ATP and Mitochondrial Electron Transport Chain Complexes Contents
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Longo, S.; Borghesi, A.; Tzialla, C.; Stronati, M. IUGR and infections. Early Hum. Dev. 2014, 90, S42–S44. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Shastri, S.; Farahbakhsh, N.; Sharma, P. Intrauterine growth restriction—Part 1. J. Matern. Fetal. Neonatal Med. 2016, 29, 3977–3987. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Jia, P.; Ji, S.; Song, Z.; Zhang, H.; Zhang, L.; Wang, T. Improvement of the hepatic lipid status in intrauterine growth retarded pigs by resveratrol is related to the inhibition of mitochondrial dysfunction, oxidative stress and inflammation. Food Funct. 2021, 12, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Su, W.; Ying, Z.; Zhou, L.; Zhang, L.; Wang, T. Resveratrol attenuates mitochondrial dysfunction in the liver of intrauterine growth retarded suckling piglets by improving mitochondrial biogenesis and redox status. Mol. Nutr. Food Res. 2017, 61, 1600653. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Li, Y.; Wang, T. Protective Effect of Polydatin on Jejunal Mucosal Integrity, Redox Status, Inflammatory Response, and Mitochondrial Function in Intrauterine Growth-Retarded Weanling Piglets. Oxid. Med. Cell. Longev. 2020, 2020, 7178123. [Google Scholar] [CrossRef]
- Bai, K.; Jiang, L.; Li, Q.; Zhang, J.; Zhang, L.; Wang, T. Dietary dimethylglycine sodium salt supplementation alleviates redox status imbalance and intestinal dysfunction in weaned piglets with intrauterine growth restriction. Anim. Nutr. 2022, 10, 188–197. [Google Scholar] [CrossRef]
- Dong, L.; Zhong, X.; Ahmad, H.; Li, W.; Wang, Y.; Zhang, L.; Wang, T. Intrauterine Growth Restriction Impairs Small Intestinal Mucosal Immunity in Neonatal Piglets. J. Histochem. Cytochem. 2014, 62, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Rath, E.; Moschetta, A.; Haller, D. Mitochondrial function—Gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Yan, E.; Song, Z.; Li, S.; Zhang, H.; Zhang, L.; Wang, C.; Wang, T. Protective effect of resveratrol against hepatic damage induced by heat stress in a rat model is associated with the regulation of oxidative stress and inflammation. J. Therm. Biol. 2019, 82, 70–75. [Google Scholar] [CrossRef]
- Huang, X.T.; Li, X.; Xie, M.L.; Huang, Z.; Huang, Y.X.; Wu, G.X.; Peng, Z.R.; Sun, Y.N.; Ming, Q.L.; Liu, Y.X.; et al. Resveratrol: Review on its discovery, anti-leukemia effects and pharmacokinetics. Chem.-Biol. Interact. 2019, 306, 29–38. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, C.; Wu, Z.; Li, S.; Xia, Y.; Liang, Y.; He, X.; Xiao, X.; Tang, W. Resveratrol in Intestinal Health and Disease: Focusing on Intestinal Barrier. Front. Nutr. 2022, 9, 848400. [Google Scholar] [CrossRef]
- Abdallah, D.M.; Ismael, N.R. Resveratrol abrogates adhesion molecules and protects against TNBS-induced ulcerative colitis in rats. Can. J. Physiol. Pharmacol. 2011, 89, 811–818. [Google Scholar] [PubMed]
- Sengottuvelan, M.; Viswanathan, P.; Nalini, N. Chemopreventive effect of trans -resveratrol—A phytoalexin against colonic aberrant crypt foci and cell proliferation in 1,2-dimethylhydrazine induced colon carcinogenesis. Carcinogenesis 2005, 27, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.C.; Li, J.; Zhang, M.; Pan, J.C.; Yu, Y.; Zhang, J.B.; Zheng, L.; Si, J.M.; Xu, Y. Resveratrol Improves Brain-Gut Axis by Regulation of 5-HT-Dependent Signaling in the Rat Model of Irritable Bowel Syndrome. Front. Cell. Neurosci. 2019, 13, 30. [Google Scholar] [CrossRef] [PubMed]
- Lobo de Sá, F.D.; Heimesaat, M.M.; Bereswill, S.; Nattramilarasu, P.K.; Schulzke, J.D.; Bücker, R. Resveratrol Prevents Campylobacter jejuni-Induced Leaky gut by Restoring Occludin and Claudin-5 in the Paracellular Leak Pathway. Front. Pharmacol. 2021, 12, 640572. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Nie, X.; Yang, J.; Wang, L.; Zhu, C.; Yang, X.; Jiang, Z. Effect of Resveratrol Supplementation on Intestinal Oxidative Stress, Immunity and Gut Microbiota in Weaned Piglets Challenged with Deoxynivalenol. Antioxidants 2022, 11, 1775. [Google Scholar] [CrossRef]
- Hong, Q.; Li, X.; Lin, Q.; Shen, Z.; Feng, J.; Hu, C. Resveratrol Improves Intestinal Morphology and Anti-Oxidation Ability in Deoxynivalenol-Challenged Piglets. Animals 2022, 12, 311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, Y.; Chen, Y.; Ji, S.; Jia, P.; Li, Y.; Wang, T. Comparison of the protective effects of resveratrol and pterostilbene against intestinal damage and redox imbalance in weanling piglets. J. Anim. Sci. Biotechnol. 2020, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, F.; Li, Z.; Jin, X.; Chen, X.; Geng, Z.; Hu, H.; Zhang, C. Effects of Resveratrol on Growth Performance, Intestinal Development, and Antioxidant Status of Broilers under Heat Stress. Animals 2021, 11, 1427. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, X.H.; Yang, L.; Chen, X.Y.; Jiang, R.S.; Jin, S.H.; Geng, Z.Y. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult. Sci. 2017, 96, 4325–4332. [Google Scholar] [CrossRef]
- Zhang, L.Z.; Gong, J.G.; Li, J.H.; Hao, Y.S.; Xu, H.J.; Liu, Y.C.; Feng, Z.H. Dietary resveratrol supplementation on growth performance, immune function and intestinal barrier function in broilers challenged with lipopolysaccharide. Poult. Sci. 2023, 102, 102968. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Huo, Y.J.; Shi, F.; Xu, R.J.; Hutz, R.J. Effects of Intrauterine Growth Retardation on Development of the Gastrointestinal Tract in Neonatal Pigs. Neonatology 2005, 88, 66–72. [Google Scholar] [CrossRef]
- Kono, Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys. 1978, 186, 189–195. [Google Scholar] [CrossRef]
- Owens, C.W.I.; Belcher, R.V. A colorimetric micro-method for the determination of glutathione. Biochem. J. 1965, 94, 705–711. [Google Scholar] [CrossRef]
- Placer, Z.A.; Cushman, L.L.; Johnson, B.C. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal. Biochem. 1966, 16, 359–364. [Google Scholar] [CrossRef]
- Cheng, K.; Niu, J.; Zhang, J.; Qiao, Y.; Dong, G.; Guo, R.; Zheng, X.; Song, Z.; Huang, J.; Wang, J.; et al. Hepatoprotective effects of chlorogenic acid on mice exposed to aflatoxin B1: Modulation of oxidative stress and inflammation. Toxicon 2023, 231, 107177. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zeng, Z.; Chen, X.; Huang, Z.; Chen, D.; He, J.; Chen, H.; Yu, J.; Luo, Y.; Luo, J.; Zheng, P.; et al. Effects of dietary resveratrol supplementation on growth performance and muscle fiber type transformation in weaned piglets. Anim. Feed Sci. Technol. 2020, 265, 114499. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Chen, D.W.; He, J.; Zheng, P.; Yu, J.; Mao, X.B.; Huang, Z.Q.; Luo, Y.H.; Luo, J.Q.; Yu, B. Long-term dietary resveratrol supplementation decreased serum lipids levels, improved intramuscular fat content, and changed the expression of several lipid metabolism-related miRNAs and genes in growing-finishing pigs1. J. Anim. Sci. 2019, 97, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Zhou, Q.; Liu, Y.; Hu, L.; Peng, X.; Wu, C.; Zhang, R.; Tang, J.; Wu, F.; Fang, Z.; et al. Flaxseed oil supplementation improves intestinal function and immunity, associated with altered intestinal microbiome and fatty acid profile in pigs with intrauterine growth retardation. Food Funct. 2019, 10, 8149–8160. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhong, X.; He, J.; Zhang, L.; Bai, K.; Xu, W.; Wang, T.; Huang, X. Supplementation of tributyrin improves the growth and intestinal digestive and barrier functions in intrauterine growth-restricted piglets. Clin. Nutr. 2016, 35, 399–407. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, Z.; Huang, Z.; Chen, D.; He, J.; Chen, H.; Yu, B.; Yu, J.; Luo, J.; Luo, Y.; et al. Effects of dietary resveratrol supplementation on immunity, antioxidative capacity and intestinal barrier function in weaning piglets. Anim. Biotechnol. 2021, 32, 240–245. [Google Scholar] [CrossRef]
- Cheng, K.; Song, Z.; Li, S.; Yan, E.; Zhang, H.; Zhang, L.; Wang, C.; Wang, T. Effects of resveratrol on intestinal oxidative status and inflammation in heat-stressed rats. J. Therm. Biol. 2019, 85, 102415. [Google Scholar] [CrossRef]
- Buckley, A.; Turner, J.R. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb. Perspect. Biol. 2018, 10, a029314. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, B.T.; Lundeen, T.F.; Norwood, K.M.; Brooks, H.L.; Egleton, R.D. Increased blood-brain barrier permeability and altered tight junctions in experimental diabetes in the rat: Contribution of hyperglycaemia and matrix metalloproteinases. Diabetologia 2007, 50, 202–211. [Google Scholar] [CrossRef]
- Cao, S.; Wu, H.; Wang, C.; Zhang, Q.; Jiao, L.; Lin, F.; Hu, C.H. Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets1. J. Anim. Sci. 2018, 96, 1795–1805. [Google Scholar] [CrossRef]
- Gaucher, C.; Boudier, A.; Bonetti, J.; Clarot, I.; Leroy, P.; Parent, M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidants 2018, 7, 62. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidant properties of resveratrol: A structure–Activity insight. Innov. Food Sci. Eerg. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, L.L.; Zhang, H.H.; Hu, X.; Kong, W.; Hu, D. Resveratrol improves insulin resistance of catch-up growth by increasing mitochondrial complexes and antioxidant function in skeletal muscle. Metabolism 2012, 61, 954–965. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, H.; Zhou, X.; Wang, H.; Yang, Y.; Zhang, J.; Wang, H. The protective effects of Resveratrol against radiation-induced intestinal injury. BMC Complement. Altern. Med. 2017, 17, 410. [Google Scholar] [CrossRef]
- Lerner, C.A.; Sundar, I.K.; Rahman, I. Mitochondrial redox system, dynamics, and dysfunction in lung inflammaging and COPD. Int. J. Biochem. Cell Biol. 2016, 81, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, H.; Ji, S.; Jia, P.; Chen, Y.; Li, Y.; Wang, T. Resveratrol and its derivative pterostilbene attenuate oxidative stress-induced intestinal injury by improving mitochondrial redox homeostasis and function via SIRT1 signaling. Free Radical Biol. Med. 2021, 177, 1–14. [Google Scholar] [CrossRef] [PubMed]
Genes | Forward Primer Sequence (5′ → 3′) | Reverse Primer Sequence (5′ → 3′) |
---|---|---|
ZO1 | AGAGGAAGCTGTGGGTAACG | TCACCGTGTGTTGTTCCCAT |
CLDN1 | ACAGGAGGGAAGCCATTTTCA | TTTAAGGACCGCCCTCTCCC |
CLDN2 | GGATCCTGCGGGACTTCTAC | TGGAGCGATTTCCTTGCAGT |
CLDN3 | GAGACCAGTCCACCCAGATG | AGGTTTCATGGTCCGTGCTG |
OCLN | CAGGTGCACCCTCCAGATTG | ATGTCGTTGCTGGGTGCATA |
GADPH | CCAAGGAGTAAGAGCCCCTG | AAGTCAGGAGATGCTCGGTG |
Items | NC | IC | IR |
---|---|---|---|
Initial body weight, kg | 7.72 ± 0.15 a | 5.93 ± 0.13 b | 5.79 ± 0.15 b |
Final body weight, kg | 11.88 ± 0.07 a | 9.41 ± 0.22 b | 9.27 ± 0.30 b |
Body weight gain, kg | 4.16 ± 0.09 | 3.48 ± 0.26 | 3.48 ± 0.18 |
Feed intake, kg | 7.48 ± 0.15 | 6.61 ± 0.40 | 6.59 ± 0.22 |
Feed efficiency, kg/kg | 0.56 ± 0.01 | 0.53 ± 0.02 | 0.53 ± 0.02 |
Items | NC | IC | IR |
---|---|---|---|
Villus height, μm | 331.36 ± 17.55 a | 263.10 ± 3.40 b | 305.23 ± 26.14 ab |
Crypt depth, μm | 215.52 ± 15.81 b | 295.21 ± 15.50 a | 198.32 ± 3.38 b |
Villus height: crypt depth, μm/μm | 1.57 ± 0.10 a | 0.90 ± 0.04 b | 1.54 ± 0.14 a |
Villus width, μm | 128.16 ± 5.05 | 127.87 ± 1.73 | 133.03 ± 6.67 |
Villus surface area, ×103 μm2 | 67.73 ± 3.57 a | 54.40 ± 1.17 b | 66.25 ± 8.24 ab |
Items | NC | IC | IR |
---|---|---|---|
ZO1 | 1.00 ± 0.28 | 0.64 ± 0.17 | 0.39 ± 0.15 |
CLDN1 | 1.00 ± 0.35 | 0.29 ± 0.08 | 0.29 ± 0.08 |
CLDN2 | 1.00 ± 0.08 | 0.77 ± 0.09 | 0.67 ± 0.12 |
CLDN3 | 1.00 ± 0.21 | 1.23 ± 0.23 | 1.73 ± 0.20 |
OCLN | 1.00 ± 0.13 a | 0.41 ± 0.07 b | 0.35 ± 0.04 b |
Items | NC | IC | IR |
---|---|---|---|
Serum | |||
MDA, nmol/mL | 4.11 ± 0.53 b | 6.55 ± 0.56 a | 3.96 ± 0.31 b |
T-SOD, U/mL | 105.53 ± 9.28 a | 49.02 ± 7.88 b | 107.76 ± 8.00 a |
GPX, U/mL | 89.59 ± 4.14 a | 56.40 ± 5.25 b | 69.84 ± 9.67 ab |
GSH, μmol/L | 1.67 ± 0.23 | 1.56 ± 0.41 | 2.29 ± 0.61 |
Jejunum | |||
MDA, nmol/mg protein | 0.67 ± 0.10 | 1.00 ± 0.23 | 0.81 ± 0.10 |
T-SOD, U/mg protein | 96.29 ± 4.16 b | 76.05 ± 4.93 c | 127.32 ± 3.86 a |
GPX, U/mg protein | 43.54 ± 10.87 | 40.24 ± 3.19 | 42.44 ± 4.31 |
GSH, μmol/g protein | 4.31 ± 0.33 ab | 3.14 ± 0.72 b | 6.27 ± 0.90 a |
Items | NC | IC | IR |
---|---|---|---|
ATP, nmol/g protein | 254.17 ± 12.55 a | 113.13 ± 7.80 b | 219.49 ± 13.71 a |
Complex I, ng/mg protein | 16.37 ± 1.33 a | 8.89 ± 0.31 b | 16.85 ± 1.37 a |
Complex III, ng/mg protein | 11.18 ± 0.84 | 13.65 ± 2.49 | 9.86 ± 0.72 |
Complex V, ng/mg protein | 4.77 ± 0.35 | 6.22 ± 1.41 | 4.82 ± 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, K.; Yao, J.; Song, Z.; Huang, J.; Zhao, H.; Yang, R.; Meng, Y.; Wang, J.; Zhang, Y. Effects of Resveratrol on Redox Status, Jejunal Injury, and Mitochondrial Function in Intrauterine Growth-Retarded Weaned Piglets. Animals 2025, 15, 290. https://doi.org/10.3390/ani15030290
Cheng K, Yao J, Song Z, Huang J, Zhao H, Yang R, Meng Y, Wang J, Zhang Y. Effects of Resveratrol on Redox Status, Jejunal Injury, and Mitochondrial Function in Intrauterine Growth-Retarded Weaned Piglets. Animals. 2025; 15(3):290. https://doi.org/10.3390/ani15030290
Chicago/Turabian StyleCheng, Kang, Jinxiu Yao, Zhihua Song, Jin Huang, Hongyue Zhao, Ranya Yang, Yao Meng, Jinrong Wang, and Yong Zhang. 2025. "Effects of Resveratrol on Redox Status, Jejunal Injury, and Mitochondrial Function in Intrauterine Growth-Retarded Weaned Piglets" Animals 15, no. 3: 290. https://doi.org/10.3390/ani15030290
APA StyleCheng, K., Yao, J., Song, Z., Huang, J., Zhao, H., Yang, R., Meng, Y., Wang, J., & Zhang, Y. (2025). Effects of Resveratrol on Redox Status, Jejunal Injury, and Mitochondrial Function in Intrauterine Growth-Retarded Weaned Piglets. Animals, 15(3), 290. https://doi.org/10.3390/ani15030290