Experiencing Novelty in Adolescence and the Influence of Prior Novelty-Related Experiences on Adult Behavioral Outcomes in Wistar Han Rats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Procedure
2.3. Exclusion and Termination Criteria
2.4. Novel Rectangular Arena and Novel Object Exploration Test Procedures
2.5. Light/Dark Box Test Procedure
2.6. Elevated Plus Maze Test Procedure
2.7. Statistical Analysis
3. Results
3.1. Behavioral Response to Novelty Exposure During Maturation
3.1.1. Behavioral Profile in Novel Rectangular Arena Test During Maturation
3.1.2. Behavioral Profile in the Novel Object Exploration Test During Maturation
3.1.3. Behavioral Profile in Light/Dark Box Test During Maturation
3.1.4. Behavioral Profile in the Elevated Plus Maze Test During Maturation
3.2. Influence of Prior Adolescent Novelty-Related Experience on Behavioral Outcomes in Adulthood
3.2.1. Influence of Prior Adolescent Novelty-Related Experience on Later Behavioral Outcomes in the Novel Rectangular Arena Test
3.2.2. Influence of Prior Adolescent Novelty-Related Experience on Later Behavioral Outcomes in the Novel Object Exploration Test
3.2.3. Influence of Prior Adolescent Novelty-Related Experience on Later Behavioral Outcomes in the Light/Dark Box Test
3.2.4. Influence of Prior Adolescent Novelty-Related Experience on Later Behavioral Outcome in the Elevated Plus Maze Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EA | Early adolescence |
| LA | Late adolescence |
| A | Adult |
| NA | Novel arena (test) |
| NOE | Novel object exploration (test) |
| LDB | Light/dark box (test) |
| EPM | Elevated plus maze (test) |
| NO | Novel object |
| EAE | Early adolescent experience |
| LAE | Late adolescent experience |
| PND | Postnatal day |
| BH | Benjamini–Hochberg correction |
References
- Mieske, P.; Hobbiesiefken, U.; Fischer-Tenhagen, C.; Heinl, C.; Hohlbaum, K.; Kahnau, P.; Meier, J.; Wilzopolski, J.; Butzke, D.; Rudeck, J.; et al. Bored at home?-A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Front. Vet. Sci. 2022, 9, 899219. [Google Scholar] [CrossRef]
- Tapper, A.R.; Molas, S. Midbrain circuits of novelty processing. Neurobiol. Learn. Mem. 2020, 176, 107323. [Google Scholar] [CrossRef]
- Toth, L.A. The influence of the cage environment on rodent physiology and behavior: Implications for reproducibility of pre-clinical rodent research. Exp. Neurol. 2015, 270, 72–77. [Google Scholar] [CrossRef]
- Sambrook, T.D.; Buchanan-Smith, H.M. Control and Complexity in Novel Object Enrichment. Anim. Welf. 1997, 6, 207–216. [Google Scholar] [CrossRef]
- Barto, A.; Mirolli, M.; Baldassarre, G. Novelty or surprise? Front. Psychol. 2013, 4, 907. [Google Scholar] [CrossRef]
- Hughes, R.N. Neotic preferences in laboratory rodents: Issues, assessment and substrates. Neurosci. Biobehav. Rev. 2007, 31, 441–464. [Google Scholar] [CrossRef] [PubMed]
- Kafkas, A.; Montaldi, D. How do memory systems detect and respond to novelty? Neurosci. Lett. 2018, 680, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Ennaceur, A. One-trial object recognition in rats and mice: Methodological and theoretical issues. Behav. Brain Res. 2010, 215, 244–254. [Google Scholar] [CrossRef]
- Hall, F.S.; Humby, T.; Wilkinson, L.S.; Robbins, T.W. The effects of isolation-rearing on preference by rats for a novel environment. Physiol. Behav. 1997, 62, 299–303. [Google Scholar] [CrossRef]
- Denenberg, V.H. Open-field bheavior in the rat: What does it mean? Ann. N. Y. Acad. Sci. 1969, 159, 852–859. [Google Scholar] [CrossRef]
- Welker, W.I. Escape, exploratory, and food-seeking responses of rats in a novel situation. J. Comp. Physiol. Psychol. 1959, 52, 106–111. [Google Scholar] [CrossRef]
- Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol. Biol. 2019, 1916, 99–103. [Google Scholar] [CrossRef]
- Ennaceur, A.; Michalikova, S.; Chazot, P.L. Do rats really express neophobia towards novel objects? Experimental evidence from exposure to novelty and to an object recognition task in an open space and an enclosed space. Behav. Brain Res. 2009, 197, 417–434. [Google Scholar] [CrossRef]
- Bourin, M.; Hascoët, M. The mouse light/dark box test. Eur. J. Pharmacol. 2003, 463, 55–65. [Google Scholar] [CrossRef]
- Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2007, 2, 322–328. [Google Scholar] [CrossRef]
- Stansfield, K.H.; Kirstein, C.L. Effects of novelty on behavior in the adolescent and adult rat. Dev. Psychobiol. 2006, 48, 10–15. [Google Scholar] [CrossRef]
- Andersen, S.L. Trajectories of brain development: Point of vulnerability or window of opportunity? Neurosci. Biobehav. Rev. 2003, 27, 3–18. [Google Scholar] [CrossRef]
- Spear, L.P. The adolescent brain and age-related behavioral manifestations. Neurosci. Biobehav. Rev. 2000, 24, 417–463. [Google Scholar] [CrossRef] [PubMed]
- Steinfeld, M.R.; Torregrossa, M.M. Consequences of adolescent drug use. Transl. Psychiatry 2023, 13, 313. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.A.; Taylor, J.R.; Potenza, M.N. Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. Am. J. Psychiatry 2003, 160, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Hariri, A.R.; Holmes, A. Genetics of emotional regulation: The role of the serotonin transporter in neural function. Trends Cogn. Sci. 2006, 10, 182–191. [Google Scholar] [CrossRef]
- Lenroot, R.K.; Giedd, J.N. Brain development in children and adolescents: Insights from anatomical magnetic resonance imaging. Neurosci. Biobehav. Rev. 2006, 30, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Dahl, R.E. Adolescent brain development: A period of vulnerabilities and opportunities. Keynote address. Ann. N. Y Acad. Sci. 2004, 1021, 1–22. [Google Scholar] [CrossRef]
- Slawecki, C.J. Comparison of anxiety-like behavior in adolescent and adult Sprague-Dawley rats. Behav. Neurosci. 2005, 119, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Bishnoi, I.R.; Ossenkopp, K.P.; Kavaliers, M. Sex and age differences in locomotor and anxiety-like behaviors in rats: From adolescence to adulthood. Dev. Psychobiol. 2021, 63, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Ganella, D.E.; Kim, J.H. Developmental rodent models of fear and anxiety: From neurobiology to pharmacology. Br. J. Pharmacol. 2014, 171, 4556–4574. [Google Scholar] [CrossRef]
- File, S.E.; Zangrossi, H., Jr.; Viana, M.; Graeff, F.G. Trial 2 in the elevated plus-maze: A different form of fear? Psychopharmacology 1993, 111, 491–494. [Google Scholar] [CrossRef]
- Cruz-Morales, S.E.; Santos, N.R.; Brandao, M.L. One-trial tolerance to midazolam is due to enhancement of fear and reduction of anxiolytic-sensitive behaviors in the elevated plus-maze retest in the rat. Pharmacol. Biochem. Behav. 2002, 72, 973–978. [Google Scholar] [CrossRef]
- Schneider, P.; Ho, Y.J.; Spanagel, R.; Pawlak, C.R. A novel elevated plus-maze procedure to avoid the one-trial tolerance problem. Front. Behav. Neurosci. 2011, 5, 43. [Google Scholar] [CrossRef]
- Wilkin, M.M.; Waters, P.; McCormick, C.M.; Menard, J.L. Intermittent physical stress during early- and mid-adolescence differentially alters rats’ anxiety- and depression-like behaviors in adulthood. Behav. Neurosci. 2012, 126, 344–360. [Google Scholar] [CrossRef]
- Brown, G.M.; Uhlir, I.V.; Seggie, J.; Schally, A.V.; Kastin, A.J. Effect of septal lesions on plasma levels of MSH, corticosterone, GH and prolactin before and after exposure to novel environment: Role of MSH in the septal syndrome. Endocrinology 1974, 94, 593–597. [Google Scholar] [CrossRef]
- McGregor, M.; Richer, K.; Ananth, M.; Thanos, P.K. The functional networks of a novel environment: Neural activity mapping in awake unrestrained rats using positron emission tomography. Brain Behav. 2020, 10, e01646. [Google Scholar] [CrossRef] [PubMed]
- Kirby, E.D.; Muroy, S.E.; Sun, W.G.; Covarrubias, D.; Leong, M.J.; Barchas, L.A.; Kaufer, D. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2. eLife 2013, 2, e00362. [Google Scholar] [CrossRef]
- Burke, A.R.; Miczek, K.A. Stress in adolescence and drugs of abuse in rodent models: Role of dopamine, CRF, and HPA axis. Psychopharmacology 2014, 231, 1557–1580. [Google Scholar] [CrossRef]
- Potrebic, M.; Pavkovic, Z.; Loncarevic-Vasiljkovic, N.; Kanazir, S.; Pesic, V. Altered hedonic, novelty-, stress- and D-amphetamine-induced response due to social isolation in peripuberty. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2021, 108, 110186. [Google Scholar] [CrossRef]
- Pavkovic, Z.; Smiljanic, K.; Kanazir, S.; Milanovic, D.; Pesic, V.; Ruzdijic, S. Brain molecular changes and behavioral alterations induced by propofol anesthesia exposure in peripubertal rats. Paediatr. Anaesth. 2017, 27, 962–972. [Google Scholar] [CrossRef]
- Pavkovic, Z.; Potrebic, M.; Kanazir, S.; Pesic, V. Motivation, risk-taking and sensation seeking behavior in propofol anesthesia exposed peripubertal rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 96, 109733. [Google Scholar] [CrossRef]
- Lynn, D.A.; Brown, G.R. The ontogeny of anxiety-like behavior in rats from adolescence to adulthood. Dev. Psychobiol. 2010, 52, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Lynn, D.A.; Brown, G.R. The ontogeny of exploratory behavior in male and female adolescent rats (Rattus norvegicus). Dev. Psychobiol. 2009, 51, 513–520. [Google Scholar] [CrossRef]
- Nizinska, K.; Szydlowska, K.; Vouros, A.; Kiryk, A.; Stepniak, A.; Vasilaki, E.; Lukasiuk, K. Behavioral characteristics as potential biomarkers of the development and phenotype of epilepsy in a rat model of temporal lobe epilepsy. Sci. Rep. 2021, 11, 8665. [Google Scholar] [CrossRef] [PubMed]
- Harro, J. Psychiatric Vulnerability, Mood, and Anxiety Disorders: Tests and Models in Mice and Rats; Humana Press: New York, NY, USA, 2023. [Google Scholar]
- Petrasek, T.; Vojtechova, I.; Klovrza, O.; Tuckova, K.; Vejmola, C.; Rak, J.; Sulakova, A.; Kaping, D.; Bernhardt, N.; de Vries, P.J.; et al. mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. J. Neurodev. Disord. 2021, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo Cerqueira, M.M.; Castro, M.M.L.; Vieira, A.A.; Kurosawa, J.A.A.; Amaral Junior, F.L.D.; Siqueira Mendes, F.C.C.; Sosthenes, M.C.K. Comparative analysis between Open Field and Elevated Plus Maze tests as a method for evaluating anxiety-like behavior in mice. Heliyon 2023, 9, e14522. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, R.J.; Shepherd, J.K. Influence of prior maze experience on behaviour and response to diazepam in the elevated plus-maze and light/dark tests of anxiety in mice. Psychopharmacology 1993, 113, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Kilkenny, C.; Browne, W.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 2010, 160, 1577–1579. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, S.V.; Roth, L.; Biedermann, D.; Fuss, J. Reliability of repeated exposure to the human elevated plus-maze in virtual reality: Behavioral, emotional, and autonomic responses. Behav. Res. Methods 2022, 56, 187–198. [Google Scholar] [CrossRef]
- Galef, B.G., Jr. The ecology of weaning: Parasitism and the achievement of independence by altricial mammals. In Parental Care in Mammals; Springer: Boston, MA, USA, 1981; pp. 211–241. [Google Scholar]
- McCourt, W.F.; Gurrera, R.J.; Cutter, H.S. Sensation seeking and novelty seeking. Are they the same? J. Nerv. Ment. Dis. 1993, 181, 309–312. [Google Scholar] [CrossRef]
- Douglas, L.A.; Varlinskaya, E.I.; Spear, L.P. Novel-object place conditioning in adolescent and adult male and female rats: Effects of social isolation. Physiol. Behav. 2003, 80, 317–325. [Google Scholar] [CrossRef]
- Laviola, G.; Macri, S.; Morley-Fletcher, S.; Adriani, W. Risk-taking behavior in adolescent mice: Psychobiological determinants and early epigenetic influence. Neurosci. Biobehav. Rev. 2003, 27, 19–31. [Google Scholar] [CrossRef]
- Schmitt, U.; Hiemke, C. Strain differences in open-field and elevated plus-maze behavior of rats without and with pretest handling. Pharmacol. Biochem. Behav. 1998, 59, 807–811. [Google Scholar] [CrossRef]
- Clemens, L.E.; Jansson, E.K.; Portal, E.; Riess, O.; Nguyen, H.P. A behavioral comparison of the common laboratory rat strains Lister Hooded, Lewis, Fischer 344 and Wistar in an automated homecage system. Genes. Brain Behav. 2014, 13, 305–321. [Google Scholar] [CrossRef]
- Mason, G.J. Stereotypies and suffering. Behav. Process. 1991, 25, 103–115. [Google Scholar] [CrossRef]
- Lever, C.; Burton, S.; O’Keefe, J. Rearing on hind legs, environmental novelty, and the hippocampal formation. Rev. Neurosci. 2006, 17, 111–133. [Google Scholar] [CrossRef] [PubMed]
- Sturman, O.; Germain, P.L.; Bohacek, J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress 2018, 21, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Sweeney, F.F. The age of anxiety: Role of animal models of anxiolytic action in drug discovery. Br. J. Pharmacol. 2011, 164, 1129–1161. [Google Scholar] [CrossRef]
- Calhoon, G.G.; Tye, K.M. Resolving the neural circuits of anxiety. Nat. Neurosci. 2015, 18, 1394–1404. [Google Scholar] [CrossRef]
- Heinz, D.E.; Schöttle, V.A.; Nemcova, P.; Binder, F.P.; Ebert, T.; Domschke, K.; Wotjak, C.T. Exploratory drive, fear, and anxiety are dissociable and independent components in foraging mice. Transl. Psychiatry 2021, 11, 318. [Google Scholar] [CrossRef]
- Walz, N.; Mühlberger, A.; Pauli, P. A Human Open Field Test Reveals Thigmotaxis Related to Agoraphobic Fear. Biol. Psychiatry 2016, 80, 390–397. [Google Scholar] [CrossRef]
- Turri, M.G.; Datta, S.R.; DeFries, J.; Henderson, N.D.; Flint, J. QTL analysis identifies multiple behavioral dimensions in ethological tests of anxiety in laboratory mice. Curr. Biol. CB 2001, 11, 725–734. [Google Scholar] [CrossRef] [PubMed]
- La-Vu, M.; Tobias, B.C.; Schuette, P.J.; Adhikari, A. To Approach or Avoid: An Introductory Overview of the Study of Anxiety Using Rodent Assays. Front. Behav. Neurosci. 2020, 14, 145. [Google Scholar] [CrossRef]
- Tucker, L.B.; McCabe, J.T. Measuring Anxiety-Like Behaviors in Rodent Models of Traumatic Brain Injury. Front. Behav. Neurosci. 2021, 15, 682935. [Google Scholar] [CrossRef]
- Spielberg, J.M.; Schwarz, J.M.; Matyi, M.A. Anxiety in transition: Neuroendocrine mechanisms supporting the development of anxiety pathology in adolescence and young adulthood. Front. Neuroendocrinol. 2019, 55, 100791. [Google Scholar] [CrossRef]
- Rodgers, R.; Haller, J.; Holmes, A.; Halasz, J.; Walton, T.; Brain, P. Corticosterone response to the plus-maze. Physiol. Behav. 1999, 68, 47–53. [Google Scholar] [CrossRef]
- Holly, K.S.; Orndorff, C.O.; Murray, T.A. MATSAP: An automated analysis of stretch-attend posture in rodent behavioral experiments. Sci. Rep. 2016, 6, 31286. [Google Scholar] [CrossRef] [PubMed]
- Casarrubea, M.; Faulisi, F.; Sorbera, F.; Crescimanno, G. The effects of different basal levels of anxiety on the behavioral shift analyzed in the central platform of the elevated plus maze. Behav. Brain Res. 2015, 281, 55–61. [Google Scholar] [CrossRef]
- Cruz, A.P.; Frei, F.; Graeff, F.G. Ethopharmacological analysis of rat behavior on the elevated plus-maze. Pharmacol. Biochem. Behav. 1994, 49, 171–176. [Google Scholar] [CrossRef]
- Casarrubea, M.; Faulisi, F.; Caternicchia, F.; Santangelo, A.; Di Giovanni, G.; Benigno, A.; Magnusson, M.S.; Crescimanno, G. Temporal patterns of rat behaviour in the central platform of the elevated plus maze. Comparative analysis between male subjects of strains with different basal levels of emotionality. J. Neurosci. Methods 2016, 268, 155–162. [Google Scholar] [CrossRef]
- Rico, J.; Hurtado-Parrado, C.; Vasquez-Sepulveda, J.; Fonseca, J.; Cardona, Á. Time in the central area of the elevated plus maze correlates with impulsivity-related measures during an operant task. Univ. Psychol. 2016, 15, 1–9. [Google Scholar] [CrossRef]
- Crystal, J.D.; Babb, S.J. Spatial memory in rats after 25 hours. Learn. Motiv. 2008, 39, 278–284. [Google Scholar] [CrossRef]
- Hakamata, Y.; Mizukami, S.; Izawa, S.; Okamura, H.; Mihara, K.; Marusak, H.; Moriguchi, Y.; Hori, H.; Hanakawa, T.; Inoue, Y.; et al. Implicit and explicit emotional memory recall in anxiety and depression: Role of basolateral amygdala and cortisol-norepinephrine interaction. Psychoneuroendocrinology 2022, 136, 105598. [Google Scholar] [CrossRef] [PubMed]
- Tottenham, N.; Galván, A. Stress and the adolescent brain: Amygdala-prefrontal cortex circuitry and ventral striatum as developmental targets. Neurosci. Biobehav. Rev. 2016, 70, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Tsoory, M.; Cohen, H.; Richter-Levin, G. Juvenile stress induces a predisposition to either anxiety or depressive-like symptoms following stress in adulthood. Eur. Neuropsychopharmacol. 2007, 17, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Reis, F.M.; Albrechet-Souza, L.; Franci, C.R.; Brandao, M.L. Risk assessment behaviors associated with corticosterone trigger the defense reaction to social isolation in rats: Role of the anterior cingulate cortex. Stress 2012, 15, 318–328. [Google Scholar] [CrossRef]
- Piazza, P.V.; Deroche, V.; Deminiere, J.M.; Maccari, S.; Le Moal, M.; Simon, H. Corticosterone in the range of stress-induced levels possesses reinforcing properties: Implications for sensation-seeking behaviors. Proc. Natl. Acad. Sci. USA 1993, 90, 11738–11742. [Google Scholar] [CrossRef]
- Broadbent, N.J.; Squire, L.R.; Clark, R.E. Spatial memory, recognition memory, and the hippocampus. Proc. Natl. Acad. Sci. USA 2004, 101, 14515–14520. [Google Scholar] [CrossRef]
- Rodo, C.; Sargolini, F.; Save, E. Processing of spatial and non-spatial information in rats with lesions of the medial and lateral entorhinal cortex: Environmental complexity matters. Behav. Brain Res. 2017, 320, 200–209. [Google Scholar] [CrossRef]
- Hueston, C.M.; Cryan, J.F.; Nolan, Y.M. Stress and adolescent hippocampal neurogenesis: Diet and exercise as cognitive modulators. Transl. Psychiatry 2017, 7, e1081. [Google Scholar] [CrossRef]
- Larivee, R.; Johnson, N.; Freedgood, N.R.; Cameron, H.A.; Schoenfeld, T.J. Inhibition of Hippocampal Neurogenesis Starting in Adolescence Increases Anxiodepressive Behaviors Amid Stress. Front. Behav. Neurosci. 2022, 16, 940125. [Google Scholar] [CrossRef]
- Widman, A.J.; Cohen, J.L.; McCoy, C.R.; Unroe, K.A.; Glover, M.E.; Khan, A.U.; Bredemann, T.; McMahon, L.L.; Clinton, S.M. Rats bred for high anxiety exhibit distinct fear-related coping behavior, hippocampal physiology, and synaptic plasticity-related gene expression. Hippocampus 2019, 29, 939–956. [Google Scholar] [CrossRef] [PubMed]
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Tannenbaum, J.; Bennett, B.T. Russell and Burch’s 3Rs then and now: The need for clarity in definition and purpose. J. Am. Assoc. Lab. Anim. Sci. JAALAS 2015, 54, 120–132. [Google Scholar] [PubMed]
- Ratuski, A.S.; Weary, D.M. Environmental Enrichment for Rats and Mice Housed in Laboratories: A Metareview. Animals 2022, 12, 414. [Google Scholar] [CrossRef] [PubMed]
- Lovick, T.A.; Zangrossi, H., Jr. Effect of Estrous Cycle on Behavior of Females in Rodent Tests of Anxiety. Front. Psychiatry 2021, 12, 711065. [Google Scholar] [CrossRef] [PubMed]
- Kundakovic, M.; Rocks, D. Sex hormone fluctuation and increased female risk for depression and anxiety disorders: From clinical evidence to molecular mechanisms. Front. Neuroendocrinol. 2022, 66, 101010. [Google Scholar] [CrossRef]
- Ajayi, A.F.; Akhigbe, R.E. Staging of the estrous cycle and induction of estrus in experimental rodents: An update. Fertil. Res. Pract. 2020, 6, 5. [Google Scholar] [CrossRef] [PubMed]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srbovan, M.; Potrebić Stefanović, M.; Dubljević, O.; Pavković, Ž. Experiencing Novelty in Adolescence and the Influence of Prior Novelty-Related Experiences on Adult Behavioral Outcomes in Wistar Han Rats. Animals 2025, 15, 3552. https://doi.org/10.3390/ani15243552
Srbovan M, Potrebić Stefanović M, Dubljević O, Pavković Ž. Experiencing Novelty in Adolescence and the Influence of Prior Novelty-Related Experiences on Adult Behavioral Outcomes in Wistar Han Rats. Animals. 2025; 15(24):3552. https://doi.org/10.3390/ani15243552
Chicago/Turabian StyleSrbovan, Maja, Milica Potrebić Stefanović, Olga Dubljević, and Željko Pavković. 2025. "Experiencing Novelty in Adolescence and the Influence of Prior Novelty-Related Experiences on Adult Behavioral Outcomes in Wistar Han Rats" Animals 15, no. 24: 3552. https://doi.org/10.3390/ani15243552
APA StyleSrbovan, M., Potrebić Stefanović, M., Dubljević, O., & Pavković, Ž. (2025). Experiencing Novelty in Adolescence and the Influence of Prior Novelty-Related Experiences on Adult Behavioral Outcomes in Wistar Han Rats. Animals, 15(24), 3552. https://doi.org/10.3390/ani15243552

