Exploring Tectona grandis Linn. f. Leaf Extract as a Functional Feed Additive with Antioxidant and Nutraceutical Potential for Livestock
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Sample Collection and Authentication
2.2. Plant Extracts Preparation
2.3. Preliminary Phytochemical Screening
2.4. Gas Chromatography-Mass Spectroscopy (GC-MS)
2.5. Determination of Metal Residues
2.6. Determination of Bioactive Constituents
2.7. Antioxidant Screening
2.7.1. DPPH Radical-Scavenging Assay
2.7.2. Determination of IC50
2.8. Statistics Analysis
3. Results and Discussion
3.1. Phytochemical Screening Analysis
3.2. Gas Chromatography–Mass Spectrometry (GC–MS) Analysis
3.3. Heavy Metal Analysis
3.4. Analysis of Active Constituents
3.5. Antioxidant Screening Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palanisamy, K.; Hegde, M.; Yi, J.-S. Teak (Tectona grandis Linn. f.): A renowned commercial timber species. J. For. Sci. 2009, 25, 1–24. [Google Scholar]
- Han, M.; Yang, F.; Zhang, K.; Ni, J.; Zhao, X.; Chen, X.; Zhang, Z.; Wang, H.; Lu, J.; Zhang, Y. Antioxidant, anti-inflammatory and anti-diabetic activities of Tectona grandis methanolic extracts, fractions, and isolated compounds. Antioxidants 2023, 12, 664. [Google Scholar] [CrossRef]
- Kerdsuknirund, S.; Khunkaewla, P.; Kupittayanant, P.; Chanlun, S.; Tongdee, P.; Nimkuntod, P.; Kupittayanant, S. Potential of pandan root and Teak leaf extracts in managing maternal hyperglycemia during pregnancy: Comparative efficacy and mechanistic insights. Int. J. Mol. Sci. 2025, 26, 5506. [Google Scholar] [CrossRef]
- Lankaa, S.; Parimala, B. Antimicrobial activities of Tectona grandis leaf and bark extracts. Eur. J. Pharm. Med. Res. 2017, 4, 245–248. [Google Scholar]
- Kamath, K.K.; Shabaraya, A.R. Comparison of antibacterial activity of leaf extracts of Tectona grandis, Mangifera indica, and Anacardium occidentale. Int. J. Curr. Pharm. Res. 2017, 9, 36–39. [Google Scholar]
- Fakhri, K.U.; Sharma, D.; Fatma, H.; Yasin, D.; Alam, M.; Sami, N.; Ahmad, F.J.; Shamsi, A.; Rizvi, M.A. The dual role of dietary phytochemicals in oxidative stress: Implications for oncogenesis, cancer chemoprevention, and ncRNA regulation. Antioxidants 2025, 14, 620. [Google Scholar] [CrossRef]
- Allaw, M.; Perra, M.; Parekh, P.; Serra, M.; Marongiu, J.; Castangia, I.; Fulgheri, F.; Caboni, P.; Tolle, G.; Corrias, F.; et al. Antioxidant and neuroprotective effects of nutriosomes and grape pomace phytochemicals in a cell model of oxidative stress and mouse model of Parkinson’s disease. Sci. Rep. 2025, 15, 11947. [Google Scholar] [CrossRef]
- Özdemir, K.; Demir, Y. Phenolic compounds in exercise physiology: Dual role in oxidative stress and recovery adaptation. Food Sci. Nutr. 2025, 13, e70714. [Google Scholar] [CrossRef] [PubMed]
- Rungruangkitkrai, N.; Mongkholrattanasit, R.; Ounu, P.; Chartvivatpornchai, N.; Boonyarit, J.; Laohaphatanaleart, K.; Chollakup, R. Enhancing sustainable silk textiles: Optimization of teak leaf extract dyeing and antibacterial efficacy. Curr. Res. Green Sustain. Chem. 2025, 10, 100457. [Google Scholar] [CrossRef]
- Ogunmefun, O.T.; Ekundayo, E.A.; Akharaiyi, F.C.; Ewhenodere, D. Phytochemical screening and antibacterial activities of Tectona grandis L. f. (Teak) leaves on microorganisms isolated from decayed food samples. Trop. Plant Res. 2017, 4, 376–382. [Google Scholar] [CrossRef]
- Longbap, B.D.; Ushie, O.A.; Ogah, E.; Kendenson, A.C.; Nyikyaa, J.T. Phytochemical screening and quantitative determination of phytochemicals in leaf extracts of Hannoa undulata. Int. J. Med. Plants Nat. Prod. 2018, 4, 32–38. [Google Scholar] [CrossRef]
- Alabi, K.; Oyeku, T. The chemical constituents extractable from teak tree (Tectona grandis Linn.) obtained from Fountain University, Osogbo. Niger. J. Basic Appl. Sci. 2017, 25, 73–80. [Google Scholar] [CrossRef]
- Tongkasee, P.; Srithat, D.; Sriyasak, P.; Jitcharerntham, A.; Piwgern, T.; Khoontawad, J.; Insuwan, W. Formulation and phytochemical profile of a product prototype infused with Cannabis sativa leaves. Trends Sci. 2023, 20, 5835. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Weerasinghe, S.; Kaumal, M.N. Determination of heavy metals in tilapia using various digestion methods. Int. J. Sci. Res. Innov. Technol. 2016, 3, 38–48. [Google Scholar]
- Kim, S.-A.; Kim, Y.-J. Determination of heavy metal concentration in herbal medicines by GF-AAS and automated mercury analyzer. J. Food Hyg. Saf. 2021, 36, 281–288. [Google Scholar] [CrossRef]
- Padayappa, M.; Senthilkumar, A.; Moorthi, M.; Thangaraj, A. Analysis of phytochemical properties, DPPH and FRAP assay of antioxidant activities of Acalypha indica L. Int. J. Sci. Res. 2020, 9, 31–34. [Google Scholar]
- Elham, M.; Abolfazl, A.; Kazem, A.; Asadaolah, N.; Afsaneh, A. Improvement of the antioxidant activity, phytochemicals, and cannabinoid compounds of Cannabis sativa by salicylic acid elicitor. Food Sci. Nutr. 2021, 9, 6873–6881. [Google Scholar] [CrossRef]
- Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 1978, 48, 788–794. [Google Scholar] [CrossRef]
- Ahlem, R.; Souad, I.B.; Béatrice, B.; Valérie, M.L.; Fathi, M.; Evelyne, O.; Jamila, K.C.; Malika, T.A. Total phenolic, total flavonoid, tannin content, and antioxidant capacity of Halimium halimifolium (Cistaceae). J. Appl. Pharm. Sci. 2015, 5, 52–57. [Google Scholar] [CrossRef]
- Lahare, R.P. Estimation of total phenol, flavonoid, tannin and alkaloid content in different extracts of Catharanthus roseus from Durg District, Chhattisgarh, India. Sch. Bull. 2021, 7, 1–6. [Google Scholar] [CrossRef]
- Siddartha, B.; Riya, M.; Anjali, P.; Arpana, V.; Archana, G.; Ramendra, P.; Chung-Ming, C. Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of Ficus religiosa. Molecules 2022, 27, 1326. [Google Scholar] [CrossRef]
- Eugenio, J.G.; Tatiane, L.C.O.; Severino, M.A.; Alessandra, R.; Alessandro, D.L.; Rosa, H.M.G. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz. Dent. J. 2012, 23, 22–27. [Google Scholar] [CrossRef]
- Re, R.; Pellegrin, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Anelise, S.N.F.; Carla, R.F.V.; Matheus, S.; Claudia, A.L.C.; Maria, D.C.V.; Zefa, V.P. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Khalil, R.R.; Mustafa, Y.F. Phytochemical, antioxidant and antitumor studies of coumarins extracted from Granny Smith apple seeds by different methods. Syst. Rev. Pharm. 2020, 11, 57–63. [Google Scholar]
- Sireesha, B.; Pavitra, P.; Sameena, D.; Anitha, G.; Asifa, S.K.; Mahesh, K.; Pushpalatha, E. A review on medicinal plants containing glycosides. Pharm. Med. Health Sci. 2023, 6, 8–15. [Google Scholar] [CrossRef]
- Desai, S.D.; Desai, D.G.; Kaur, H. Saponins and their biological activities. Pharm. Times 2009, 41, 13–16. [Google Scholar]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- Sujatha, J.; Asokan, S.; Rajeshkumar, S. Antioxidant effect and phytochemical analysis of chloroform extract of Cassia fistula using FT-IR, HPLC and GC–MS analysis. Int. J. Pharm. Sci. Rev. Res. 2017, 46, 129–133. [Google Scholar]
- Youssef, A.M.M.; Maaty, D.A.M.; Al-Saraireh, Y.M. Phytochemical analysis and profiling of antitumor compounds of leaves and stems of Calystegia silvatica (Kit.) Griseb. Molecules 2023, 28, 630. [Google Scholar] [CrossRef]
- Rocha, P.S.; Paula, V.M.B.; Olinto, S.C.F.; Santos, E.L.; Souza, K.P.; Estevinho, L.M. Diversity, chemical constituents and biological activities of endophytic fungi isolated from Schinus terebinthifolius Raddi. Microorganisms 2020, 8, 859. [Google Scholar] [CrossRef]
- Akwu, N.A.; Naidoo, Y.; Singh, M.; Nundkumar, N.; Lin, J. Phytochemical screening, in vitro evaluation of the antimicrobial, antioxidant and cytotoxicity potentials of Grewia lasiocarpa E. Mey. ex Harv. S. Afr. J. Bot. 2019, 123, 180–192. [Google Scholar] [CrossRef]
- Rhetso, T.; Shubharani, R.; Roopa, M.S.; Sivaram, V. Chemical constituents, antioxidant, and antimicrobial activity of Allium chinense G. Don. Future J. Pharm. Sci. 2020, 6, 102. [Google Scholar] [CrossRef]
- Mishchenko, M.; Shtrygol, S.; Kaminskyy, D.; Lesyk, R. Thiazole-Bearing 4-Thiazolidinones as new anticonvulsant agents. Sci. Pharm. 2020, 88, 16. [Google Scholar] [CrossRef]
- Farhat, H.; Urooj, F.; Sohail, N.; Hameedi, S.F.; Ali, M.S.; Ehteshamul-Haque, S. Evaluation of antibacterial potential of endophytic fungi and GC–MS profiling of metabolites from Talaromyces trachyspermus. S. Afr. J. Bot. 2022, 150, 240–247. [Google Scholar] [CrossRef]
- Yusufzai, S.K.; Khan, M.S.; Hanry, E.L.; Rafatullah, M.; Elison, B.B. GC–MS analysis of chemical constituents and in vitro antioxidant activity of the organic extracts from the stem of Bridelia stipularis. Sains Malays. 2019, 48, 999–1009. [Google Scholar] [CrossRef]
- Singh, A.; Vellapandian, C. Phytochemical studies, antioxidant potential, and identification of bioactive compounds using GC–MS of the ethanolic extract of Luffa cylindrica (L.) fruit. Appl. Biochem. Biotechnol. 2022, 194, 4018–4032. [Google Scholar] [CrossRef]
- Taj, T.; Sultana, R.; Shahin, H.; Chakraborthy, M.; Ahmed, M.G. Phytol: A phytoconstituent, its chemistry and pharmacological actions. Int. J. Herb. Med. 2021, 8, 395–406. [Google Scholar]
- Ekpiken, E.S.; Ekong, U.S.; Upula, S.A.; Oka, I.A.; Ekong, M.O. Antibacterial activities of leaves extracts of X. aethiopica against some Enterobacteriaceae and GC–MS analysis of phytoconstituents. World J. Pharm. Med. Res. 2023, 9, 10–18. [Google Scholar]
- Oladimeji, O.H.; Onu, N.O. Antimicrobial activities of compounds isolated from Pycnanthus angolensis (Welw.) Warb and Bryophyllum pinnatum (Lam) Oken. Eur. Chem. Bull. 2018, 7, 190–193. [Google Scholar]
- Thai Industrial Standards Institute. Thai Community Product Standard: Instant Mixed Herbs Drink; Thai Industrial Standards Institute: Bangkok, Thailand, 2013; ISBN 978-616-231-560-2.
- Vinogradova, N.; Ivanova, I.; Olkhovych, N.; Kudria, S.; Babenko, L.; Shyika, Y. The content of heavy metals in medicinal plants in various regions: A review. Horticulturae 2023, 9, 239. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef]
- Morais, S.; Costa, F.G.; Pereira, M.L. Heavy metals and human health. In Environmental Health—Emerging Issues and Practice; InTech: Rijeka, Croatia, 2012; pp. 227–246. [Google Scholar] [CrossRef]
- Sarankar, S.K.; Rajak, B.; Ojha, S.; Somkuwar, S. Exploring the utilization of phenolic compounds in pharmaceuticals and healthcare. GSC Biol. Pharm. Sci. 2023, 24, 95–102. [Google Scholar] [CrossRef]
- Pérez-Ochoa, M.L.; Vera-Guzmán, A.M.; Mondragón-Chaparro, D.M.; Sandoval-Torres, S.; Carrillo-Rodríguez, J.C.; Mayek-Pérez, N.; Chávez-Servia, J.L. Effects of annual growth conditions on phenolic compounds and antioxidant activity in the roots of Eryngium montanum. Plants 2023, 12, 3192. [Google Scholar] [CrossRef]
- Lacko-Bartošová, M.; Kaur, A.; Lacko-Bartošová, L.; Kobida, L.; Hudec, M.; Moudrý, J. Concentration of phenolic compounds and phenolic acids of various spelt cultivars in response to growing years. Agriculture 2024, 13, 2024. [Google Scholar] [CrossRef]
- Chávez-Salgado, L.P.; Vandenbossche, V.; Vilarem, G. Tectona grandis Linn. f. secondary metabolites and their bioactive potential: A review. iForest 2022, 15, 112–120. [Google Scholar] [CrossRef]
- Budianto, P.; Suroto, S.; Wasita, B.; Mirawati, D.K. Tectona grandis leaves: Determination of total flavonoid and phenolic content, characterization of leaves, and compound identification by GC–MS. Pharmacogn. J. 2023, 15, 165–170. [Google Scholar] [CrossRef]
- Macáková, K.; Kolečkář, V.; Cahlíková, L.; Chlebek, J.; Hošt’álková, A.; Kuca, K.; Jun, D.; Opletal, L. Tannins and their influence on health. In Recent Advances in Medicinal Chemistry; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1, pp. 159–208. [Google Scholar] [CrossRef]
- Butler, L.G.; Price, M.L.; Brotherton, J.E. Vanillin assay for proanthocyanidins (condensed tannins): Modification of the solvent for estimation of the degree of polymerization. J. Agric. Food Chem. 1982, 30, 1087–1089. [Google Scholar] [CrossRef]
- Vinha, A.F.; Sousa, C.; Costa, C. Oxidative stress, antioxidants and biomarkers: Appreciation for analytical methods for health promotion. Int. Acad. Res. J. Int. Med. Public Health 2023, 4, 47–55. [Google Scholar]
- Nayeem, N. Influence of altitude on the phytoconstituents and antioxidant activity of the leaves of Tectona grandis. Int. J. Adv. Pharm. Sci. 2017, 4, 3919–3922. [Google Scholar] [CrossRef]
- Hwang, S.-J.; Lee, J.-H. Comparison of antioxidant activities expressed as equivalents of standard antioxidant. Food Sci. Technol. Campinas 2023, 43, e121522. [Google Scholar] [CrossRef]
- Chukaew, K.; Srisuwan, C.; Inaoy, P.; Prasanpanich, S.; Rangubhet, K.T.; Kongmun, P. The effects of using spent coffee grounds as a protein source in the concentrated diet of goats. Anim. Sci. J. 2025, 96, e70134. [Google Scholar] [CrossRef] [PubMed]
| Class of Compounds | Leaves Ethanolic Extract | |||
|---|---|---|---|---|
| Young Leaves | Immature Leaves | Mature Leaves | Mixed Leaves | |
| Cardiac glycoside | − | − | − | − |
| Flavonoids | − | − | − | + |
| Saponins | − | + | − | − |
| Tannins | + | + | + | + |
| Terpenoids | − | − | − | − |
| Antraquinones | − | − | − | − |
| Coumarin | + | + | + | + |
| Phlobatannins | − | − | − | − |
| Steroids | − | − | − | − |
| Alkaloids | + | − | − | − |
| Glycoside | + | − | + | − |
| No. | RT | Compound | Formula | Mw | Peak Area% | Pharmacological Action | Reference |
|---|---|---|---|---|---|---|---|
| 1 | 14.46 | Butanoic acid, 1,1-dimethylethyl ester | C8H16O2 | 144 | 0.48 | No report available | - |
| 2 | 28.68 | 14-Heptadecenal | C17H32O | 252 | 4.62 | Bioactive phytochemicals, a source of bioactive compounds in pharmaceutical industries, Antioxidant activity, antimicrobial, and anti-inflammatory activity, Antifungal | [29] |
| 3 | 33.30 | n-Decanoic acid | C10H20O2 | 172 | 4.93 | Antibacterial and antifungal | [30] |
| 4 | 44.70 | Thunbergol | C20H34O | 290 | 44.50 | Diterpene, antimicrobial, Larvicidal properties | [31] |
| No. | RT | Compound | Formula | Mw | Peak Area% | Pharmacological Action | Reference |
|---|---|---|---|---|---|---|---|
| 1 | 28.69 | 16-Heptadecenal | C17H32O | 252 | 6.38 | Bioactive compounds, antioxidant, anti-inflammatory, antimicrobial, antidiabetic, hepatoprotective anticancer | [32] |
| 2 | 33.31 | n-Hexadecanoic acid | C16H32O2 | 256 | 14.05 | Bioactive compounds, antioxidant, anti-inflammatory, antimicrobial, antidiabetic, hepatoprotective anticancer | [32,33] |
| 3 | 38.08 | Phytol | C20H40O | 296 | 7.81 | Bioactive compounds, antibacterial and antioxidant activity | [33] |
| No. | RT | Compound | Formula | Mw | Peak Area% | Pharmacological Action | Reference |
|---|---|---|---|---|---|---|---|
| 1 | 9.13 | 1-Octyl trifluoroacetate | C10H17F3O2 | 226 | 4.82 | Esters, antimicrobial | [31] |
| 2 | 9.42 | 3-Methylglutaric anhydride | C6H8O3 | 128 | 0.59 | No report available | - |
| 3 | 9.48 | Carbonic acid, propargyl 2-ethylhexyl ester | C12H20O3 | 212 | 1.53 | No report available | - |
| 4 | 9.71 | Trifluoroacetic acid, heptyl ester | C9H15F3O2 | 212 | 1.52 | No report available | - |
| 5 | 11.89 | 2,4-Imidazolidinedione, 5,5-dimethyl- | C5H8N2O2 | 128 | 2.38 | Anticonvulsant and antiepileptic | [34] |
| 6 | 14.27 | 1-Heptanol | C7H16O | 116 | 1.52 | Long-chain fatty alcohol, antibacterial | [35] |
| 7 | 16.33 | 1-Dodecanol | C12H26O | 186 | 28.56 | Long-chain fatty alcohol, volatile compounds, antibacterial | [35] |
| 8 | 16.97 | Nitric acid, nonyl ester | C9H19NO3 | 189 | 6.29 | Bioactive natural compounds and chemical constituents | [36] |
| 9 | 22.05 | 1-Heptanol, 6-methyl- | C8H18O | 130 | 4.91 | No report available | - |
| 10 | 23.69 | Ethanol, 2-(dodecyloxy)- | C14H30O2 | 230 | 17.12 | Volatile compounds, anti-microbial activity, anti-inflammatory | [37] |
| 11 | 31.70 | Octane, 2-bromo- | C8H17Br | 192 | 3.37 | No report available | - |
| 12 | 34.22 | Methoxyacetic acid, 2-tetradecyl ester | C17H34O3 | 286 | 5.59 | Volatile compounds, antibacterial | [38] |
| 13 | 38.10 | Phytol | C20H40O | 296 | 5.09 | Diterpene, antibacterial, anticancer, anti-inflammatory, anti-diuretic, immunostimulatory and anti-diabetic | [31,39] |
| 14 | 40.66 | Ethylene glycol monoisobutyl ether | C6H14O2 | 118 | 0.82 | No report available | - |
| 15 | 42.71 | 2-Butenoic acid, 2-methoxy-, methyl ester, (Z)- | C6H10O3 | 130 | 0.84 | No report available | - |
| No. | RT | Compound | Formula | Mw | Peak Area% | Pharmacological Action | Reference |
|---|---|---|---|---|---|---|---|
| 1 | 9.32 | Oxalic acid, butyl propyl ester | C9H16O4 | 188 | 0.54 | No report available | - |
| 2 | 14.47 | 2,2,4-Trimethyl-3-pentanone | C8H16O | 128 | 0.72 | No report available | - |
| 3 | 28.69 | R(-)3,7-Dimethyl-1,6-octadiene | C10H18 | 138 | 9.22 | Antibacterial activity | [40] |
| 4 | 33.31 | n-Decanoic acid | C10H20O2 | 172 | 25.05 | Antioxidant potential, anti-inflammatory, antibacterial, antifungal activity | [41] |
| 5 | 33.42 | 2-Propenoic acid, 2-hydroxyethyl ester | C5H8O3 | 116 | 1.30 | Volatile organic compounds, antioxidant | [35] |
| 6 | 39.80 | 4-Trifluoroacetoxyoctane | C10H17F3O2 | 226 | 0.79 | Medicinal plants, antibacterial activity, antifungal activity | [42] |
| Sample | Cd (ppm) | Pb (ppm) | As (ppb) |
|---|---|---|---|
| Equation | y = 0.7593x + 7 × 10−6 | y = 0.0215x + 0.0042 | y = 0.0086x + 0.0051 |
| R2 | 0.997 | 0.999 | 0.999 |
| SD | 0.156 | 0.176 | 0.128 |
| LOD | 0.005 | 0.003 | −0.657 |
| LOQ | 0.013 | 0.031 | 2.914 |
| Sample | Tectona grandis Linn. | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Young Blade | Medium Blade | Mature Blade | Mixed Blade | |||||||||
| Conc. | Sd | %RSD | Conc. | Sd | %RSD | Conc. | Sd | %RSD | Conc. | Sd | %RSD | |
| Cd (ppm) | 0.004 | 0.000 | 11.500 | 0.001 | 0.000 | 7.500 | 0.001 | 0.000 | 8.650 | 0.003 | 0.000 | 3.536 |
| Pb (ppm) | <LOD | 0.009 | 4.094 | <LOD | 0.003 | 1.135 | <LOD | 0.011 | 5.215 | <LOD | 0.008 | 3.431 |
| As (ppb) | 17.593 | 0.016 | 0.124 | 16.593 | 0.018 | 0.141 | 12.488 | 0.028 | 0.217 | 14.861 | 0.032 | 0.251 |
| Sample | Total Phenolic Content (mg GAE/g DW) | Total Flavonoid Content (mg QE/g DW) | Total Condensed Tannins (mg CE/g DW) | Total Tannins (mg GAE/g Extract) |
|---|---|---|---|---|
| Young leaves | 5.183 ± 0.0024 d | 0.082 ± 0.00017 d | 0.286 ± 0.00042 b | 0.316 ± 0.00033 c |
| Medium leaves | 6.595 ± 0.0041 c | 0.208 ± 0.00023 b | 0.237 ± 0.00037 c | 0.467 ± 0.00028 a |
| Mature leaves | 8.751 ± 0.0187 a | 0.359 ± 0.0173 a | 0.303 ± 0.00041 a | 0.310 ± 0.00047 d |
| Mixed leaves | 6.986 ± 0.0053 b | 0.136 ± 0.00026 c | 0.088 ± 0.00039 d | 0.366 ± 0.00044 b |
| p-value | <0.001 | <0.001 | <0.001 | <0.001 |
| Sample | % Antioxidant |
|---|---|
| Ascorbic acid | 94.991 ± 1.470 a |
| Young leaves | 89.050 ± 0.649 b |
| Medium leaves | 86.627 ± 0.062 c |
| Mature leaves | 95.877 ± 0.123 a |
| Mixed leaves | 88.534 ± 0.035 b |
| p-value | <0.0000 |
| Sample | IC50 (mg/mL) |
|---|---|
| Ascorbic acid | 0.0767 ± 0.0026 |
| Young leaves | 50.348 ± 0.167 |
| Medium leaves | 44.359 ± 0.192 |
| Mature leaves | 22.928 ± 0.111 a |
| Mixed leaves | 24.235 ± 0.291 ab |
| p-value | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montri, N.; Wanapat, M.; Kang, S.; Cheas, S.; Cherdthong, A.; Gunun, P.; Gunun, N.; Foiklang, S.; Kongmun, P.; Srithat, D.; et al. Exploring Tectona grandis Linn. f. Leaf Extract as a Functional Feed Additive with Antioxidant and Nutraceutical Potential for Livestock. Animals 2025, 15, 3498. https://doi.org/10.3390/ani15233498
Montri N, Wanapat M, Kang S, Cheas S, Cherdthong A, Gunun P, Gunun N, Foiklang S, Kongmun P, Srithat D, et al. Exploring Tectona grandis Linn. f. Leaf Extract as a Functional Feed Additive with Antioxidant and Nutraceutical Potential for Livestock. Animals. 2025; 15(23):3498. https://doi.org/10.3390/ani15233498
Chicago/Turabian StyleMontri, Nattaya, Metha Wanapat, Sungchhang Kang, Seangla Cheas, Anusorn Cherdthong, Pongsatorn Gunun, Nirawan Gunun, Suban Foiklang, Phongthorn Kongmun, Dutsadee Srithat, and et al. 2025. "Exploring Tectona grandis Linn. f. Leaf Extract as a Functional Feed Additive with Antioxidant and Nutraceutical Potential for Livestock" Animals 15, no. 23: 3498. https://doi.org/10.3390/ani15233498
APA StyleMontri, N., Wanapat, M., Kang, S., Cheas, S., Cherdthong, A., Gunun, P., Gunun, N., Foiklang, S., Kongmun, P., Srithat, D., Tongkasee, P., & Polyorach, S. (2025). Exploring Tectona grandis Linn. f. Leaf Extract as a Functional Feed Additive with Antioxidant and Nutraceutical Potential for Livestock. Animals, 15(23), 3498. https://doi.org/10.3390/ani15233498

