Proteome Analysis of Spermathecal Fluid and Seminal Plasma Reveals the Mechanism of Sperm Storage in Amphioctopus Fangsiao
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Preparation of Proteomic Samples
2.3. Trypsin Treatment
2.4. LC-MS/MS Analysis-DIA Mode
2.5. Bioinformatic Analysis
2.6. Antioxidant Enzyme Activity Assays
3. Results
3.1. PCA and CV Analysis
3.2. DEPs Between SF and SP
3.3. GO Enrichment Analysis
3.4. KEGG Enrichment Analysis
3.5. Domain Enrichment Analysis
3.6. Subcellular Localization Analysis
3.7. The Critical DEPs Involved in Sperm Storage of A. fangsiao
3.8. Catalytic Activity of Antioxidant Enzymes Between SF and SP
4. Discussion
4.1. Antioxidant Proteins
4.2. Glycolytic Enzymes
4.3. Antimicrobial Proteins
4.4. Extracellular Matrix-Related Proteins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gotoh, A.; Shigenobu, S.; Yamaguchi, K.; Kobayashi, S.; Ito, F.; Tsuji, K. Transcriptome profiling of the spermatheca identifies genes potentially involved in the long-term sperm storage of ant queens. Sci. Rep. 2017, 7, 5972. [Google Scholar] [CrossRef]
- Orr, T.J.; Zuk, M. Sperm storage. Curr. Biol. CB 2012, 22, R8–R10. [Google Scholar] [CrossRef] [PubMed]
- Holt, W.V.; Lloyd, R.E. Sperm storage in the vertebrate female reproductive tract: How does it work so well? Theriogenology 2010, 73, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Orr, T.J.; Brennan, P.L.R. Sperm storage: Distinguishing selective processes and evaluating criteria. Trends Ecol. Evol. 2015, 30, 261–272. [Google Scholar] [CrossRef]
- Holt, W.V.; Fazeli, A. Sperm Storage in the Female Reproductive Tract. Annu. Rev. Anim. Biosci. 2016, 4, 291–310. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Sasanami, T. Sperm Storage in the Female Reproductive Tract: A Conserved Reproductive Strategy for Better Fertilization Success. In Avian Reproduction: From Behavior to Molecules; Sasanami, T., Ed.; Springer: Singapore, 2017; Volume 173–186. [Google Scholar] [CrossRef]
- Levine, B.A.; Schuett, G.W.; Booth, W. Exceptional long-term sperm storage by a female vertebrate. PLoS ONE 2021, 16, e0252049. [Google Scholar] [CrossRef] [PubMed]
- Riley, J.L.; Stow, A.; Bolton, P.E.; Dennison, S.; Byrne, R.W.; Whiting, M.J. Sperm Storage in a Family-Living Lizard, the Tree Skink (Egernia striolata). J. Hered. 2021, 112, 526–534. [Google Scholar] [CrossRef]
- Paynter, E.; Millar, A.H.; Welch, M.; Baer-Imhoof, B.; Cao, D.; Baer, B. Insights into the molecular basis of long-term storage and survival of sperm in the honeybee (Apis mellifera). Sci. Rep. 2017, 7, 40236. [Google Scholar] [CrossRef]
- Poland, V.; Eubel, H.; King, M.; Solheim, C.; Harvey Millar, A.; Baer, B. Stored sperm differs from ejaculated sperm by proteome alterations associated with energy metabolism in the honeybee Apis mellifera. Mol. Ecol. 2011, 20, 2643–2654. [Google Scholar] [CrossRef]
- Gonzalez, A.N.; Ing, N.; Rangel, J. Upregulation of antioxidant genes in the spermathecae of honey bee (Apis mellifera) queens after mating. Apidologie 2018, 49, 224–234. [Google Scholar] [CrossRef]
- Gotoh, A.; Takeshima, M.; Mizutani, K.-i. Near-anoxia induces immobilization and sustains viability of sperm stored in ant queens. Sci. Rep. 2023, 13, 3029. [Google Scholar] [CrossRef] [PubMed]
- Das, S.C.; Isobe, N.; Yoshimura, Y. Mechanism of prolonged sperm storage and sperm survivability in hen oviduct: A review. Am. J. Reprod. Immunol. 2008, 60, 477–481. [Google Scholar] [CrossRef]
- FBMA (Fisheries Bureau of the Ministry of Agriculture of the People’s Republic of China). China Fishery Statistical Yearbook-2024; China Agriculture Press: Beijing, China, 2025. [Google Scholar]
- Li, Z.; Bao, X.; Liu, X.; Wang, Y.; Zhu, X.; Zhang, Y.; Wang, Z.; Maslennikov, S.; Whiteside, M.; Wang, W.; et al. Transcriptome analysis provides preliminary insights into the response of Sepia esculenta to high salinity stress. Agric. Commun. 2024, 2, 100064. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Wang, W.; Sun, G.; Feng, Y.; Xu, X.; Li, B.; Luo, Q.; Li, Y.; Yang, J.; et al. The investigation on stress mechanisms of Sepia esculenta larvae in the context of global warming and ocean acidification. Aquac. Rep. 2024, 36, 102120. [Google Scholar] [CrossRef]
- Li, Z.; Bao, X.; Liu, X.; Li, Y.; Cui, M.; Liu, X.; Li, B.; Feng, Y.; Xu, X.; Sun, G.; et al. Transcriptome profiling based on protein–protein interaction networks provides a set of core genes for understanding the immune response mechanisms of the egg-protecting behavior in Octopus ocellatus. Fish Shellfish Immunol. 2021, 117, 113–123. [Google Scholar] [CrossRef]
- Wang, W.; Dong, G.; Yang, J.; Zheng, X.; Wei, X.; Sun, G. The development process and seasonal changes of the gonad in Octopus ocellatus Gray off the coast of Qingdao, Northeast China. Fish. Sci. 2015, 81, 309–319. [Google Scholar] [CrossRef]
- Morse, P.; Huffard, C.L. Tactical Tentacles: New Insights on the Processes of Sexual Selection Among the Cephalopoda. Front. Physiol. 2019, 10, 1035. [Google Scholar] [CrossRef]
- Li, Y.; Feng, Y.; Jiang, Y.; Ma, J.; Bao, X.; Li, Z.; Cui, M.; Li, B.; Xu, X.; Wang, W.; et al. Differential gene expression analysis related to sperm storage in spermathecas of Amphioctopus fangsiao. Comp. Biochem. Physiol. Part D Genom. Proteom. 2022, 42, 100966. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, Y.; Sun, X.; Bao, X.; Xu, X.; Wang, W.; Li, Z.; Liu, X.; Sun, G.; Li, B.; et al. The morphological characteristics and modification of the oviducal glands adapted for long-term sperm storage and fertilization in Amphioctopus fangsiao. Aquac. Rep. 2023, 29, 101472. [Google Scholar] [CrossRef]
- Zhang, F.; Ge, W.; Ruan, G.; Cai, X.; Guo, T. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020. Proteomics 2020, 20, 1900276. [Google Scholar] [CrossRef]
- Shu, Y.; Gao, M.; Zhou, Y.; Liu, H.; Sun, X. DIA Comparative Proteomic Analysis of Retro-oil Fluid and Vitreous Fluid From Retinal Detachment Patients. Front. Mol. Biosci. 2021, 8, 763002. [Google Scholar] [CrossRef] [PubMed]
- Demichev, V.; Messner, C.B.; Vernardis, S.I.; Lilley, K.S.; Ralser, M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 2020, 17, 41–44. [Google Scholar] [CrossRef]
- Huang da, W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef]
- Scott, M.S.; Calafell, S.J.; Thomas, D.Y.; Hallett, M.T. Refining Protein Subcellular Localization. PLOS Comput. Biol. 2005, 1, e66. [Google Scholar] [CrossRef] [PubMed]
- Zinal, R.; Raveena, B.; Lubna, S.; Nidhee, C. Understanding the Role of Free Radicals and Antioxidant Enzymes in Human Diseases. Curr. Pharm. Biotechnol. 2023, 24, 1265–1276. [Google Scholar] [CrossRef]
- Murphy Michael, P. How mitochondria produce reactive oxygen species. Biochem. J. 2008, 417, 1–13. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Henkel, R.; Sengupta, P.; Agarwal, A. Physiological Role of ROS in Sperm Function. In Male Infertility: Contemporary Clinical Approaches, Andrology, ART and Antioxidants; Parekattil, S.J., Esteves, S.C., Agarwal, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 337–345. [Google Scholar] [CrossRef]
- Oehninger, S.; Blackmore, P.; Mahony, M.; Hodgen, G. Effects of hydrogen peroxide on human spermatozoa. J. Assist. Reprod. Genet. 1995, 12, 41–47. [Google Scholar] [CrossRef]
- O’Flaherty, C.M.; Beorlegui, N.B.; Beconi, M.T. Reactive oxygen species requirements for bovine sperm capacitation and acrosome reaction. Theriogenology 1999, 52, 289–301. [Google Scholar] [CrossRef]
- Monaghan, P.; Metcalfe, N.B.; Torres, R. Oxidative stress as a mediator of life history trade-offs: Mechanisms, measurements and interpretation. Ecol. Lett. 2009, 12, 75–92. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Alahmar, A.T. Role of Oxidative Stress in Male Infertility: An Updated Review. J. Hum. Reprod. Sci. 2019, 12, 4–18. [Google Scholar] [CrossRef]
- Gebicka, L.; Krych-Madej, J. The role of catalases in the prevention/promotion of oxidative stress. J. Inorg. Biochem. 2019, 197, 110699. [Google Scholar] [CrossRef]
- Case, A.J. On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants 2017, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, R.; Yan, X.; Fan, K. Superoxide dismutase nanozymes: An emerging star for anti-oxidation. J. Mater. Chem. B 2021, 9, 6939–6957. [Google Scholar] [CrossRef]
- González, A.; Granados, M.P.; Salido, G.M.; Pariente, J.A. H2O2-induced changes in mitochondrial activity in isolated mouse pancreatic acinar cells. Mol. Cell. Biochem. 2005, 269, 165–173. [Google Scholar] [CrossRef]
- Jakoby, W.B. Glutathione transferases: An overview. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1985; Volume 113, pp. 495–499. [Google Scholar] [CrossRef]
- Raijmakers, M.T.M.; Roelofs, H.M.J.; Steegers, E.A.P.; Steegers-Theunissen, R.é.P.M.; Mulder, T.P.J.; Knapen, M.F.C.M.; Wong, W.Y.; Peters, W.H.M. Glutathione and glutathione S-transferases A1-1 and P1-1 in seminal plasma may play a role in protecting against oxidative damage to spermatozoa. Fertil. Steril. 2003, 79, 169–172. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, J.; Lu, L.; Bold, T.; Li, X.; Wang, S.; Chang, Z.; Chen, J.; Kong, X.; Zheng, Y.; et al. Intracellular GSH/GST antioxidants system change as an earlier biomarker for toxicity evaluation of iron oxide nanoparticles. NanoImpact 2021, 23, 100338. [Google Scholar] [CrossRef]
- Rahantaniaina, M.-S.; Tuzet, A.; Mhamdi, A.; Noctor, G. Missing links in understanding redox signaling via thiol/disulfide modulation: How is glutathione oxidized in plants? Front. Plant Sci. 2013, 4, 477. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, C.; Li, Q.; Gao, X.; Sugano, E.; Tomita, H.; Yang, L.; Shi, S. Thioredoxin 2 Offers Protection against Mitochondrial Oxidative Stress in H9c2 Cells and against Myocardial Hypertrophy Induced by Hyperglycemia. Int. J. Mol. Sci. 2017, 18, 1958. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Liu, Q.; Ai, C.; Mo, H.; Zeng, J. Expression, Purification and Molecular Structure Modeling of Thioredoxin (Trx) and Thioredoxin Reductase (TrxR) from Acidithiobacillus ferrooxidans. Curr. Microbiol. 2009, 59, 35–41. [Google Scholar] [CrossRef]
- Degueldre, F.; Aron, S. Long-term sperm storage in eusocial Hymenoptera. Biol. Rev. 2023, 98, 567–583. [Google Scholar] [CrossRef]
- Ribou, A.-C.; Reinhardt, K. Reduced metabolic rate and oxygen radicals production in stored insect sperm. Proc. R. Soc. B Biol. Sci. 2012, 279, 2196–2203. [Google Scholar] [CrossRef] [PubMed]
- Jeyalectumie, C.; Subramoniam, T. Biochemistry of seminal secretions of the crab Scylla serrata with reference to sperm metabolism and storage in the female. Mol. Reprod. Dev. 1991, 30, 44–55. [Google Scholar] [CrossRef]
- Anilkumar, G.; Sudha, K.; Anitha, E.; Subramoniam, T. Aspects of Sperm Metabolism in the Spermatheca of the Brachyuran Crab Metopograpsus Messor (Forskal). J. Crustac. Biol. 1996, 16, 310–314. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Mizushima, S.; Hiyama, G.; Hirohashi, N.; Shiba, K.; Inaba, K.; Suzuki, T.; Dohra, H.; Ohnishi, T.; Sato, Y.; et al. Lactic acid is a sperm motility inactivation factor in the sperm storage tubules. Sci. Rep. 2015, 5, 17643. [Google Scholar] [CrossRef]
- Faloppi, L.; Bianconi, M.; Memeo, R.; Casadei Gardini, A.; Giampieri, R.; Bittoni, A.; Andrikou, K.; Del Prete, M.; Cascinu, S.; Scartozzi, M. Lactate Dehydrogenase in Hepatocellular Carcinoma: Something Old, Something New. BioMed Res. Int. 2016, 2016, 7196280. [Google Scholar] [CrossRef]
- Lauterwasser, J.; Fimm-Todt, F.; Oelgeklaus, A.; Schreiner, A.; Funk, K.; Falquez-Medina, H.; Klesse, R.; Jahreis, G.; Zerbes, R.M.; O’Neill, K.; et al. Hexokinases inhibit death receptor–dependent apoptosis on the mitochondria. Proc. Natl. Acad. Sci. USA 2021, 118, e2021175118. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, C.; Zhang, J.; Lu, Y.; Jiang, B.; Xiong, H.; Li, C. Pyruvate dehydrogenase kinase regulates macrophage polarization in metabolic and inflammatory diseases. Front. Immunol. 2023, 14, 1296687. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Shi, Y.; Yin, J.; Sun, L.; Zhang, Q.; Bao, S.; Zhang, J.; Li, Y.; Wang, M.; Zhang, Y.; et al. Impact of ATP synthase/coupling factor 6 in hypoxic pulmonary arterial hypertension: An experimental rat model. Turk. J. Med. Sci. 2022, 52, 1468–1477. [Google Scholar] [CrossRef]
- Liu, K.; Tang, Z.; Huang, A.; Chen, P.; Liu, P.; Yang, J.; Lu, W.; Liao, J.; Sun, Y.; Wen, S.; et al. Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. Int. J. Oncol. 2017, 50, 252–262. [Google Scholar] [CrossRef]
- Wierenga, R.K.; Kapetaniou, E.G.; Venkatesan, R. Triosephosphate isomerase: A highly evolved biocatalyst. Cell. Mol. Life Sci. 2010, 67, 3961–3982. [Google Scholar] [CrossRef]
- Kumar, R.; Ahmad, F.; Rathaur, S. Characterization of filarial phosphoglycerate kinase. Biochimie 2019, 165, 258–266. [Google Scholar] [CrossRef]
- Chandel, N.S. Glycolysis. Cold Spring Harb. Perspect. Biol. 2021, 13, a040535. [Google Scholar] [CrossRef] [PubMed]
- Oghbaei, H.; Rastgar Rezaei, Y.; Nikanfar, S.; Zarezadeh, R.; Sadegi, M.; Latifi, Z.; Nouri, M.; Fattahi, A.; Ahmadi, Y.; Bleisinger, N. Effects of bacteria on male fertility: Spermatogenesis and sperm function. Life Sci. 2020, 256, 117891. [Google Scholar] [CrossRef] [PubMed]
- Rowe, M.; Veerus, L.; Trosvik, P.; Buckling, A.; Pizzari, T. The Reproductive Microbiome: An Emerging Driver of Sexual Selection, Sexual Conflict, Mating Systems, and Reproductive Isolation. Trends Ecol. Evol. 2020, 35, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, W.; Zhang, M.; Wang, M.; Wu, H.; Lu, M. Effect of Hepatitis B Virus Infection on Sperm Quality and Outcomes of Assisted Reproductive Techniques in Infertile Males. Front. Med. 2021, 8, 744350. [Google Scholar] [CrossRef]
- Virecoulon, F.; Wallet, F.; Fruchart-Flamenbaum, A.; Rigot, J.-M.; Peers, M.-C.; Mitchell, V.; Courcol, R.J. Bacterial flora of the low male genital tract in patients consulting for infertility. Andrologia 2005, 37, 160–165. [Google Scholar] [CrossRef]
- Chen, C.; Song, X.; Wei, W.; Zhong, H.; Dai, J.; Lan, Z.; Li, F.; Yu, X.; Feng, Q.; Wang, Z.; et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nat. Commun. 2017, 8, 875. [Google Scholar] [CrossRef]
- Reinhardt, K.; Naylor, R.A.; Siva-Jothy, M.T. Potential sexual transmission of environmental microbes in a traumatically inseminating insect. Ecol. Entomol. 2005, 30, 607–611. [Google Scholar] [CrossRef]
- Xu, D.; Lu, W. Defensins: A Double-Edged Sword in Host Immunity. Front. Immunol. 2020, 11, 764. [Google Scholar] [CrossRef]
- Chapman, T.; Davies, S.J. Functions and analysis of the seminal fluid proteins of male Drosophila melanogaster fruit flies. Peptides 2004, 25, 1477–1490. [Google Scholar] [CrossRef] [PubMed]
- Baer, B.; Eubel, H.; Taylor, N.L.; O’Toole, N.; Millar, A.H. Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera. Genome Biol. 2009, 10, R67. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Xu, W.-B.; Li, B.-Z.; Shu, M.-A.; Zhang, Y.-M. Structural and functional analysis of transforming growth factor beta regulator 1 (TBRG1) in the red swamp crayfish Procambarus clarkii: The initial insight into TBRG1’s role in invertebrate immunity. Fish Shellfish Immunol. 2024, 145, 109350. [Google Scholar] [CrossRef]
- Wen, X.; Bian, T.; Zhang, Z.; Zhou, L.; Ge, X.; Han, J.; Guo, X.; Yang, H.; Yu, K. Interleukin-2 enhancer binding factor 2 interacts with the nsp9 or nsp2 of porcine reproductive and respiratory syndrome virus and exerts negatively regulatory effect on the viral replication. Virol. J. 2017, 14, 125. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, W.; Xu, Z.; Pan, J.; Zhao, Z.; Ren, Q. Eriocheir sinensis microRNA-7 targets crab Myd88 to enhance white spot syndrome virus replication. Fish Shellfish Immunol. 2018, 79, 274–283. [Google Scholar] [CrossRef]
- Thapa, N.; Lee, B.-H.; Kim, I.-S. TGFBIp/βig-h3 protein: A versatile matrix molecule induced by TGF-β. Int. J. Biochem. Cell Biol. 2007, 39, 2183–2194. [Google Scholar] [CrossRef]
- Ween, M.P.; Oehler, M.K.; Ricciardelli, C. Transforming Growth Factor-Beta-Induced Protein (TGFBI)/(βig-H3): A Matrix Protein with Dual Functions in Ovarian Cancer. Int. J. Mol. Sci. 2012, 13, 10461–10477. [Google Scholar] [CrossRef]
- Gotoh, A. Proteomic analysis of spermathecal fluid reveals factors related to long-term sperm storage in ant queens. Mol. Reprod. Dev. 2024, 91, e23733. [Google Scholar] [CrossRef]
- Collins, A.M.; Caperna, T.J.; Williams, V.; Garrett, W.M.; Evans, J.D. Proteomic analyses of male contributions to honey bee sperm storage and mating. Insect Mol. Biol. 2006, 15, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Baer, B.; Heazlewood, J.L.; Taylor, N.L.; Eubel, H.; Millar, A.H. The seminal fluid proteome of the honeybee Apis mellifera. Proteomics 2009, 9, 2085–2097. [Google Scholar] [CrossRef] [PubMed]
- Gorshkov, V.; Blenau, W.; Koeniger, G.; Römpp, A.; Vilcinskas, A.; Spengler, B. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry. PLoS ONE 2015, 10, e0125068. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, A.; Shigenobu, S.; Yamaguchi, K.; Kobayashi, S.; Ito, F.; Tsuji, K. Transcriptome characterization of male accessory glands in ants to identify molecules involved in their reproductive success. Insect Mol. Biol. 2018, 27, 212–220. [Google Scholar] [CrossRef] [PubMed]








| Protein Names | Symbols | FC | p-Value |
|---|---|---|---|
| Superoxide dismutase | SOD | 2.200 | 0.0393 |
| Glutathione S-transferase | GST | 3.217 | 0.002 |
| Thioredoxin | Trx | 6.220 | 0.001 |
| Catalase | CAT | 0.033 | 0.012 |
| Lactate dehydrogenase | LDH | 2.491 | 0.011 |
| Hexokinase | HK | Inf | 0.000 |
| Pyruvate dehydrogenase kinase | PDK | Inf | 0.000 |
| ATP synthase | ATP synthase | Inf | 0.000 |
| Glyceraldehyde-3-phosphate dehydrogenase | GAPDH | 0.090 | 0.017 |
| Triosephosphate isomerase | TIM | 0.062 | 0.006 |
| Phosphoglycerate kinase | PGK | 0.016 | 0.003 |
| Transforming growth factor beta regulator 1 | TBRG1 | Inf | 0.000 |
| Interleukin enhancer binding factor 2 | ILF2 | 2.395 | 0.025 |
| Transforming growth factor beta-induced protein | TGFBIp | 7.500 | 0.040 |
| Thrombospondin type-1 domain-containing protein 4 | THSD4 | Inf | 0.000 |
| Chitinase | Chitinase | 0.002 | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Yao, J.; Huang, Z.; Li, Y.; Luo, Q.; Wang, W.; Sun, G.; Xu, X.; Li, Z.; Li, B.; et al. Proteome Analysis of Spermathecal Fluid and Seminal Plasma Reveals the Mechanism of Sperm Storage in Amphioctopus Fangsiao. Animals 2025, 15, 3495. https://doi.org/10.3390/ani15233495
Sun X, Yao J, Huang Z, Li Y, Luo Q, Wang W, Sun G, Xu X, Li Z, Li B, et al. Proteome Analysis of Spermathecal Fluid and Seminal Plasma Reveals the Mechanism of Sperm Storage in Amphioctopus Fangsiao. Animals. 2025; 15(23):3495. https://doi.org/10.3390/ani15233495
Chicago/Turabian StyleSun, Xiaojie, Jiantao Yao, Zexin Huang, Yan Li, Qihao Luo, Weijun Wang, Guohua Sun, Xiaohui Xu, Zan Li, Bin Li, and et al. 2025. "Proteome Analysis of Spermathecal Fluid and Seminal Plasma Reveals the Mechanism of Sperm Storage in Amphioctopus Fangsiao" Animals 15, no. 23: 3495. https://doi.org/10.3390/ani15233495
APA StyleSun, X., Yao, J., Huang, Z., Li, Y., Luo, Q., Wang, W., Sun, G., Xu, X., Li, Z., Li, B., Feng, Y., & Yang, J. (2025). Proteome Analysis of Spermathecal Fluid and Seminal Plasma Reveals the Mechanism of Sperm Storage in Amphioctopus Fangsiao. Animals, 15(23), 3495. https://doi.org/10.3390/ani15233495

