Ethanolic Extract of Pomegranate (Punica granatum L.) Prevents Oxidative Stress and Preserves the Morphology of Preantral Follicles Included in Bovine Ovarian Tissue Cultured In Vitro
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Ethical Approval
2.2. Production of the Ethanolic Extract from the Fruit Peel of Punica granatum L. and Chemical Analyses
2.3. High-Performance Liquid Chromatography (HPLC-UV-Vis)
2.4. Source of Ovaries and In Vitro Culture of Ovarian Tissue
2.5. Evaluation of Total Antioxidant Capacity by the DPPH Method
2.6. Evaluation of Total Antioxidant Capacity by the ABTS Method
2.7. Morphological and Follicular Development Analysis by Histology
2.8. Ovarian Stromal Cell Density in In Vitro Cultured Ovarian Tissue
2.9. Analysis of the Extracellular Matrix (ECM) in In Vitro Cultured Ovarian Tissue
2.10. Evaluation of Ultrastructural Morphology of Bovine Preantral Follicles After in Culture by Transmission Electron Microscope
2.11. Total Proteins (Bradford Method)
2.12. Evaluation of the Redox Profile Based on Thiol Content
2.13. Determination of the Malondialdehyde (MDA) Levels by Production of Thiobarbituric Acid Reactive Substances (TBARS)
2.14. Determination of Antioxidant Status
2.14.1. Activity of the Superoxide Dismutase Activity (SOD) Enzyme
2.14.2. Catalase Activity (CAT)
2.15. Statistical Analysis
3. Results
3.1. Chemical Composition of the Ethanolic Extract of Punica granatum (EE-PG)
3.2. Effect of EE-PG on Follicular Survival, Development, Follicular and Oocyte Diameters, and Density of Stromal Cells
3.3. Evaluation of Type I and III Collagen Fibers in the Extracellular Matrix
3.4. Effect of EE-PG on Follicular Ultrastructure Preservation
3.5. Total Antioxidant Capacity of EE-PG Assessed by DPPH and ABTS Methods
3.6. Effect of EE-PG on Antioxidant Enzyme Activity (SOD and CAT)
3.7. Redox Profile Evaluation Based on MDA Content and Reduced Thiol Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luz, H.K.M.; Wanderley, L.S.; Faustino, L.R.; da Silva, C.M.G.; de Figueiredo, J.R.; Rodrigues, A.P.R. Papel de agentes antioxidantes na criopreservação de células germinativas e embriões. Acta Sci. Vet. 2011, 39, 956. [Google Scholar]
- Silva, B.R.; Silva, J.R.V. Mechanisms of action of non-enzymatic antioxidants to control oxidative stress during in vitro follicle growth, oocyte maturation, and embryo development. Anim. Reprod. Sci. 2023, 249, 107186. [Google Scholar] [CrossRef]
- das Chagas Costa, F.; Vasconcelos, E.M.; Silva, J.R.V.; Liza, A.; Batista, P.S. Influência das espécies reativas de oxigênio durante o cultivo in vitro de oócitos e folículos ovarianos de mamíferos domésticos. Rev. Bras. Reprodução Anim. 2022, 46, 28–42. [Google Scholar]
- Silva, B.R.; Costa, F.C.; Neto, M.F.D.L.; Filho, F.F.C.; de Assis, E.I.; Aguiar, F.L.; Silva, A.W.; Martins, S.D.; Araújo, V.R.; Matos, M.H.; et al. Melatonin acts through different mechanisms to control oxidative stress and primordial follicle activation and survival during in vitro culture of bovine ovarian tissue. Domest. Anim. Endocrinol. 2024, 86, 106824. [Google Scholar] [CrossRef] [PubMed]
- De Ligny, W.; Smits, R.M.; Mackenzie-Proctor, R.; Jordan, V.; Fleischer, K.; De Bruin, J.P.; Showell, M.G. Antioxidants for male subfertility. Cochrane Database Syst. Rev. 2022, 5, CD007411. [Google Scholar] [CrossRef] [PubMed]
- Kulkarnia, A.P.; Aradhyaa, S.M.; Divakarb, S. Isolation and identification of a radical scavenging antioxidant–Punicalagin from pith and carpellary membrane of pomegranate fruit. Food Chem. 2004, 87, 551–557. [Google Scholar] [CrossRef]
- Seeram, N.; Adams, L.; Henning, S.; Niu, Y.; Zhang, Y.; Nair, M.; Heber, D. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J. Nutr. Biochem. 2005, 16, 360–367. [Google Scholar] [CrossRef]
- Sun, W.; Yan, C.; Frost, B.; Wang, X.; Hou, C.; Zeng, M.; Gao, H.; Kang, Y.; Liu, J. Pomegranate extract decreases oxidative stress and alleviates mitochondrial impairment by activating AMPK-Nrf2 in hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Sci. Rep. 2016, 6, 34246. [Google Scholar] [CrossRef]
- Khalaf, H.A.; Arafat, E.A.; Ghoneim, F.M. A histological, immunohistochemical and biochemical study of the effects of pomegranate peel extracts on gibberellic acid induced oxidative stress in adult rat testes. Biotech. Histochem. 2019, 94, 569–582. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, Z.; Wang, S.; Li, T.; Mastriani, E.; Li, Q.-H.; Bao, H.-X.; Zhou, Y.-J.; Wang, X.; Liu, Y.; et al. Main components of pomegranate, ellagic acid and luteolin, inhibit metastasis of ovarian cancer by down-regulating MMP2 and MMP9. Cancer Biol. Ther. 2017, 18, 990–999. [Google Scholar] [CrossRef]
- Bellusci, G.; Mattiello, L.; Iannizzotto, V.; Ciccone, S.; Maiani, E.; Villani, V.; Diederich, M.; Gonfloni, S. Kinase-independent inhibition of cyclophosphamide-induced pathways protects the ovarian reserve and prolongs fertility. Cell Death Dis. 2019, 10, 726. [Google Scholar] [CrossRef]
- Bezerra, V.S.; Costa, F.C.; Filho, F.F.C.; Costa, J.J.N.; Neto, M.F.d.L.; Furtado, C.L.M.; Ceccatto, V.M.; Araújo, V.R.; Silva, J.R.V. Punicalagin increases follicular activation, development and activity of superoxide dismutase 1, catalase, and glutathione peroxidase 1 in cultured bovine ovarian tissues. Reprod. Fertil. Dev. 2024, 36, RD24029. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.T.; Yang, C. Effects of dietary Punica granatum L. by-products on performance, immunity, intestinal and fecal microbiology, and odorous gas emissions from excreta in broilers. J. Poult. Sci. 2017, 54, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.; Naveed, M.; BiBi, J.; Kamboh, A.A.; Arain, M.A.; Shah, Q.A.; Alagawany, M.; El-Hack, M.E.A.; Abdel-Latif, M.A.; Yatoo, M.I.; et al. The promising pharmacological effects and therapeutic/medicinal applications of Punica granatum L. (Pomegranate) as a functional food in humans and animals. Pat. Inflamm. Allergy Drug Discov. 2018, 12, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Yayla, M.; Cetin, D.; Adali, Y.; Kilicle, P.A.; Toktay, E. Potential therapeutic effect of pomegranate seed oil on ovarian ischemia/reperfusion injury in rats. Iran. J. Basic Med. Sci. 2018, 21, 1262–1268. [Google Scholar]
- Nascimento, J.E.T.D.; Rodrigues, A.L.M.; De Lisboa, D.S.; Liberato, H.R.; Falcão, M.J.C.; Da Silva, C.R.; Júnior, H.V.N.; Filho, R.B.; Junior, V.F.D.P.; Alves, D.R.; et al. Chemical Composition and Antifungal In Vitro and In Silico, Antioxidant, and Anticholinesterase Activities of Extracts and Constituents of Ouratea fieldingiana (DC.) Baill. Evid. Based Complement. Altern. Med. 2018, 12, 1748487. [Google Scholar] [CrossRef]
- Çam, M.; Hısıl, M. Pressurised water extraction of polyphenols from pomegranate peels. Food Chem. 2010, 123, 878–885. [Google Scholar] [CrossRef]
- Jimenez, C.R.; Araújo, V.R.; Penitente-Filho, J.M.; de Azevedo, J.L.; Silveira, R.G.; Torres, C.A.A. The base medium affects ultrastructure and survival of bovine preantral follicles cultured in vitro. Theriogenology 2016, 85, 1019–1029. [Google Scholar] [CrossRef]
- Silva, J.R.V.; Van den Hurk, R.; Figueiredo, J.R. In vitro culture of preantral follicles: Advances and perspectives. Anim. Reprod. Sci. 2004, 82–83, 49–60. [Google Scholar] [CrossRef]
- Magalhães-Padilha, D.M.; Andrade, E.R.; Sales, A.D.; Rodrigues, G.Q.; Lima, L.F.; Lunardi, F.O.; Apolloni, L.B.; Peixoto, C.A.; Silva, J.R.V. In vitro survival and development of goat preantral follicles cultured in two-dimensional and three-dimensional systems using α-MEM or TCM-199 media. Theriogenology 2012, 77, 563–571. [Google Scholar] [CrossRef]
- Morais, A.; Lima, L.; Silva, A.; Lienou, L.; Ferreira, A.; Watanabe, Y.; Joaquim, D.; Alves, B.; Pereira, A.; Alves, D.; et al. Effect of carvacrol antioxidant capacity on oocyte maturation and embryo production in cattle. Zygote 2023, 31, 173–179. [Google Scholar] [CrossRef]
- Araújo, V.R.; Gastal, M.O.; Figueiredo, J.R.; Gastal, E.L. In vitro culture of bovine preantral follicles: A review. Reprod. Biol. Endocrinol. 2014, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Alves, K.A.; Alves, B.G.; Gastal, G.D.A.; de Tarso, S.G.S.; Gastal, M.O.; Figueiredo, J.R.; Gambarini, M.L.; Gastal, E.L. The Mare Model to Study the Effects of Ovarian Dynamics on Preantral Follicle Features. PLoS ONE 2016, 11, e0149693. [Google Scholar] [CrossRef] [PubMed]
- Rittíe, L. Fibrosis; Methods in Molecular Biology; Springer: Berlin/Heidelberg, Germany, 2017; 520p. [Google Scholar]
- Junqueira, L.C.U.; Cossermelli, W.; Brentani, R. Differential staining of collagens type I, II and III by Sirius red and polarization microscopy. Arch. Histol. Jpn. 1978, 41, 267–274. [Google Scholar] [CrossRef]
- Takahashi, H.; Nara, Y.; Tuzimura, K. Fluorometric determination of glutathione by N-(9-acridinyl)maleimide and its application to biological materials. Agric. Biol. Chem. 1978, 42, 769–774. [Google Scholar]
- Cighetti, G.; Debiasi, S.; Paroni, R.; Allevi, P. Free and total malondialdehyde assessment in biological matrices by gas chromatography–mass spectrometry: What is needed for an accurate detection. Anal. Biochem. 1999, 266, 222–229. [Google Scholar] [CrossRef]
- Furtado, R.L.; Martins, J.E.R.; Oliveira, M.A.F.; Guerreiro, D.D.; de Sá, N.A.R.; Ferraz, A.S.M.; Ceccatto, V.M.; Rodrigues, A.P.R.; Araújo, V.R. Acute effect of high-intensity interval training exercise on redox status in the ovaries of rats fed a high-fat diet. Reprod. Fertil. Dev. 2021, 33, 713–724. [Google Scholar] [CrossRef]
- Bannister, J.V.; Calabrese, L. Assays for superoxide dismutase. Methods Biochem. Anal. 1987, 32, 279–312. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Barbieri, M.; Heard, C.M. Isolation of punicalagin from Punica granatum rind extract using mass-directed semi-preparative ESI-AP single quadrupole LC-MS. J. Pharm. Biomed. Anal. 2019, 166, 90–94. [Google Scholar] [CrossRef]
- Lu, J.; Wei, Y.; Yuan, Q. Preparative separation of punicalagin from pomegranate husk by high-speed countercurrent chromatography. J. Chromatogr. B 2007, 857, 175–179. [Google Scholar] [CrossRef]
- Talekar, S.; Patti, A.F.; Vijayraghavan, R.; Arora, A. Rapid, enhanced and eco-friendly recovery of punicalagin from fresh waste pomegranate peels via aqueous ball milling. J. Clean. Prod. 2019, 228, 1238–1247. [Google Scholar] [CrossRef]
- Ramlagan, P.; Labib, R.M.; Farag, M.A.; Neergheen, V.S. Advances towards the analysis, metabolism and health benefits of punicalagin, one of the largest ellagitannins from plants, with future perspectives. Phytomed. Plus. 2022, 2, 100313. [Google Scholar] [CrossRef]
- Cervantes-Anaya, N.; Azpilcueta-Morales, G.; Estrada-Camarena, E.; Ortega, D.R.; de la Cruz, V.P.; González-Trujano, M.E.; López-Rubalcava, C. Pomegranate and Its Components, Punicalagin and Ellagic Acid, Promote Antidepressant, Antioxidant, and Free Radical-Scavenging Activity in Ovariectomized Rats. Front. Behav. Neurosci. 2022, 16, 836681. [Google Scholar] [CrossRef] [PubMed]
- Aboonabi, A.; Rahmat, A.; Othman, F. Antioxidant effect of pomegranate against streptozotocin-nicotinamide generated oxidative stress induced diabetic rats. Toxicol. Rep. 2014, 1, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Parkes, W.S.; Amargant, F.; Zhou, L.T.; Villanueva, C.E.; Duncan, F.E.; Pritchard, M.T. Hyaluronan and collagen are prominent extracellular matrix components in bovine and porcine ovaries. Genes 2021, 12, 1186. [Google Scholar] [CrossRef] [PubMed]
- Picton, H.M.; Harris, S.E.; Muruvi, W.; Chambers, E.L. The in vitro growth and maturation of follicles. Reproduction 2008, 136, 703–715. [Google Scholar] [CrossRef]
- Kolesarova, A.; Baldovska, S.; Kohut, L.; Vasicek, J.; Ivanisova, E.; Arvay, J.; Duracka, M.; Roychoudhury, S. Modulatory effect of pomegranate peel extract on key regulators of ovarian cellular processes in vitro. Front. Endocrinol. 2023, 14, 1277155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.A.F.; Martins, S.D.; de Assis, E.I.T.; Martins, J.E.R.; Alves, F.L.; Bittencourt, S.R.A.; da Silva, I.G.M.; Báo, S.N.; Fidelis, Q.C.; de Morais, S.M.; et al. Ethanolic Extract of Pomegranate (Punica granatum L.) Prevents Oxidative Stress and Preserves the Morphology of Preantral Follicles Included in Bovine Ovarian Tissue Cultured In Vitro. Animals 2025, 15, 3344. https://doi.org/10.3390/ani15223344
Oliveira MAF, Martins SD, de Assis EIT, Martins JER, Alves FL, Bittencourt SRA, da Silva IGM, Báo SN, Fidelis QC, de Morais SM, et al. Ethanolic Extract of Pomegranate (Punica granatum L.) Prevents Oxidative Stress and Preserves the Morphology of Preantral Follicles Included in Bovine Ovarian Tissue Cultured In Vitro. Animals. 2025; 15(22):3344. https://doi.org/10.3390/ani15223344
Chicago/Turabian StyleOliveira, Maria Alice Felipe, Solano Dantas Martins, Ernando Igo Teixeira de Assis, Jonathan Elias Rodrigues Martins, Fernanda Lima Alves, Sara Rany Alexandre Bittencourt, Ingrid Gracielle Martins da Silva, Sônia Nair Báo, Queli Cristina Fidelis, Selene Maia de Morais, and et al. 2025. "Ethanolic Extract of Pomegranate (Punica granatum L.) Prevents Oxidative Stress and Preserves the Morphology of Preantral Follicles Included in Bovine Ovarian Tissue Cultured In Vitro" Animals 15, no. 22: 3344. https://doi.org/10.3390/ani15223344
APA StyleOliveira, M. A. F., Martins, S. D., de Assis, E. I. T., Martins, J. E. R., Alves, F. L., Bittencourt, S. R. A., da Silva, I. G. M., Báo, S. N., Fidelis, Q. C., de Morais, S. M., Silva, J. R. V., Ceccatto, V. M., & Araújo, V. R. (2025). Ethanolic Extract of Pomegranate (Punica granatum L.) Prevents Oxidative Stress and Preserves the Morphology of Preantral Follicles Included in Bovine Ovarian Tissue Cultured In Vitro. Animals, 15(22), 3344. https://doi.org/10.3390/ani15223344

