Relationships Between Fiber in Feedlot Diets and Growth Performance of Beef Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Selection and Database Development
2.2. Statistical Analyses
3. Results
3.1. Dry Matter Intake
| Regression Coefficients | Regression Statistics 3 | |||
|---|---|---|---|---|
| Item 2 | Intercept | Slope | RMSE | r2 |
| Dry matter intake, % of BW | ||||
| Dietary roughage, % | 1.8956 | 0.0109 | 0.0870 | 0.299 |
| p-values 4 | <0.001 | <0.001 | CV = 4.38% | |
| Lower 95% CI | 1.8648 | 0.0077 | ||
| Upper 95% CI | 1.9264 | 0.0141 | ||
| NDF from roughage, % | 1.9145 | 0.0162 | 0.0939 | 0.196 |
| p-values 4 | <0.001 | <0.001 | CV = 4.73% | |
| Lower 95% CI | 1.8820 | 0.0099 | ||
| Upper 95% CI | 1.9470 | 0.0224 | ||
| Dietary NDF, % | 1.5517 | 0.0228 | 0.0833 | 0.633 |
| p-values 4 | <0.001 | <0.001 | CV = 4.17% | |
| Lower 95% CI | 1.4856 | 0.0195 | ||
| Upper 95% CI | 1.6178 | 0.0261 | ||
| Regression Coefficients | Regression Statistics 3 | |||
|---|---|---|---|---|
| Item 2 | Intercept | Slope | RMSE | r2 |
| Dry matter intake, kg/d | ||||
| Dietary roughage, % | 9.0729 | 0.0533 | 0.4709 | 0.259 |
| p-values 4 | <0.001 | <0.001 | CV = 4.95% | |
| Lower 95% CI | 8.9063 | 0.0361 | ||
| Upper 95% CI | 9.2396 | 0.0705 | ||
| NDF from roughage, % | 9.1560 | 0.0813 | 0.4927 | 0.183 |
| p-values 4 | <0.001 | <0.001 | CV = 5.18 | |
| Lower 95% CI | 8.9853 | 0.0485 | ||
| Upper 95% CI | 9.3267 | 0.1141 | ||
| Dietary NDF, % | 7.3699 | 0.1109 | 0.4529 | 0.581 |
| p-values 4 | <0.001 | <0.001 | CV = 4.75% | |
| Lower 95% CI | 7.0102 | 0.0929 | ||
| Upper 95% CI | 7.7297 | 0.1289 | ||
3.2. Average Daily Gain
| Regression Coefficients | Regression Statistics 3 | |||
|---|---|---|---|---|
| Item 2 | Intercept | Slope | RMSE | r2 |
| Average daily gain, kg | ||||
| Dietary roughage, % | 1.5739 | 0.0024 | 0.0926 | 0.018 |
| p-values 4 | <0.001 | 0.167 | CV = 5.81% | |
| Lower 95% CI | 1.5411 | −0.0010 | ||
| Upper 95% CI | 1.6067 | 0.0058 | ||
| NDF from roughage, % | 1.5663 | 0.0071 | 0.0827 | 0.056 |
| p-values 4 | <0.001 | 0.013 | CV = 5.18 | |
| Lower 95% CI | 1.5377 | 0.0016 | ||
| Upper 95% CI | 1.5950 | 0.0126 | ||
| Dietary NDF, % | 1.4658 | 0.0064 | 0.0825 | 0.122 |
| p-values 4 | <0.001 | <0.001 | CV = 5.19% | |
| Lower 95% CI | 1.4003 | 0.0031 | ||
| Upper 95% CI | 1.5313 | 0.0097 | ||
3.3. Gain-to-Feed Ratio
| Regression Coefficients | Regression Statistics 3 | |||
|---|---|---|---|---|
| Item 2 | Intercept | Slope | RMSE | r2 |
| Gain–feed | ||||
| Dietary roughage, % | 0.1724 | −0.0005 | 0.0084 | 0.078 |
| p-values 4 | <0.001 | 0.003 | CV = 4.99% | |
| Lower 95% CI | 0.1694 | −0.0008 | ||
| Upper 95% CI | 0.1754 | −0.0002 | ||
| NDF from roughage, % | 0.1722 | −0.0009 | 0.0084 | 0.084 |
| p-values 4 | <0.001 | 0.002 | CV = 4.99 | |
| Lower 95% CI | 0.1693 | −0.0015 | ||
| Upper 95% CI | 0.1751 | −0.0003 | ||
| Dietary NDF, % | 0.1891 | −0.0011 | 0.0081 | 0.296 |
| p-values 4 | <0.001 | <0.001 | CV = 4.81 | |
| Lower 95% CI | 0.1827 | −0.0014 | ||
| Upper 95% CI | 0.1955 | −0.0008 | ||
3.4. Hot Carcass Weight
| Regression Coefficients | Regression Statistics 3 | |||
|---|---|---|---|---|
| Item 2 | Intercept | Slope | RMSE | r2 |
| Hot carcass weight, kg | ||||
| Dietary roughage, % | 352.16 | 0.0894 | 4.8148 | 0.009 |
| p-values 4 | <0.001 | 0.316 | CV = 1.36% | |
| Lower 95% CI | 350.46 | −0.0865 | ||
| Upper 95% CI | 353.86 | 0.2653 | ||
| NDF from roughage, % | 353.23 | 0.0377 | 4.8015 | 0.001 |
| p-values 4 | <0.001 | 0.816 | CV = 1.36% | |
| Lower 95% CI | 351.57 | −0.2820 | ||
| Upper 95% CI | 354.89 | 0.3575 | ||
| Dietary NDF, % | 358.24 | −0.2652 | 4.7397 | 0.068 |
| p-values 4 | <0.001 | 0.006 | CV = 1.34% | |
| Lower 95% CI | 354.47 | −0.4533 | ||
| Upper 95% CI | 362.01 | −0.0772 | ||
4. Discussion
4.1. Measures of Fiber and Growth Performance
4.2. Physically Effective Fiber
5. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Articles Used in the Database
References
- Samuelson, K.L.; Hubbert, M.E.; Galyean, M.L.; Löest, C.A. Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. J. Anim. Sci. 2016, 94, 2648–2663. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L.; Defoor, P.J. Effects of roughage source and level on intake by feedlot cattle. J. Anim. Sci. 2003, 81 (Suppl. 2), E8–E16. [Google Scholar] [CrossRef]
- Galyean, M.L.; Hubbert, M.E. REVIEW: Traditional and alternative sources of fiber—Roughage values, effectiveness, and levels in starting and finishing diets. Prof. Anim. Sci. 2014, 30, 571–584. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Chengappa, M.M. Liver abscesses in feedlot cattle: A review. J. Anim. Sci. 1998, 76, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Arelovich, H.M.; Abney, C.S.; Vizcarra, J.A.; Galyean, M.L. Effects of dietary neutral detergent fiber on intakes of dry matter and net energy by dairy and beef cattle: Analysis of published data. Prof. Anim. Sci. 2008, 24, 375–383. [Google Scholar] [CrossRef]
- NASEM (The National Academies of Sciences, Engineering, and Medicine). Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Galyean, M.L.; Tedeschi, L.O. Predicting microbial protein synthesis in beef cattle: Relationship to intakes of total digestible nutrients and crude protein. J. Anim. Sci. 2014, 92, 5099–5111. [Google Scholar] [CrossRef] [PubMed]
- Hales, K.E.; Freetly, H.C.; Shackeflord, S.D.; King, D.A. Effects of roughage concentration in dry-rolled corn-based diets containing wet distillers grains with solubles on performance and carcass characteristics of finishing beef steers. J. Anim. Sci. 2013, 91, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- May, M.L.; Quinn, M.J.; DiLorenzo, N.; Smith, D.R.; Galyean, M.L. Effects of roughage concentration in steam-flaked corn-based diets containing wet distillers grains with solubles on feedlot cattle performance, carcass characteristics, and in vitro fermentation. J. Anim. Sci. 2011, 89, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Grant, R.J. Symposium review: Physical characterization of feeds and development of the physically effective fiber system. J. Dairy Sci. 2023, 106, 4454–4463. [Google Scholar] [CrossRef] [PubMed]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef] [PubMed]
- Gentry, W.W.; Weiss, C.P.; Meredith, C.M.; McCollum, F.T.; Cole, N.A.; Jennings, J.S. Effects of roughage inclusion and particle size on performance and rumination behavior of finishing beef steers. J. Anim. Sci. 2016, 94, 4759–4770. [Google Scholar] [CrossRef] [PubMed]
- Llonch, L.; Castillejos, L.; Ferret, A. Increasing the content of physically effective fiber in high-concentrate diets fed to beef heifers affects intake, sorting behavior, time spent ruminating, and rumen pH. J. Anim. Sci. 2020, 98, skaa192. [Google Scholar] [CrossRef] [PubMed]
- Chibisa, G.E.; Beauchemin, K.A.; Koenig, K.M.; Penner, G.B. Optimum roughage proportion in barley-based feedlot cattle diets: Total tract nutrient digestibility, rumination, ruminal acidosis, short-chain fatty absorption, and gastrointestinal tract barrier function. J. Anim. Sci. 2020, 98, skaa160. [Google Scholar] [CrossRef] [PubMed]
- Alhadas, H.M.; Valadares Filho, S.C.; Silva, F.F.; Silva, F.A.S.; Pucetti, P.; Pacheco, M.V.C.; Silva, B.C.; Tedeschi, L.O. Effects of including physically effective fiber from sugarcane in whole corn grain diets on the ingestive, digestive, and ruminal parameters of growing beef bulls. Livest. Sci. 2021, 248, 104508. [Google Scholar] [CrossRef]
- Pereira, M.C.S.; Yang, W.Z.; Beauchemin, K.A.; McAllister, T.A.; Wood, K.M.; Penner, G.B. Effect of silage source, physically effective neutral detergent fiber, and undigested neutral detergent fiber concentrations on performance and carcass characteristics of finishing steers. Transl. Anim. Sci. 2021, 5, txaa236. [Google Scholar] [CrossRef] [PubMed]
- Spowart, P.R.; Richeson, J.T.; Crawford, D.M.; Samuelson, K.L. Impacts of including Sweet Bran and wet distillers grains with solubles alone or in combination in finishing cattle diets on physically effective fiber concentrations and rumen buffering characteristics of feedlot cattle. Transl. Anim. Sci. 2022, 6, txac091. [Google Scholar] [CrossRef] [PubMed]



| Variable 1 | Mean | SD | Minimum | Maximum |
|---|---|---|---|---|
| Across-Study Values | ||||
| No. of observations | 110 | - | - | - |
| Initial BW, kg | 369.1 | 45.56 | 310.5 | 493 |
| Final BW, kg | 585.8 | 52.61 | 474 | 733 |
| Hot carcass weight, kg | 357.4 | 40.33 | 260.7 | 425 |
| Days on feed | 131.2 | 27.77 | 70 | 175 |
| DMI, % of average BW | 1.99 | 0.22 | 1.36 | 2.58 |
| DMI, kg/d | 9.51 | 1.39 | 6.5 | 11.8 |
| ADG, kg/d | 1.63 | 0.26 | 0.77 | 2.31 |
| G:F | 0.17 | 0.02 | 0.12 | 0.23 |
| Dietary roughage, % | 8.2 | 5.20 | 0 | 30.0 |
| NDF in roughage, % | 51.8 | 17.72 | 0 | 85.9 |
| NDF from roughage, % | 4.4 | 2.85 | 0 | 15.2 |
| Dietary fibrous byproduct, % | 13.6 | 14.53 | 0 | 40.1 |
| NDF in byproduct, % | 18.9 | 16.4 | 0 | 54.0 |
| NDF from byproduct, % | 4.2 | 4.42 | 0 | 12.4 |
| Dietary NEm, Mcal/kg | 2.10 | 0.14 | 1.27 | 2.31 |
| Dietary NEg, Mcal/kg | 1.43 | 0.11 | 1.22 | 1.86 |
| Dietary NDF, % | 19.5 | 4.79 | 8.58 | 35.1 |
| Dietary starch, % | 51.5 | 8.58 | 31.0 | 67.5 |
| Dietary CP, % | 14.5 | 1.83 | 11.7 | 21.2 |
| Within-Study Ranges | ||||
| Dietary roughage, % | 9.4 | 5.37 | 0.0 | 22.5 |
| Dietary fibrous byproduct, % | 10.1 | 14.60 | 0.0 | 40.1 |
| Dietary NDF, % | 5.2 | 3.12 | 1.1 | 12.4 |
| NDF from roughage, % | 4.9 | 2.88 | 1.4 | 11.4 |
| NDF from byproduct, % | 3.3 | 4.72 | 0.0 | 12.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galyean, M.L. Relationships Between Fiber in Feedlot Diets and Growth Performance of Beef Cattle. Animals 2025, 15, 3266. https://doi.org/10.3390/ani15223266
Galyean ML. Relationships Between Fiber in Feedlot Diets and Growth Performance of Beef Cattle. Animals. 2025; 15(22):3266. https://doi.org/10.3390/ani15223266
Chicago/Turabian StyleGalyean, Michael L. 2025. "Relationships Between Fiber in Feedlot Diets and Growth Performance of Beef Cattle" Animals 15, no. 22: 3266. https://doi.org/10.3390/ani15223266
APA StyleGalyean, M. L. (2025). Relationships Between Fiber in Feedlot Diets and Growth Performance of Beef Cattle. Animals, 15(22), 3266. https://doi.org/10.3390/ani15223266

