Use of Essential Oils in the Diet of Lactating Cows Enhances Productivity and Reduces Methane in Free-Grazing Commercial Dairy Farms
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Climate Data
2.2. Animals and Experimental Treatment
2.3. Routine Grasslands and Sampling
2.4. Methane Emissions
2.5. Statistical Analysis
3. Results
3.1. Herd Performance and Seasonal Forage Variation
3.2. Performance and Methane Emissions
3.2.1. Performance
3.2.2. Herd Methane Production and Intensity
3.3. Biochemical Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EO | Essential Oils |
| BCS | Body Condition Score |
| BHB | Beta-Hydroxybutyrate |
| CP | Crude Protein |
| CH4 | Methane |
| DM | Dry Matter |
| DMI | Dry Matter Intake |
| ECM | Energy-Corrected Milk |
| FCM | Fat-Corrected Milk (4%) |
| GHG | Greenhouse Gases |
| ID | Identifier |
| ISO | International Organization for Standardization |
| LDH | Lactate dehydrogenase |
| MY | Milk Yield |
| NE | Net Energy |
| NEFA | Non-Esterified Fatty Acids |
| NDF | Neutral Detergent Fiber |
| NIR | Near-Infrared Spectroscopy |
| SCC | Somatic Cell Count |
| SD | Standard Deviation |
| TMR | Total Mixed Ration |
| VFA | Volatile Fatty Acids |
References
- da Cruz, A.G.; Pimentel, T.C.; Esmerino, E.A.; Verruck, S. Dairy Foods Processing; Springer: New York, NY, USA, 2025. [Google Scholar]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.; Fenelon, M.A.; O’Callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef]
- Modernel, P.; Astigarraga, L.; Picasso, V. Global versus Local Environmental Impacts of Grazing and Confined Beef Production Systems. Environ. Res. Lett. 2013, 8, 035052. [Google Scholar] [CrossRef]
- Moscovici Joubran, A.; Pierce, K.M.; Garvey, N.; Shalloo, L.; O’Callaghan, T.F. Invited Review: A 2020 Perspective on Pasture-Based Dairy Systems and Products. J. Dairy Sci. 2021, 104, 7364–7382. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W. Perspectives on Pasture versus Indoor Feeding of Dairy Cows. J. Sci. Food Agric. 2016, 96, 9–17. [Google Scholar] [CrossRef]
- Schingoethe, D.J. A 100-Year Review: Total Mixed Ration Feeding of Dairy Cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef] [PubMed]
- Chamekh, L.; Calvo, M.; Khorchani, T.; Castro-Gómez, P.; Hammadi, M.; Fontecha, J.; Yahyaoui, M.H. Impact of Management System and Lactation Stage on Fatty Acid Composition of Camel Milk. J. Food Compos. Anal. 2020, 87, 103418. [Google Scholar] [CrossRef]
- Elgersma, A. Grazing Increases the Unsaturated Fatty Acid Concentration of Milk from Grass-fed Cows: A Review of the Contributing Factors, Challenges and Future Perspectives. Eur. J. Lipid Sci. Technol. 2015, 117, 1345–1369. [Google Scholar] [CrossRef]
- Badawy, S.; Liu, Y.; Guo, M.; Liu, Z.; Xie, C.; Marawan, M.A.; Ares, I.; Lopez-Torres, B.; Martínez, M.; Maximiliano, J.-E.; et al. Conjugated Linoleic Acid (CLA) as a Functional Food: Is It Beneficial or Not? Food Res. Int. 2023, 172, 113158. [Google Scholar] [CrossRef]
- Or-Rashid, M.M.; Odongo, N.E.; McBride, B.W. Fatty Acid Composition of Ruminal Bacteria and Protozoa, with Emphasis on Conjugated Linoleic Acid, Vaccenic Acid, and Odd-Chain and Branched-Chain Fatty Acids1. J. Anim. Sci. 2007, 85, 1228–1234. [Google Scholar] [CrossRef]
- Adler, S.A.; Jensen, S.K.; Govasmark, E.; Steinshamn, H. Effect of Short-Term versus Long-Term Grassland Management and Seasonal Variation in Organic and Conventional Dairy Farming on the Composition of Bulk Tank Milk. J. Dairy Sci. 2013, 96, 5793–5810. [Google Scholar] [CrossRef]
- Demanet, R.; Mora, M.d.l.L.; Herrera, M.Á.; Miranda, H.; Barea, J.M. Seasonal Variation of the Productivity and Quality of Permanent Pastures in Adisols of Temperate Regions. J. Soil Sci. Plant Nutr. 2015, 15, 111–128. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty Years of Research on Rumen Methanogenesis: Lessons Learned and Future Challenges for Mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full Adoption of the Most Effective Strategies to Mitigate Methane Emissions by Ruminants Can Help Meet the 1.5 °C Target by 2030 but Not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Marcotullio, M.C.; Yu, Z. Evaluation of Different Essential Oils in Modulating Methane and Ammonia Production, Rumen Fermentation, and Rumen Bacteria in Vitro. Anim. Feed Sci. Technol. 2016, 215, 25–36. [Google Scholar] [CrossRef]
- Benchaar, C.; Hassanat, F. Diet Supplementation with a Mixture of Essential Oils: Effects on Enteric Methane Emissions, Apparent Total-Tract Nutrient Digestibility, Nitrogen Utilization, and Lactational Performance. J. Dairy Sci. 2025, 108, 3560–3572. [Google Scholar] [CrossRef]
- Batley, R.J.; Romanzini, E.P.; da Silva, K.D.; de Souza, W.L.; Quigley, S.P.; Harper, K.J.; Trotter, M.G.; Bernardes, P.A.; Naiker, M.; Costa, D.F.A. The Essential Oil Blend Agolin Ruminant L Reduces Methane Production in Vitro and in Vivo When Included in the Drinking Water of Cattle. J. Anim. Sci. 2024, 102, skae315. [Google Scholar] [CrossRef] [PubMed]
- Gunal, M.; Ishlak, A.; AbuGhazaleh, A.A.; Khattab, W. Essential Oils Effect on Rumen Fermentation and Biohydrogenation under in Vitro Conditions. Czech J. Anim. Sci. 2014, 59, 450–459. [Google Scholar] [CrossRef]
- Castro-Montoya, J.; Peiren, N.; Cone, J.W.; Zweifel, B.; Fievez, V.; De Campeneere, S. In Vivo and in Vitro Effects of a Blend of Essential Oils on Rumen Methane Mitigation. Livest. Sci. 2015, 180, 134–142. [Google Scholar] [CrossRef]
- Fouts, J.Q.; Grossi, S.; Tricarico, J.M.; Kebreab, E. Effects of Pulse-Dosing an Essential Oil Blend to Dairy Cows on Enteric Methane Emissions and Productivity. Transl. Anim. Sci. 2025, 9, txaf056. [Google Scholar] [CrossRef]
- O’Brien, D.; Brennan, P.; Humphreys, J.; Ruane, E.; Shalloo, L. An Appraisal of Carbon Footprint of Milk from Commercial Grass-Based Dairy Farms in Ireland According to a Certified Life Cycle Assessment Methodology. Int. J. Life Cycle Assess. 2014, 19, 1469–1481. [Google Scholar] [CrossRef]
- Fraser, M.D.; Vallin, H.E.; Roberts, B.P. Animal Board Invited Review: Grassland-Based Livestock Farming and Biodiversity. Animal 2022, 16, 100671. [Google Scholar] [CrossRef]
- Salari, F.; Marconi, C.; Sodi, I.; Altomonte, I.; Martini, M. Environmental Sustainability of Dairy Cattle in Pasture-Based Systems vs. Confined Systems. Sustainability 2025, 17, 3976. [Google Scholar] [CrossRef]
- Krattenmacher, N.; Thaller, G.; Tetens, J. Analysis of the Genetic Architecture of Energy Balance and Its Major Determinants Dry Matter Intake and Energy-Corrected Milk Yield in Primiparous Holstein Cows. J. Dairy Sci. 2019, 102, 3241–3253. [Google Scholar] [CrossRef]
- Liedgren, S.; Fikse, F.; Nilsson, K.; Strandberg, E. Performance of Purebred Dairy Cows and Crossbred Cows between Swedish Red, Swedish Holstein, Jersey, and Montbéliarde in Swedish Herds. Front. Anim. Sci. 2024, 5, 1427014. [Google Scholar] [CrossRef]
- Piña, L.F.; Balocchi, O.A.; González-Verdugo, H.; Keim, J.P.; Pulido, R.; Rosas, F.; Araya, C. Activity Level of Grazing Dairy Cows, as a Criterion for Grazing Management in Pasture-Based Dairy Production Systems. Chil. J. Agric. Res. 2023, 83, 458–470. [Google Scholar] [CrossRef]
- Al-Suwaiegh, S.B.; Morshedy, S.A.; Mansour, A.T.; Ahmed, M.H.; Zahran, S.M.; Alnemr, T.M.; Sallam, S.M.A. Effect of an Essential Oil Blend on Dairy Cow Performance during Treatment and Post-Treatment Periods. Sustainability 2020, 12, 9123. [Google Scholar] [CrossRef]
- Silva, A.S.; Cortinhas, C.S.; Acedo, T.S.; Lopes, F.C.F.; Arrigoni, M.B.; Tomich, T.R.; Pereira, L.G.R.; Ferreira, M.H.; Jaguaribe, T.L.; Weber, C.T.; et al. Effects of Essential Oils Supplementation, Associated or Not with Amylase, on Dry Matter Intake, Productive Performance, and Nitrogen Metabolism of Dairy Cows. Anim. Feed Sci. Technol. 2023, 297, 115575. [Google Scholar] [CrossRef]
- Nora, L.; Marcon, C.; Deolindo, G.L.; Signor, M.H.; Muniz, A.L.; Bajay, M.M.; Copetti, P.M.; Bissacotti, B.F.; Morsch, V.M.; da Silva, A.S. The Effects of a Blend of Essential Oils in the Milk of Suckling Calves on Performance, Immune and Antioxidant Systems, and Intestinal Microbiota. Animals 2024, 14, 3555. [Google Scholar] [CrossRef]
- CIREN Estudio Agrológico X Región. Descripciones de Suelos, Materiales y Símbolos; Centro de Información de Recursos Naturales: Satiago, Chile, 2003. [Google Scholar]
- Beck, A.; Pessot, R. Producción de Leche En Praderas Permanentes Durante La Primavera. Agro. Sur. 1992, 20, 34–39. [Google Scholar]
- FAO. Methane Emissions in Livestock and Rice Systems—Sources, Quantification, Mitigation and Metrics; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Leiva Madrid, C.; Gajardo Escobar, G.; Piña Moraga, L.; Schmidt Gómez, C.; Barrientos Kompatzk, G. Guía Productiva de Praderas en las Provincias de Osorno y Llanquihue; Instituto de Investigaciones Agropecuarias (INIA): Santiago, Chile, 2021.
- Balocchi, O.; López, I. Rol de Las Especies Pratenses Nativas y Naturalizadas En Las Praderas Permanentes Del Sur de Chile. In Proceedings of the XXVI Reunión Anual de la Sociedad Chilena de Producción Animal (SOCHIPA), Simposio Internacional en Producción Animal y Medio Ambiente, Temuco, Chile, 3–5 November 1999; Pontificia Universidad Católica de Chile, Facultad de Agronomía e Ingeniería Forestal: Santiago, Chile, 2001; pp. 285–299. [Google Scholar]
- Balocchi, O.; Pulido, R.; Fernández, J. Comportamiento de vacas lecheras en pastoreo con y sin suplementación con concentrado. Agric. Téc. 2002, 62, 87–98. [Google Scholar] [CrossRef]
- Hennessy, D.; Delaby, L.; van den Pol-van Dasselaar, A.; Shalloo, L. Increasing Grazing in Dairy Cow Milk Production Systems in Europe. Sustainability 2020, 12, 2443. [Google Scholar] [CrossRef]
- DairyNZ. “Body Condition Scoring”: The Reference Guide for New Zealand Dairy Farmers; DairyNZ Limited: Morrinsville, New Zealand, 2024. [Google Scholar]
- ISO 9622:2013|IDF 141:2013; Milk and Liquid Milk Products, Guidelines for the Application of Mid-Infrared Spectrometry. International Organization for Standardization, Geneva and International Dairy Federation: Brussels, Belgium, 2013.
- ISO 8196-2:2009|IDF 128-2:2009; Milk-Definition and Evaluation of the Overall Accuracy of Alternative Methods of Milk Analysis—Part 2: Calibration and Quality Control in the Dairy Laboratory. International Organization for Standardization, Geneva and International Dairy Federation: Brussels, Belgium, 2009.
- ISO 13366-2:2006|IDF 148-2:2006; Milk-Enumeration of Somatic Cells—Part 2: Guidance on the Operation of Fluoro-Opto-Electronic Counters, 2nd ed. International Organization for Standardization, Geneva and International Dairy Federation: Brussels, Belgium, 2006.
- ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- AOAC International. Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Weiss, W.P. Predicting energy values of feeds. J. Dairy Sci. 1993, 76, 1802–1811. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the Energy Value of Cow’s Milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Reincke, K.; Saha, A.; Wyrzykowski, Ł. The Global Dairy World 2017/18: Results of the IFCN Dairy Report 2018; IFCN: Kiel, Germany, 2018. [Google Scholar]
- Roche, J.R.; Friggens, N.C.; Kay, J.K.; Fisher, M.W.; Stafford, K.J.; Berry, D.P. Invited Review: Body Condition Score and Its Association with Dairy Cow Productivity, Health, and Welfare. J. Dairy Sci. 2009, 92, 5769–5801. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.Z.; Zhang, J.W.; Zhang, S.Z.; Xu, S. Effect of Environmental Factors on Grassland Biodiversity and Biomass in the Zhangye Region. Agronomy 2025, 15, 476. [Google Scholar] [CrossRef]
- Revello-Chion, A.; Tabacco, E.; Peiretti, P.G.; Borreani, G. Variation in the Fatty Acid Composition of Alpine Grassland during Spring and Summer. Agron. J. 2011, 103, 1072–1080. [Google Scholar] [CrossRef]
- O’Callaghan, T.F.; Hennessy, D.; McAuliffe, S.; Kilcawley, K.N.; O’Donovan, M.; Dillon, P.; Ross, R.P.; Stanton, C. Effect of Pasture versus Indoor Feeding Systems on Raw Milk Composition and Quality over an Entire Lactation. J. Dairy Sci. 2016, 99, 9424–9440. [Google Scholar] [CrossRef]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis Armata in Lactating Dairy Cows’ Diet Reduces Enteric Methane Emission by over 50 Percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- Toro-Mujica, P.; Vera-Infanzón, R. Evolving Dairy Cattle Systems in Chile: Structural Shifts and Adaptation Strategies. Animals 2024, 14, 2245. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, J.; Guan, J.; Li, C.; Ma, L.; Liu, Y.; Han, W. Strong Positive Direct Impact of Soil Moisture on the Growth of Central Asian Grasslands. Sci. Total Environ. 2024, 954, 176663. [Google Scholar] [CrossRef]
- Castillioni, K.; Patten, M.A.; Souza, L. Precipitation Effects on Grassland Plant Performance Are Lessened by Hay Harvest. Sci. Rep. 2022, 12, 3282. [Google Scholar] [CrossRef]
- Lanuza, F. Utilización de Concentrados en Vacas Lecheras a Pastoreo; SIDALC: Turrialba, Costa Rica, 1988; Volume 8, pp. 20–23. [Google Scholar]
- Anrique, R.; Balocchi, O. Aspectos que Determinan la Respuesta a la Suplementación de Animales en Pastoreo. In Serie Simposios y Compendios No. 1; Sociedad Chilena de Producción Animal (SOCHIPA): Temuco, Chile, 1993; pp. 30–31. [Google Scholar]
- Garton, G.A. Fatty Acid Composition of the Lipids of Pasture Grasses. Nature 1960, 187, 511–512. [Google Scholar] [CrossRef] [PubMed]
- Coppa, M.; Ferlay, A.; Chassaing, C.; Agabriel, C.; Glasser, F.; Chilliard, Y.; Borreani, G.; Barcarolo, R.; Baars, T.; Kusche, D.; et al. Prediction of Bulk Milk Fatty Acid Composition Based on Farming Practices Collected through On-Farm Surveys. J. Dairy Sci. 2013, 96, 4197–4211. [Google Scholar] [CrossRef] [PubMed]
- Krusinski, L.; Maciel, I.C.d.F.; Sergin, S.; Goeden, T.; Ali, H.; Kesamneni, S.; Jambunathan, V.; Cassida, K.A.; Singh, S.; Medina-Meza, I.G.; et al. Evaluation of Fatty Acid and Antioxidant Variation in a Complex Pasture System as Compared to Standard Cattle Feed in the Great Lakes Region. Front. Sustain. Food Syst. 2022, 6, 945080. [Google Scholar] [CrossRef]
- Boufaïed, H.; Chouinard, P.Y.; Tremblay, G.F.; Petit, H.V.; Michaud, R.; Bélanger, G. Fatty Acids in Forages. I. Factors Affecting Concentrations. Can. J. Anim. Sci. 2003, 83, 501–511. [Google Scholar] [CrossRef]
- Clapham, W.M.; Foster, J.G.; Neel, J.P.S.; Fedders, J.M. Fatty Acid Composition of Traditional and Novel Forages. J. Agric. Food Chem. 2005, 53, 10068–10073. [Google Scholar] [CrossRef]
- Makmur, M.; Zain, M.; Marlida, Y.; Khasrad, K.; Jayanegara, A. Fatty Acids Composition and Biohydrogenation Reduction Agents of Tropical Forages. Biodiversitas 2019, 20, 1908–1914. [Google Scholar] [CrossRef]
- Santschi, D.E.; Lacroix, R.; Durocher, J.; Duplessis, M.; Moore, R.K.; Lefebvre, D.M. Prevalence of Elevated Milk β-Hydroxybutyrate Concentrations in Holstein Cows Measured by Fourier-Transform Infrared Analysis in Dairy Herd Improvement Milk Samples and Association with Milk Yield and Components. J. Dairy Sci. 2016, 99, 9263–9270. [Google Scholar] [CrossRef]
- Ježek, J.; Cincović, M.R.; Nemec, M.; Belić, B.; Djoković, R.; Klinkon, M.; Starič, J. Beta-Hydroxybutyrate in Milk as Screening Test for Subclinical Ketosis in Dairy Cows. Pol. J. Vet. Sci. 2017, 20, 507–512. [Google Scholar] [CrossRef]
- Nehme Marinho, M.; Zimpel, R.; Peñagaricano, F.; Santos, J.E.P. Assessing Feed Efficiency in Early and Mid Lactation and Its Associations with Performance and Health in Holstein Cows. J. Dairy Sci. 2021, 104, 5493–5507. [Google Scholar] [CrossRef]
- Carrazco, A.V.; Peterson, C.B.; Zhao, Y.; Pan, Y.; McGlone, J.J.; DePeters, E.J.; Mitloehner, F.M. The Impact of Essential Oil Feed Supplementation on Enteric Gas Emissions and Production Parameters from Dairy Cattle. Sustainability 2020, 12, 10347. [Google Scholar] [CrossRef]
- Silvestre, T.; Martins, L.F.; Cueva, S.F.; Wasson, D.E.; Stepanchenko, N.; Räisänen, S.E.; Sommai, S.; Hile, M.L.; Hristov, A.N. Lactational Performance, Rumen Fermentation, Nutrient Use Efficiency, Enteric Methane Emissions, and Manure Greenhouse Gas-Emitting Potential in Dairy Cows Fed a Blend of Essential Oils. J. Dairy Sci. 2023, 106, 7661–7674. [Google Scholar] [CrossRef]
- Klop, G.; Dijkstra, J.; Dieho, K.; Hendriks, W.H.; Bannink, A. Enteric Methane Production in Lactating Dairy Cows with Continuous Feeding of Essential Oils or Rotational Feeding of Essential Oils and Lauric Acid. J. Dairy Sci. 2017, 100, 3563–3575. [Google Scholar] [CrossRef] [PubMed]
- Giannenas, I.; Skoufos, J.; Giannakopoulos, C.; Wiemann, M.; Gortzi, O.; Lalas, S.; Kyriazakis, I. Effects of Essential Oils on Milk Production, Milk Composition, and Rumen Microbiota in Chios Dairy Ewes. J. Dairy Sci. 2011, 94, 5569–5577. [Google Scholar] [CrossRef] [PubMed]
- Vazirigohar, M.; Dehghan-Banadaky, M.; Rezayazdi, K.; Nejati-Javaremi, A.; Mirzaei-Alamouti, H.; Patra, A.K. Short Communication: Effects of Diets Containing Supplemental Fats on Ruminal Fermentation and Milk Odd- and Branched-Chain Fatty Acids in Dairy Cows. J. Dairy Sci. 2018, 101, 6133–6141. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors Affecting Odd- and Branched-Chain Fatty Acids in Milk: A Review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Liu, Y.R.; Du, H.S.; Wu, Z.Z.; Wang, C.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, Y.L.; Pei, C.X.; Zhang, S.L. Branched-Chain Volatile Fatty Acids and Folic Acid Accelerated the Growth of Holstein Dairy Calves by Stimulating Nutrient Digestion and Rumen Metabolism. Animal 2020, 14, 1176–1183. [Google Scholar] [CrossRef]
- Wallace, R.J.; Sasson, G.; Garnsworthy, P.C.; Tapio, I.; Gregson, E.; Bani, P.; Huhtanen, P.; Bayat, A.R.; Strozzi, F.; Biscarini, F.; et al. A Heritable Subset of the Core Rumen Microbiome Dictates Dairy Cow Productivity and Emissions. Sci. Adv. 2019, 5, eaav8391. [Google Scholar] [CrossRef]
- Wallace, R.J.; Rooke, J.A.; McKain, N.; Duthie, C.-A.; Hyslop, J.J.; Ross, D.W.; Waterhouse, A.; Watson, M.; Roehe, R. The Rumen Microbial Metagenome Associated with High Methane Production in Cattle. BMC Genom. 2015, 16, 839. [Google Scholar] [CrossRef]




| Herd | Exp. Group | ||||
|---|---|---|---|---|---|
| Parameter | High Pens | Average Pens | Lower Pens | Treated | Control |
| Number of cows | 217 | 449 | 232 | 15 | 15 |
| Milk yield (kg/d) | 25.13 ± 5.07 | 20.94 ± 6.38 | 16.88 ± 4.67 | 22.68 ± 2.4 | 21.99 ± 2.3 |
| Days in milk | 154.19 ± 121.74 | 183.46 ± 115.64 | 207.6 ± 104.68 | 124.3 ± 81.62 | 123.9 ± 82.7 |
| Parity (N°) | 3.55 ± 1.72 | 3.29 ± 1.85 | 3.01 ± 1.94 | 3.1 ± 0.9 | 3.6 ± 1.17 |
| Composition 1 | Grassland | Silage | Molasses | Concentrate | Total |
|---|---|---|---|---|---|
| DMI 2 (kg/d) | 6 | 6.08 | 0.4 | 3.99 | 16.44 |
| CP (%) | 21.38 | 12.54 | 8.49 | 18.55 | |
| NEL(MJ/kg) | 1.75 | 6.19 | 1.57 | 1.81 | |
| NDF (%) | 36.02 | 47.32 | - | 15.76 | |
| Crude fat (%) | 3.08 | 2.27 | 0.2 | 2.52 |
| Parameter | Unit | * (CT) 1st Period | * (T) 1st Period | (CT) 2nd Period | (T) 2nd Period | Reference Value |
|---|---|---|---|---|---|---|
| AST | U/L | 101.7 ± 25.77 | 95.37 ± 21.59 | 78.36 ± 19.17 | 78.06 ± 16.75 | 2–110 |
| ALP | U/L | 63.18 ± 27.65 | 71.01 ± 42.53 | 74.76 ± 57.52 | 70.66 ± 32.87 | 0–196 |
| GGT | U/L | 24.79 ± 5.53 | 22.33 ± 5.33 | 23.95 ± 4.9 | 23.36 ± 4.53 | 3–39 |
| NEFA | µmol/L | 171.21 ± 38.38 | 176.52 ± 54.25 | 120.41 ± 52.03 | 117.24 ± 60.02 | 100–600 |
| LDH | U/L | 1247.04 ± 164.72 | 1229.43 ± 212 | 1136.83 ± 163.79 | 1135.66 ± 147.36 | 692–2840 |
| Total cholesterol | mmol/L | 4.53 ± 1.03 | 4.72 ± 1.03 | 4.67 ± 1.02 | 4.54 ± 1.1 | 2.7–5.3 |
| ALT | U/L | 31.2 ± 6.48 | 32.78 ± 7.86 | 30.68 ± 5.72 | 31.4 ± 7.03 | <55 |
| Albumin | g/L | 35.35 ± 3.05 | 35.89 ± 3.3 | 36.16 ± 3.12 | 36.7 ± 2.78 | 29–41 |
| Total protein | g/L | 88.47 ± 7.11 | 87.23 ± 5.94 | 83.17 ± 6.27 | 83.25 ± 7.19 | 66–90 |
| Triglycerides | mmol/L | 0.47 ± 0.03 | 0.48 ± 0.03 | 0.42 ± 0.03 | 0.43 ± 0.02 | 0.1–0.3 |
| Urea | mmol/L | 4.16 ± 1.12 | 4.3 ± 1 | 4.68 ± 0.82 | 4.91 ± 1.03 | 2.6–7.0 |
| Total bilirubin | µmol/L | 2.99 ± 1.77 | 3.28 ± 1.85 | 5.01 ± 0.68 | 5.06 ± 0.68 | 0.2–7.8 |
| β-hydroxybutyrate | mmol/L | 0.63 ± 0.15 | 0.65 ± 0.17 | 0.76 ± 0.14 | 0.71 ± 0.14 | 0.1–0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyarzún Burgos, J.I.; Wilhelm Saldivia, M.P.; Ibáñez San Martin, L.; Cárdenas Vera, A.M.; Bergmann Poblete, R.; Aravena Cofre, L.V.; Glasner Vivanco, B.; Bustos Salgado, V. Use of Essential Oils in the Diet of Lactating Cows Enhances Productivity and Reduces Methane in Free-Grazing Commercial Dairy Farms. Animals 2025, 15, 3549. https://doi.org/10.3390/ani15243549
Oyarzún Burgos JI, Wilhelm Saldivia MP, Ibáñez San Martin L, Cárdenas Vera AM, Bergmann Poblete R, Aravena Cofre LV, Glasner Vivanco B, Bustos Salgado V. Use of Essential Oils in the Diet of Lactating Cows Enhances Productivity and Reduces Methane in Free-Grazing Commercial Dairy Farms. Animals. 2025; 15(24):3549. https://doi.org/10.3390/ani15243549
Chicago/Turabian StyleOyarzún Burgos, Juan Ignacio, Moira Paz Wilhelm Saldivia, Lorena Ibáñez San Martin, Ambar Madeleyn Cárdenas Vera, Roberto Bergmann Poblete, Lisseth Valeska Aravena Cofre, Benjamín Glasner Vivanco, and Viviana Bustos Salgado. 2025. "Use of Essential Oils in the Diet of Lactating Cows Enhances Productivity and Reduces Methane in Free-Grazing Commercial Dairy Farms" Animals 15, no. 24: 3549. https://doi.org/10.3390/ani15243549
APA StyleOyarzún Burgos, J. I., Wilhelm Saldivia, M. P., Ibáñez San Martin, L., Cárdenas Vera, A. M., Bergmann Poblete, R., Aravena Cofre, L. V., Glasner Vivanco, B., & Bustos Salgado, V. (2025). Use of Essential Oils in the Diet of Lactating Cows Enhances Productivity and Reduces Methane in Free-Grazing Commercial Dairy Farms. Animals, 15(24), 3549. https://doi.org/10.3390/ani15243549

