Psychobiotics in Aquaculture: Harnessing the Microbiome–Gut–Brain Axis for Stress Management and Production Enhancement in Fish
Simple Summary
Abstract
1. Introduction
2. Systemic Stress and Psychological Stressors in Aquaculture
2.1. HPI Axis Activation Under Chronic Stress
2.2. Sympatho-Chromaffin Pathway and Acute Stress
2.3. Additional Regulatory Systems
3. The Microbiome–Gut–Brain Axis and Its Specifics in Fish
3.1. The Nervous System Component
3.2. Endocrine Signaling Within the MGBA
3.3. Immune Signaling and Intestinal Barrier Integrity
3.4. Distinct Characteristics of the Fish Intestinal Microbiota
4. Psychobiotics: From Concept to Application
4.1. Definition and Mechanisms of Action
4.2. Neuroactive Metabolites and Their Producers
5. Evidence Base for Psychobiotic Effects in Fish
5.1. Foundational Evidence from Model Organisms
5.2. Evidence from Commercial Aquaculture Species
5.3. Synthesis of Evidence and Research Gaps
6. Current Challenges and Future Directions
6.1. Current Limitations and Challenges
6.2. Methodological Approaches for Psychobiotic Development
6.3. Research Gaps and Future Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2024—Blue Transformation in action; FAO: Rome, Italy, 2024; pp. 1–10. [Google Scholar] [CrossRef]
- Tacon, A.G.; Shumway, S.E. Critical need to increase aquatic food production and food supply from aquaculture and capture fisheries: Trends and outlook. Rev. Fish. Sci. Aquac. 2024, 32, 389–395. [Google Scholar] [CrossRef]
- Leal, E.; Fernández-Durán, B.; Guillot, R.; Ríos, D.; Cerdá-Reverter, J.M. Stress-induced effects on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): A self-feeding approach. J. Comp. Physiol. B 2011, 181, 1035–1044. [Google Scholar] [CrossRef]
- Arechavala-Lopez, P.; Cabrera-Álvarez, M.J.; Maia, C.M.; Saraiva, J.L. Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Rev. Aquac. 2022, 14, 704–728. [Google Scholar] [CrossRef]
- Hai, N. The use of probiotics in aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef] [PubMed]
- Fachri, M.; Amoah, K.; Huang, Y.; Cai, J.; Alfatat, A.; Ndandala, C.B.; Shija, V.M.; Jin, X.; Bissih, F.; Chen, H. Probiotics and paraprobiotics in aquaculture: A sustainable strategy for enhancing fish growth, health and disease prevention-a review. Front. Mar. Sci. 2024, 11, 1499228. [Google Scholar] [CrossRef]
- Nayak, S.K. Probiotics and immunity: A fish perspective. Fish Shellfish Immunol. 2010, 29, 2–14. [Google Scholar] [CrossRef]
- Wuertz, S.; Schroeder, A.; Wanka, K.M. Probiotics in fish nutrition—Long-standing household remedy or native nutraceuticals? Water 2021, 13, 1348. [Google Scholar] [CrossRef]
- Slykerman, R.F.; Davies, N.; Vlckova, K.; O’Riordan, K.J.; Bassett, S.A.; Dekker, J.; Schellekens, H.; Hyland, N.P.; Clarke, G.; Patterson, E. Precision Psychobiotics for Gut–Brain Axis Health: Advancing the Discovery Pipelines to Deliver Mechanistic Pathways and Proven Health Efficacy. Microb. Biotechnol. 2025, 18, e70079. [Google Scholar] [CrossRef]
- Butt, R.L.; Volkoff, H. Gut microbiota and energy homeostasis in fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef]
- Costa, C.F.; Ferreira-Gomes, J.; Barbosa, F.; Sampaio-Maia, B.; Burnet, P.W. Importance of good hosting: Reviewing the bi-directionality of the microbiome-gut-brain-axis. Front. Neurosci. 2024, 18, 1386866. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Probiotics, prebiotics, synbiotics, and fermented foods as potential biotics in nutrition improving health via microbiome-gut-brain axis. Fermentation 2022, 8, 303. [Google Scholar] [CrossRef]
- Ringø, E.; Hoseinifar, S.H.; Ghosh, K.; Doan, H.V.; Beck, B.R.; Song, S.K. Lactic acid bacteria in finfish—An update. Front. Microbiol. 2018, 9, 1818. [Google Scholar] [CrossRef]
- Merrifield, D.L.; Dimitroglou, A.; Foey, A.; Davies, S.J.; Baker, R.T.; Bøgwald, J.; Castex, M.; Ringø, E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 2010, 302, 1–18. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.; Sandhu, K.V.; Bastiaanssen, T.F.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V. The microbiota-gut-brain axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress 2017, 7, 124–136. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, M.; Kneifel, W.; Domig, K.J. A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture 2015, 448, 464–475. [Google Scholar] [CrossRef]
- Ciji, A.; Akhtar, M.S. Stress management in aquaculture: A review of dietary interventions. Rev. Aquac. 2021, 13, 2190–2247. [Google Scholar] [CrossRef]
- Martos-Sitcha, J.A.; Mancera, J.M.; Prunet, P.; Magnoni, L.J. Welfare and stressors in fish: Challenges facing aquaculture. Front. Physiol. 2020, 11, 162. [Google Scholar] [CrossRef]
- Virtanen, M.I.; Brinchmann, M.F.; Patel, D.M.; Iversen, M.H. Chronic stress negatively impacts wound healing, welfare, and stress regulation in internally tagged Atlantic salmon (Salmo salar). Front. Physiol. 2023, 14, 1147235. [Google Scholar] [CrossRef]
- Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef]
- Prentice, P.M.; Houslay, T.M.; Wilson, A.J. Exploiting animal personality to reduce chronic stress in captive fish populations. Front. Vet. Sci. 2022, 9, 1046205. [Google Scholar] [CrossRef]
- Timmermans, S.; Souffriau, J.; Libert, C. A general introduction to glucocorticoid biology. Front. Immunol. 2019, 10, 1545. [Google Scholar] [CrossRef]
- Lockett, J.; Inder, W.J.; Clifton, V.L. The glucocorticoid receptor: Isoforms, functions, and contribution to glucocorticoid sensitivity. Endocr. Rev. 2024, 45, 593–624. [Google Scholar] [CrossRef]
- Kuo, T.; McQueen, A.; Chen, T.-C.; Wang, J.-C. Regulation of glucose homeostasis by glucocorticoids. Glucocorticoid Signal. Mol. Mice Man 2015, 872, 99–126. [Google Scholar] [CrossRef]
- Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids-mechanisms of action in health and disease. Rheum. Dis. Clin. N. Am. 2016, 42, 15. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.L.; Butler, L.K. Endocrinology of stress. Int. J. Comp. Psychol. 2007, 20, 89–95. [Google Scholar] [CrossRef]
- Øverli, Ø.; Sørensen, C.; Kiessling, A.; Pottinger, T.G.; Gjøen, H.M. Selection for improved stress tolerance in rainbow trout (Oncorhynchus mykiss) leads to reduced feed waste. Aquaculture 2006, 261, 776–781. [Google Scholar] [CrossRef]
- Martins, C.I.; Conceição, L.E.; Schrama, J.W. Feeding behavior and stress response explain individual differences in feed efficiency in juveniles of Nile tilapia Oreochromis niloticus. Aquaculture 2011, 312, 192–197. [Google Scholar] [CrossRef]
- Lee, Y.; Nguyen, T.L.; Roh, H.; Kim, A.; Park, J.; Lee, J.-Y.; Kang, Y.-R.; Kang, H.; Sohn, M.-Y.; Park, C.-I. Mechanisms underlying probiotic effects on neurotransmission and stress resilience in fish via transcriptomic profiling. Fish Shellfish Immunol. 2023, 141, 109063. [Google Scholar] [CrossRef] [PubMed]
- Conde-Sieira, M.; Chivite, M.; Míguez, J.M.; Soengas, J.L. Stress effects on the mechanisms regulating appetite in teleost fish. Front. Endocrinol. 2018, 9, 631. [Google Scholar] [CrossRef]
- Murugananthkumar, R.; Sudhakumari, C.-C. Understanding the impact of stress on teleostean reproduction. Aquac. Fish. 2022, 7, 553–561. [Google Scholar] [CrossRef]
- Raposo de Magalhães, C.; Schrama, D.; Farinha, A.P.; Revets, D.; Kuehn, A.; Planchon, S.; Rodrigues, P.M.; Cerqueira, M. Protein changes as robust signatures of fish chronic stress: A proteomics approach to fish welfare research. BMC Genom. 2020, 21, 309. [Google Scholar] [CrossRef]
- Perry, S.F.; Bernier, N.J. The acute humoral adrenergic stress response in fish: Facts and fiction. Aquaculture 1999, 177, 285–295. [Google Scholar] [CrossRef]
- Wright, P.A.; Perry, S.F.; Moon, T.W. Regulation of hepatic gluconeogenesis and glycogenolysis by catecholamines in rainbow trout during environmental hypoxia. J. Exp. Biol. 1989, 147, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Perry, S.F. Control and consequences of adrenergic activation of red blood cell Na+/H+ exchange on blood oxygen and carbon dioxide transport in fish. J. Exp. Zool. 1992, 263, 160–175. [Google Scholar] [CrossRef]
- Reid, S.G.; Perry, S.F. Peripheral O2 chemoreceptors mediate humoral catecholamine secretion from fish chromaffin cells. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2003, 284, R990–R999. [Google Scholar] [CrossRef] [PubMed]
- Pamungkas, W.; Darmawan, J.; Tahapari, E. The effect of acute handling stress on cortisol level, growth and reproductive performance in striped catfish (Pangasianodon hypophthalmus). Aquac. Aquar. Conserv. Legis. 2021, 14, 3170–3177. [Google Scholar]
- Gao, J.; Xi, B.; Chen, K.; Song, R.; Qin, T.; Xie, J.; Pan, L. The stress hormone norepinephrine increases the growth and virulence of Aeromonas hydrophila. Microbiologyopen 2019, 8, e00664. [Google Scholar] [CrossRef]
- Torabi Delshad, S.; Soltanian, S.; Sharifiyazdi, H.; Bossier, P. Effect of catecholamine stress hormones (dopamine and norepinephrine) on growth, swimming motility, biofilm formation and virulence factors of Yersinia ruckeri in vitro and an in vivo evaluation in rainbow trout. J. Fish Dis. 2019, 42, 477–487. [Google Scholar] [CrossRef]
- Gesto, M.; López-Patiño, M.A.; Hernández, J.; Soengas, J.L.; Míguez, J.M. The response of brain serotonergic and dopaminergic systems to an acute stressor in rainbow trout: A time course study. J. Exp. Biol. 2013, 216, 4435–4442. [Google Scholar] [CrossRef]
- Backström, T.; Winberg, S. Serotonin coordinates responses to social stress—What we can learn from fish. Front. Neurosci. 2017, 11, 595. [Google Scholar] [CrossRef]
- Winberg, S.; Thörnqvist, P.-O. Role of brain serotonin in modulating fish behavior. Curr. Zool. 2016, 62, 317–323. [Google Scholar] [CrossRef]
- Tognoli, C.; Rossi, F.; Di Cola, F.; Baj, G.; Tongiorgi, E.; Terova, G.; Saroglia, M.; Bernardini, G.; Gornati, R. Acute stress alters transcript expression pattern and reduces processing of proBDNF to mature BDNF in Dicentrarchus labrax. BMC Neurosci. 2010, 11, 4. [Google Scholar] [CrossRef]
- Lucon-Xiccato, T.; Tomain, M.; D’Aniello, S.; Bertolucci, C. BDNF loss affects activity, sociability, and anxiety-like behaviour in zebrafish. Behav. Brain Res. 2023, 436, 114115. [Google Scholar] [CrossRef] [PubMed]
- Rea, K.; Dinan, T.G.; Cryan, J.F. The microbiome: A key regulator of stress and neuroinflammation. Neurobiol. Stress 2016, 4, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Schramm, E.; Waisman, A. Microglia as central protagonists in the chronic stress response. Neurol. Neuroimmunol. Neuroinflammation 2022, 9, e200023. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, J.; Peña-Herrejón, G.A.; Aguirre-Becerra, H. Fish responses to alternative feeding ingredients under abiotic chronic stress. Animals 2024, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Warren, A.; Nyavor, Y.; Beguelin, A.; Frame, L.A. Dangers of the chronic stress response in the context of the microbiota-gut-immune-brain axis and mental health: A narrative review. Front. Immunol. 2024, 15, 1365871. [Google Scholar] [CrossRef]
- Blanco, A.M.; Calo, J.; Soengas, J.L. The gut–brain axis in vertebrates: Implications for food intake regulation. J. Exp. Biol. 2021, 224, jeb231571. [Google Scholar] [CrossRef]
- Nakhal, M.M.; Yassin, L.K.; Alyaqoubi, R.; Saeed, S.; Alderei, A.; Alhammadi, A.; Alshehhi, M.; Almehairbi, A.; Al Houqani, S.; BaniYas, S. The microbiota–gut–brain axis and neurological disorders: A comprehensive review. Life 2024, 14, 1234. [Google Scholar] [CrossRef]
- Higgins, G.A.; Hong, S.; Wiley, J.W. The role of epigenomic regulatory pathways in the gut-brain axis and visceral hyperalgesia. Cell. Mol. Neurobiol. 2022, 42, 361–376. [Google Scholar] [CrossRef]
- Montiel-Castro, A.J.; González-Cervantes, R.M.; Bravo-Ruiseco, G.; Pacheco-López, G. The microbiota-gut-brain axis: Neurobehavioral correlates, health and sociality. Front. Integr. Neurosci. 2013, 7, 70. [Google Scholar] [CrossRef] [PubMed]
- Yassin, L.K.; Nakhal, M.M.; Alderei, A.; Almehairbi, A.; Mydeen, A.B.; Akour, A.; Hamad, M.I. Exploring the microbiota-gut-brain axis: Impact on brain structure and function. Front. Neuroanat. 2025, 19, 1504065. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Chaudhry, T.S.; Senapati, S.G.; Gadam, S.; Mannam, H.P.S.S.; Voruganti, H.V.; Abbasi, Z.; Abhinav, T.; Challa, A.B.; Pallipamu, N.; Bheemisetty, N. The impact of microbiota on the gut–brain axis: Examining the complex interplay and implications. J. Clin. Med. 2023, 12, 5231. [Google Scholar] [CrossRef]
- Bonham, K.S.; Fahur Bottino, G.; McCann, S.H.; Beauchemin, J.; Weisse, E.; Barry, F.; Cano Lorente, R.; Consortium, R.; Huttenhower, C.; Bruchhage, M. Gut-resident microorganisms and their genes are associated with cognition and neuroanatomy in children. Sci. Adv. 2023, 9, eadi0497. [Google Scholar] [CrossRef]
- Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015, 28, 203. [Google Scholar]
- Sun, X.; Shukla, M.; Wang, W.; Li, S. Unlocking gut-liver-brain axis communication metabolites: Energy metabolism, immunity and barriers. npj Biofilms Microbiomes 2024, 10, 136. [Google Scholar] [CrossRef]
- BioRender. Available online: https://BioRender.com/bwpe4l3 (accessed on 15 September 2025).
- Olsson, C. Autonomic innervation of the fish gut. Acta Histochem. 2009, 111, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Fleming, M.A.; Ehsan, L.; Moore, S.R.; Levin, D.E. The enteric nervous system and its emerging role as a therapeutic target. Gastroenterol. Res. Pract. 2020, 2020, 8024171. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Inslicht, S.S.; Bhargava, A. Gut-brain axis: Role of microbiome, metabolomics, hormones, and stress in mental health disorders. Cells 2024, 13, 1436. [Google Scholar] [CrossRef]
- Browning, K.N.; Verheijden, S.; Boeckxstaens, G.E. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 2017, 152, 730–744. [Google Scholar] [CrossRef]
- Chuyue, D.Y.; Xu, Q.J.; Chang, R.B. Vagal sensory neurons and gut-brain signaling. Curr. Opin. Neurobiol. 2020, 62, 133–140. [Google Scholar] [CrossRef]
- Kalamarz-Kubiak, H. Cortisol in Correlation to Other Indicators of Fish. In Corticosteroids; Al-Kaf, A.G., Ed.; InTech: London, UK, 2018; pp. 155–183. [Google Scholar] [CrossRef]
- Peixoto, D.; Carvalho, I.; Machado, M.; Aragão, C.; Costas, B.; Azeredo, R. Dietary tryptophan intervention counteracts stress-induced transcriptional changes in a teleost fish HPI axis during inflammation. Sci. Rep. 2024, 14, 7354. [Google Scholar] [CrossRef]
- Lee, J.-G.; Cho, H.-J.; Jeong, Y.-M.; Lee, J.-S. Genetic approaches using zebrafish to study the microbiota–gut–brain axis in neurological disorders. Cells 2021, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.; Campbell, G. Immunohistochemical study of 5-HT-containing neurons in the teleost intestine: Relationship to the presence of enterochromaffin cells. Cell Tissue Res. 1988, 254, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.; Campbell, G.; O’Shea, F.; Payne, M. The release of neuronal 5-HT from the intestine of a teleost fish, Platycephalus bassensis. J. Auton. Nerv. Syst. 1991, 33, 239–246. [Google Scholar] [CrossRef]
- Zapata, A.G. Lympho-hematopoietic microenvironments and fish immune system. Biology 2022, 11, 747. [Google Scholar] [CrossRef]
- Boschi, I.; Randelli, E.; Buonocore, F.; Casani, D.; Bernini, C.; Fausto, A.M.; Scapigliati, G. Transcription of T cell-related genes in teleost fish, and the European sea bass (Dicentrarchus labrax) as a model. Fish Shellfish Immunol. 2011, 31, 655–662. [Google Scholar] [CrossRef]
- Qin, J.; Ma, Z.; Chen, X.; Shu, S. Microglia activation in central nervous system disorders: A review of recent mechanistic investigations and development efforts. Front. Neurol. 2023, 14, 1103416. [Google Scholar] [CrossRef] [PubMed]
- Kanika, N.H.; Liaqat, N.; Chen, H.; Ke, J.; Lu, G.; Wang, J.; Wang, C. Fish gut microbiome and its application in aquaculture and biological conservation. Front. Microbiol. 2025, 15, 1521048. [Google Scholar] [CrossRef]
- Liu, H.; Guo, X.; Gooneratne, R.; Lai, R.; Zeng, C.; Zhan, F.; Wang, W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci. Rep. 2016, 6, 24340. [Google Scholar] [CrossRef]
- Lee, A.; Kim, S.Y.; Kang, S.; Kang, S.H.; Kim, D.W.; Choe, J.W.; Hyun, J.J.; Jung, S.W.; Jung, Y.K.; Koo, J.S. Effect of probiotics in stress-associated constipation model in zebrafish (Danio rerio) larvae. Int. J. Mol. Sci. 2024, 25, 3669. [Google Scholar] [CrossRef]
- Sylvain, F.-É.; Cheaib, B.; Llewellyn, M.; Gabriel Correia, T.; Barros Fagundes, D.; Luis Val, A.; Derome, N. pH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (Colossoma macropomum). Sci. Rep. 2016, 6, 32032. [Google Scholar] [CrossRef]
- Singh, B.K.; Thakur, K.; Kumari, H.; Mahajan, D.; Sharma, D.; Sharma, A.K.; Kumar, S.; Singh, B.; Pankaj, P.P.; Kumar, R. A review on comparative analysis of marine and freshwater fish gut microbiomes: Insights into environmental impact on gut microbiota. FEMS Microbiol. Ecol. 2025, 101, fiae169. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Kormas, K.A.; Li, Y.; Li, H.; Li, J. Variable phylosymbiosis and cophylogeny patterns in wild fish gut microbiota of a large subtropical river. mSphere 2025, 10, e00982-24. [Google Scholar] [CrossRef]
- Podell, S.; Oliver, A.; Kelly, L.W.; Sparagon, W.J.; Plominsky, A.M.; Nelson, R.S.; Laurens, L.M.; Augyte, S.; Sims, N.A.; Nelson, C.E. Herbivorous fish microbiome adaptations to sulfated dietary polysaccharides. Appl. Environ. Microbiol. 2023, 89, e02154-22. [Google Scholar] [CrossRef]
- Egerton, S.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The gut microbiota of marine fish. Front. Microbiol. 2018, 9, 873. [Google Scholar] [CrossRef] [PubMed]
- Moroni, F.; Naya-Català, F.; Hafez, A.I.; Domingo-Bretón, R.; Soriano, B.; Llorens, C.; Pérez-Sánchez, J. Beyond microbial variability: Disclosing the functional redundancy of the core gut microbiota of farmed gilthead sea bream from a Bayesian network perspective. Microorganisms 2025, 13, 198. [Google Scholar] [CrossRef] [PubMed]
- Uniacke-Lowe, S.; Stanton, C.; Hill, C.; Ross, R.P. The marine fish gut microbiome as a source of novel bacteriocins. Microorganisms 2024, 12, 1346. [Google Scholar] [CrossRef]
- Jami, M.; Ghanbari, M.; Kneifel, W.; Domig, K.J. Phylogenetic diversity and biological activity of culturable Actinobacteria isolated from freshwater fish gut microbiota. Microbiol. Res. 2015, 175, 6–15. [Google Scholar] [CrossRef]
- Smith, C.C.; Snowberg, L.K.; Gregory Caporaso, J.; Knight, R.; Bolnick, D.I. Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J. 2015, 9, 2515–2526. [Google Scholar] [CrossRef]
- Huyben, D.; Chiasson, M.; Lumsden, J.S.; Pham, P.H.; Chowdhury, M.A.K. Dietary microencapsulated blend of organic acids and plant essential oils affects intestinal morphology and microbiome of rainbow trout (Oncorhynchus mykiss). Microorganisms 2021, 9, 2063. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, Y.; Zhang, Y.; Luo, F.; Song, K.; Wang, G.; Ling, F. Vitamin B12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome 2023, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, M.S.; Boutin, S.; Hoseinifar, S.H.; Derome, N. Teleost microbiomes: The state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front. Microbiol. 2014, 5, 207. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.A.; Villumsen, K.R.; Duchêne, D.A.; Puetz, L.C.; Delmont, T.O.; Sveier, H.; Jørgensen, L.v.G.; Præbel, K.; Martin, M.D.; Bojesen, A.M. Genome-resolved metagenomics suggests a mutualistic relationship between Mycoplasma and salmonid hosts. Commun. Biol. 2021, 4, 579. [Google Scholar] [CrossRef] [PubMed]
- Sullam, K.E.; Essinger, S.D.; Lozupone, C.A.; O’connor, M.P.; Rosen, G.L.; Knight, R.; Kilham, S.S.; Russell, J.A. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. 2012, 21, 3363–3378. [Google Scholar] [CrossRef]
- Sumithra, T.; Sharma, S.K.; Suresh, G.; Suja, G.; Prasad, V.; Gop, A.P.; Patil, P.K.; Gopalakrishnan, A. Gut microbes of a high-value marine fish, Snubnose Pompano (Trachinotus blochii) are resilient to therapeutic dosing of oxytetracycline. Sci. Rep. 2024, 14, 27949. [Google Scholar] [CrossRef]
- Del Toro-Barbosa, M.; Hurtado-Romero, A.; Garcia-Amezquita, L.E.; García-Cayuela, T. Psychobiotics: Mechanisms of action, evaluation methods and effectiveness in applications with food products. Nutrients 2020, 12, 3896. [Google Scholar] [CrossRef]
- Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis in health and disease. Gastroenterol. Clin. 2017, 46, 77–89. [Google Scholar] [CrossRef]
- Sarkar, A.; Lehto, S.M.; Harty, S.; Dinan, T.G.; Cryan, J.F.; Burnet, P.W. Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci. 2016, 39, 763–781. [Google Scholar] [CrossRef]
- Altaib, H.; Badr, Y.; Suzuki, T. Bifidobacteria and psychobiotic therapy: Current evidence and future prospects. Rev. Agric. Sci. 2021, 9, 74–91. [Google Scholar] [CrossRef]
- Accettulli, A.; Corbo, M.R.; Sinigaglia, M.; Speranza, B.; Campaniello, D.; Racioppo, A.; Altieri, C.; Bevilacqua, A. Psycho-Microbiology, a New Frontier for Probiotics: An exploratory overview. Microorganisms 2022, 10, 2141. [Google Scholar] [CrossRef]
- Mosquera, F.E.C.; Guevara-Montoya, M.C.; Serna-Ramirez, V.; Liscano, Y. Neuroinflammation and Schizophrenia: New therapeutic strategies through Psychobiotics, Nanotechnology, and Artificial Intelligence (AI). J. Pers. Med. 2024, 14, 391. [Google Scholar] [CrossRef] [PubMed]
- Ķimse, L.; Reinis, A.; Miķelsone-Jansone, L.; Gintere, S.; Krūmiņa, A. A narrative review of psychobiotics: Probiotics that influence the gut–brain axis. Medicina 2024, 60, 601. [Google Scholar] [CrossRef] [PubMed]
- Dziedzic, A.; Maciak, K.; Bliźniewska-Kowalska, K.; Gałecka, M.; Kobierecka, W.; Saluk, J. The power of psychobiotics in depression: A modern approach through the microbiota–gut–brain axis: A literature review. Nutrients 2024, 16, 1054. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Xiao, Y.; Wang, Z.-H.; Liu, X.; Alam, A.M.; Haran, J.P.; McCormick, B.A.; Shu, X.; Wang, X.; Ye, K. Bacteroides fragilis in the gut microbiomes of Alzheimer’s disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice. Nat. Commun. 2023, 14, 5471. [Google Scholar] [CrossRef]
- Sakkaa, S.E.; Zaghloul, E.H.; Ghanem, K.M. Psychobiotic potential of gamma-aminobutyric acid–producing marine Enterococcus faecium SH9 from marine shrimp. Probiotics Antimicrob. Proteins 2022, 14, 934–946. [Google Scholar] [CrossRef]
- Im, E.J.; Lee, H.H.-Y.; Kim, M.; Kim, M.-K. Evaluation of enterococcal probiotic usage and review of potential health benefits, safety, and risk of antibiotic-resistant strain emergence. Antibiotics 2023, 12, 1327. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.-P.; Zhang, Y.-N.; Li, Y.; Gu, L.-T.; Sun, H.-H.; Liu, M.-D.; Zhou, H.-L.; Wang, Y.-S.; Xu, Z.-X. Short-chain fatty acids in diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, B.; Min, Y.; Liu, J.; Shang, Y.; Lan, X.; Xiang, W.; Tang, J. Evaluation of the safety and probiotic properties of GABA-producing Enterococcus faecium AB157 based on whole genome and phenotype analysis. LWT 2025, 215, 117242. [Google Scholar] [CrossRef]
- Kyei-Baffour, V.O.; Vijaya, A.K.; Burokas, A.; Daliri, E.B.-M. Psychobiotics and the gut-brain axis: Advances in metabolite quantification and their implications for mental health. Crit. Rev. Food Sci. Nutr. 2025, 1–20. [Google Scholar] [CrossRef]
- Cogliati, S.; Clementi, V.; Francisco, M.; Crespo, C.; Arganaraz, F.; Grau, R. Bacillus subtilis delays neurodegeneration and behavioral impairment in the Alzheimer’s disease model Caenorhabditis elegans. J. Alzheimer’s Dis. 2020, 73, 1035–1052. [Google Scholar] [CrossRef]
- Dhyani, P.; Goyal, C.; Dhull, S.B.; Chauhan, A.K.; Singh Saharan, B.; Harshita; Duhan, J.S.; Goksen, G. Psychobiotics for mitigation of neuro-degenerative diseases: Recent advancements. Mol. Nutr. Food Res. 2024, 68, 2300461. [Google Scholar] [CrossRef]
- Belelli, D.; Lambert, J.J.; Wan, M.L.Y.; Monteiro, A.R.; Nutt, D.J.; Swinny, J.D. From bugs to brain: Unravelling the GABA signalling networks in the brain–gut–microbiome axis. Brain 2025, 148, 1479–1506. [Google Scholar] [CrossRef] [PubMed]
- Braga, J.D.; Thongngam, M.; Kumrungsee, T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut–brain axis. npj Sci. Food 2024, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Mottawea, W.; Yousuf, B.; Sultan, S.; Ahmed, T.; Yeo, J.; Hüttmann, N.; Li, Y.; Bouhlel, N.E.; Hassan, H.; Zhang, X. Multi-level analysis of gut microbiome extracellular vesicles-host interaction reveals a connection to gut-brain axis signaling. Microbiol. Spectr. 2025, 13, e01368-24. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. 2020, 11, 508738. [Google Scholar] [CrossRef]
- Tanamool, V.; Hongsachart, P.; Soemphol, W. Screening and characterisation of gamma-aminobutyric acid (GABA) producing lactic acid bacteria isolated from Thai fermented fish (Plaa-som) in Nong Khai and its application in Thai fermented vegetables (Som-pak). Food Sci. Technol. 2019, 40, 483–490. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Tao, N.-L.; Hu, S.-Y.; Tsai, H.-Y.; Liao, S.-C.; Tsai, W.-L.; Hu, C.-Y. Effect of tempeh on gut microbiota and anti-stress activity in Zebrafish. Int. J. Mol. Sci. 2021, 22, 12660. [Google Scholar] [CrossRef]
- Han, Z.; Sun, J.; Jiang, B.; Chen, K.; Ge, L.; Sun, Z.; Wang, A. Fecal microbiota transplantation accelerates restoration of florfenicol-disturbed intestinal microbiota in a fish model. Commun. Biol. 2024, 7, 1006. [Google Scholar] [CrossRef]
- Borrelli, L.; Aceto, S.; Agnisola, C.; De Paolo, S.; Dipineto, L.; Stilling, R.M.; Dinan, T.G.; Cryan, J.F.; Menna, L.F.; Fioretti, A. Probiotic modulation of the microbiota-gut-brain axis and behaviour in zebrafish. Sci. Rep. 2016, 6, 30046. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhao, S.; Dong, F.; Jia, Y.; Chen, X.; Sun, Y.; Zhu, L. Novel Insight into the Mechanisms of Neurotoxicity Induced by 6: 6 PFPiA through Disturbing the Gut–Brain Axis. Environ. Sci. Technol. 2023, 57, 1028–1038. [Google Scholar] [CrossRef]
- Meng, X.; Wu, S.; Hu, W.; Zhu, Z.; Yang, G.; Zhang, Y.; Qin, C.; Yang, L.; Nie, G. Clostridium butyricum improves immune responses and remodels the intestinal microbiota of common carp (Cyprinus carpio L.). Aquaculture 2021, 530, 735753. [Google Scholar] [CrossRef]
- Llewellyn, M.S.; McGinnity, P.; Dionne, M.; Letourneau, J.; Thonier, F.; Carvalho, G.R.; Creer, S.; Derome, N. The biogeography of the atlantic salmon (Salmo salar) gut microbiome. ISME J. 2016, 10, 1280–1284. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Hiramoto, T.; Nishino, R.; Aiba, Y.; Kimura, T.; Yoshihara, K.; Koga, Y.; Sudo, N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol.-Gastrointest. Liver Physiol. 2012, 303, G1288–G1295. [Google Scholar] [CrossRef]
- Lyte, M.; Ernst, S. Alpha and beta adrenergic receptor involvement in catecholamine-induced growth of gram-negative bacteria. Biochem. Biophys. Res. Commun. 1993, 190, 447–452. [Google Scholar] [CrossRef]
- Tsavkelova, E.A.; Botvinko, I.; Kudrin, V.; Oleskin, A. Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl. Biochem. 2000, 372, 115–117. [Google Scholar]
- Solano, F.; Garcia, E.; Perez, D.; Sanchez-Amat, A. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium. Appl. Environ. Microbiol. 1997, 63, 3499–3506. [Google Scholar] [CrossRef]
- Singh, S.K.; Yamashita, A.; Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature 2007, 448, 952–956. [Google Scholar] [CrossRef]
- Sudo, N. Biogenic amines: Signals between commensal microbiota and gut physiology. Front. Endocrinol. 2019, 10, 504. [Google Scholar] [CrossRef]
- Thurmond, R.L.; Gelfand, E.W.; Dunford, P.J. The role of histamine H1 and H4 receptors in allergic inflammation: The search for new antihistamines. Nat. Rev. Drug Discov. 2008, 7, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Barcik, W.; Pugin, B.; Westermann, P.; Perez, N.R.; Ferstl, R.; Wawrzyniak, M.; Smolinska, S.; Jutel, M.; Hessel, E.M.; Michalovich, D. Histamine-secreting microbes are increased in the gut of adult asthma patients. J. Allergy Clin. Immunol. 2016, 138, 1491–1494.e7. [Google Scholar] [CrossRef] [PubMed]
- Schretter, C.E.; Vielmetter, J.; Bartos, I.; Marka, Z.; Marka, S.; Argade, S.; Mazmanian, S.K. A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 2018, 563, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Lepor, H.; Rigaud, G.; Shapiro, E.; Baumann, M.; Kodner, I.J.; Fleshman, J.W. Muscarinic cholinergic and α2-adrenergic receptors in the epithelium and muscularis of the human ileum. Surgery 1990, 107, 461–467. [Google Scholar]
- Vaughan, C.J.; Aherne, A.M.; Lane, E.; Power, O.; Carey, R.M.; O’Connell, D.P. Identification and regional distribution of the dopamine D1A receptor in the gastrointestinal tract. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2000, 279, R599–R609. [Google Scholar] [CrossRef]
- Mittal, R.; Debs, L.H.; Patel, A.P.; Nguyen, D.; Patel, K.; O’Connor, G.; Grati, M.h.; Mittal, J.; Yan, D.; Eshraghi, A.A. Neurotransmitters: The critical modulators regulating gut–brain axis. J. Cell. Physiol. 2017, 232, 2359–2372. [Google Scholar] [CrossRef]
- Davis, D.J.; Bryda, E.C.; Gillespie, C.H.; Ericsson, A.C. Microbial modulation of behavior and stress responses in zebrafish larvae. Behav. Brain Res. 2016, 311, 219–227. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, F.; Yin, L.; Shi, S.; Hu, B.; Qu, H.; Zheng, L. Dopamine level affects social interaction and color preference possibly through intestinal microbiota in zebrafish. Zebrafish 2022, 19, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Bu, L.-K.; Jia, P.-P.; Huo, W.-B.; Pei, D.-S. Assessment of Probiotics’ Impact on Neurodevelopmental and Behavioral Responses in Zebrafish Models: Implications for Autism Spectrum Disorder Therapy. Probiotics Antimicrob. Proteins 2024, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.J.; Doerr, H.M.; Grzelak, A.K.; Busi, S.B.; Jasarevic, E.; Ericsson, A.C.; Bryda, E.C. Lactobacillus plantarum attenuates anxiety-related behavior and protects against stress-induced dysbiosis in adult zebrafish. Sci. Rep. 2016, 6, 33726. [Google Scholar] [CrossRef] [PubMed]
- Valcarce, D.G.; Martínez-Vázquez, J.M.; Riesco, M.F.; Robles, V. Probiotics reduce anxiety-related behavior in zebrafish. Heliyon 2020, 6, e03973. [Google Scholar] [CrossRef]
- Valderrama, B.; Daly, I.; Gunnigle, E.; O’Riordan, K.J.; Chichlowski, M.; Banerjee, S.; Skowronski, A.A.; Pandey, N.; Cryan, J.F.; Clarke, G. From in silico screening to in vivo validation in zebrafish–a framework for reeling in the right psychobiotics. Food Funct. 2025, 16, 2018–2030. [Google Scholar] [CrossRef] [PubMed]
- Avella, M.A.; Place, A.; Du, S.-J.; Williams, E.; Silvi, S.; Zohar, Y.; Carnevali, O. Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PLoS ONE 2012, 7, e45572. [Google Scholar] [CrossRef]
- Falcinelli, S.; Rodiles, A.; Unniappan, S.; Picchietti, S.; Gioacchini, G.; Merrifield, D.L.; Carnevali, O. Probiotic treatment reduces appetite and glucose level in the zebrafish model. Sci. Rep. 2016, 6, 18061. [Google Scholar] [CrossRef]
- Aerts, J.; Schaeck, M.; De Swaef, E.; Ampe, B.; Decostere, A. Vibrio lentus as a probiotic candidate lowers glucocorticoid levels in gnotobiotic sea bass larvae. Aquaculture 2018, 492, 40–45. [Google Scholar] [CrossRef]
- Silvi, S.; Nardi, M.; Sulpizio, R.; Orpianesi, C.; Caggiano, M.; Carnevali, O.; Cresci, A. Effect of the addition of Lactobacillus delbrueckii subsp. delbrueckii on the gut microbiota composition and contribution to the well-being of European sea bass (Dicentrarchus labrax, L.). Microb. Ecol. Health Dis. 2008, 20, 53–59. [Google Scholar]
- Carnevali, O.; de Vivo, L.; Sulpizio, R.; Gioacchini, G.; Olivotto, I.; Silvi, S.; Cresci, A. Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture 2006, 258, 430–438. [Google Scholar] [CrossRef]
- Rollo, A.; Sulpizio, R.; Nardi, M.; Silvi, S.; Orpianesi, C.; Caggiano, M.; Cresci, A.; Carnevali, O. Live microbial feed supplement in aquaculture for improvement of stress tolerance. Fish Physiol. Biochem. 2006, 32, 167–177. [Google Scholar] [CrossRef]
- Varela, J.; Ruiz-Jarabo, I.; Vargas-Chacoff, L.; Arijo, S.; León-Rubio, J.; García-Millán, I.; Del Río, M.M.; Moriñigo, M.A.; Mancera, J.M. Dietary administration of probiotic Pdp11 promotes growth and improves stress tolerance to high stocking density in gilthead seabream Sparus auratus. Aquaculture 2010, 309, 265–271. [Google Scholar] [CrossRef]
- Youssef, M.Y.; Saleem, A.-S.Y.; Ahmed, F.A.; Said, E.N.; El Abdel-Hamid, S.; Gharib, H.S. The impact of dietary probiotic supplementation on welfare and growth performance of Nile tilapia (Oreochromis niloticus). Open Vet. J. 2024, 14, 360. [Google Scholar] [CrossRef]
- Dawood, M.A.; Eweedah, N.M.; Moustafa, E.M.; Farahat, E.M. Probiotic effects of Aspergillus oryzae on the oxidative status, heat shock protein, and immune related gene expression of Nile tilapia (Oreochromis niloticus) under hypoxia challenge. Aquaculture 2020, 520, 734669. [Google Scholar] [CrossRef]
- Romanova, E.; Spirina, E.; Romanov, V.; Lyubomirova, V.; Shadyeva, L. Effects of Bacillus subtilis and Bacillus licheniformis on catfish in industrial aquaculture. In E3S Web of Conferences; EDP Sciences: London, UK, 2020; p. 02013. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Kim, D.-H. Genome-wide comparison reveals a probiotic strain Lactococcus lactis WFLU12 isolated from the gastrointestinal tract of olive flounder (Paralichthys olivaceus) harboring genes supporting probiotic action. Mar. Drugs 2018, 16, 140. [Google Scholar] [CrossRef]
- Knobloch, S.; Skírnisdóttir, S.; Dubois, M.; Kolypczuk, L.; Leroi, F.; Leeper, A.; Passerini, D.; Marteinsson, V.Þ. Impact of putative probiotics on growth, behavior, and the gut microbiome of farmed arctic char (Salvelinus alpinus). Front. Microbiol. 2022, 13, 912473. [Google Scholar] [CrossRef]
- Frank, C.E.; Sadeghi, J.; Heath, D.D.; Semeniuk, C.A. Behavioral transcriptomic effects of triploidy and probiotic therapy (Bifidobacterium, Lactobacillus, and Lactococcus mixture) on juvenile Chinook salmon (Oncorhynchus tshawytscha). Genes Brain Behav. 2024, 23, e12898. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Liu, C.-W.; Yang, Y.; Hsiao, Y.-C.; Ru, H.; Lu, K. High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut-brain communication in mice. Nat. Commun. 2021, 12, 6000. [Google Scholar] [CrossRef] [PubMed]
- Bleibel, L.; Dziomba, S.; Waleron, K.F.; Kowalczyk, E.; Karbownik, M.S. Deciphering psychobiotics’ mechanism of action: Bacterial extracellular vesicles in the spotlight. Front. Microbiol. 2023, 14, 1211447. [Google Scholar] [CrossRef] [PubMed]
- Mallett, M.C.; Thiem, J.D.; Butler, G.L.; Kennard, M.J. A systematic review of approaches to assess fish health responses to anthropogenic threats in freshwater ecosystems. Conserv. Physiol. 2024, 12, coae022. [Google Scholar] [CrossRef]
- Amrofell, M.B.; Moon, T.S. Characterizing a propionate sensor in E. coli Nissle 1917. ACS Synth. Biol. 2023, 12, 1868–1873. [Google Scholar] [CrossRef]
- Edalatian Dovom, M.R.; Habibi Najafi, M.B.; Rahnama Vosough, P.; Norouzi, N.; Ebadi Nezhad, S.J.; Mayo, B. Screening of lactic acid bacteria strains isolated from Iranian traditional dairy products for GABA production and optimization by response surface methodology. Sci. Rep. 2023, 13, 440. [Google Scholar] [CrossRef]
- Gilbert, S.; Xu, J.; Acosta, K.; Poulev, A.; Lebeis, S.; Lam, E. Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front. Chem. 2018, 6, 265. [Google Scholar] [CrossRef] [PubMed]
- Bucking, C.; Bury, N.R.; Sundh, H.; Wood, C.M. Making in vitro conditions more reflective of in vivo conditions for research on the teleost gastrointestinal tract. J. Exp. Biol. 2024, 227, jeb246440. [Google Scholar] [CrossRef]
- Neurov, A.M.; Zaikina, A.A.; Prazdnova, E.V.E.; Anuj, R.; Rudoy, D.V. Modulation of Stress-Related Protein in the African Catfish (Clarias gariepinus) Using Bacillus-Based Non-Ribosomal Peptides. Microbiol. Res. 2024, 15, 2743–2763. [Google Scholar] [CrossRef]
- Elbahnaswy, S.; Elshopakey, G.E.; Abdelwarith, A.A.; Younis, E.M.; Davies, S.J.; El-Son, M.A. Immune protective, stress indicators, antioxidant, histopathological status, and heat shock protein gene expression impacts of dietary Bacillus spp. against heat shock in Nile tilapia, Oreochromis niloticus. BMC Vet. Res. 2024, 20, 469. [Google Scholar] [CrossRef]
- Torres-Maravilla, E.; Parra, M.; Maisey, K.; Vargas, R.A.; Cabezas-Cruz, A.; Gonzalez, A.; Tello, M.; Bermúdez-Humarán, L.G. Importance of probiotics in fish aquaculture: Towards the identification and design of novel probiotics. Microorganisms 2024, 12, 626. [Google Scholar] [CrossRef]
- Prazdnova, E.V.; Mazanko, M.S.; Shevchenko, V.N.; Skripnichenko, R.V.; Kulikov, M.P.; Golovko, L.S.; Grigoriev, V.A.; Maltseva, T.A.; Kulikova, D.B.; Rudoy, D.V. Genomic Characterization of Four Novel Probiotic Strains with Enzymatic Activity and Their Effects on Carp (Cyprinus carpio). Animals 2025, 15, 1998. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Yang, H.-L.; Li, S.; Cai, G.-H.; Ye, J.-D.; Zhang, C.-X.; Sun, Y.-Z. Paraprobiotic and postbiotic forms of Bacillus siamensis improved growth, immunity, liver and intestinal health in Lateolabrax maculatus fed soybean meal diet. Fish Shellfish Immunol. 2024, 145, 109370. [Google Scholar] [CrossRef] [PubMed]
Phylum | Genus | Prevalence in Fish Intestine | Functionality | References |
---|---|---|---|---|
Actinomycetota | Corynebacterium | Present in both marine and freshwater species | Contributes to nutrient metabolism; Produces vitamins and antimicrobial compounds | [79,84] |
Micrococcus | Present in both marine and freshwater species | Supports digestive processes; Produces antimicrobial compounds | [79,85] | |
Bacillota | Bacillus | Abundant across fish species | Spore-forming probiotic; produces digestive enzymes; has antimicrobial activity | [78,79] |
Clostridium | Common across fish species | Cellulase production; vitamin synthesis; carbohydrate fermentation; amino acid metabolism | [79,86] | |
Lactobacillus | Moderately common in marine and freshwater fish; enhanced by probiotics | Probiotic; lactic acid production; immune modulation; pathogen inhibition; enzyme production | [79,87] | |
Bacteroidota | Bacteroides | Found in marine and freshwater fish; variable abundance; feed-associated | Polysaccharide degradation; SCFA production; vitamin B12 synthesis; bile acid metabolism; cellulolytic activity | [79,82] |
Flavobacterium | Common in marine and freshwater fish | Amylase, protease, chitinase production | [79] | |
Fusobacteriota | Cetobacterium | Dominant in freshwater fish; major across various species | Vitamin B12 synthesis; SCFA production; supports nutrition and immune function | [82,88] |
Mycoplasmatota | Mycoplasma | Dominant in salmonids; can be majority of intestinal microbiota in rainbow trout | Potential mutualist; amino acid metabolism; | [89,90] |
Pseudomonadota | Aeromonas | Common in marine and freshwater fish; can dominate intestinal microbiome in some conditions | Protease production; opportunistic pathogen; competes with beneficial bacteria | [82,91] |
Enterovibrio | Frequent in marine fish intestine; dominant in some species like milkfish | Nutrient processing; marine adaptation | [82,92] | |
Photobacterium | Highly prevalent in marine fish; co-dominant with Vibrio | Chitinase production; protein metabolism; some are luminescent symbionts | [82] | |
Pseudomonas | Prevalent in marine fish; reported in several carnivorous species; associated with lipase production | Protease/chitinase/lipase production; | [76,77,91] | |
Vibrio | Dominant in marine fish, frequently reported across multiple species; up to 50% of viable bacteria in some marine fish | Protease and chitinase production; some species are beneficial, some are opportunistic pathogens; assists chitin/protein digestion | [79,82,92] |
Phylum | Genus | MGBA-Relevant Metabolites | Fish Species | References |
---|---|---|---|---|
Actinomycetota | Bifidobacterium | GABA | Zebrafish | [114] |
Bacillota | Bacillus | GABA | Multiple fish species, turbot | [76,115] |
Clostridium | SCFAs, butyrate, vitamins | Grass carp, turbot, various teleost species | [86,118] | |
Lactobacillus | GABA | Zebrafish, rainbow trout | [89,113,119] | |
Bacteroidota | Bacteroides | GABA, SCFAs, tryptophan | Multiple marine fish species, zebrafish, threespine stickleback | [82,86,112] |
Fusobacteriota | Cetobacterium | Vitamin B12, acetate, butyrate | Zebrafish, common carp | [88] |
Mycoplasmatota | Mycoplasma | Amino acids | Limited evidence for MGBA effects in salmonids | [89,90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Churilov, M.N.; Prazdnova, E.V.; Rudoy, D.V. Psychobiotics in Aquaculture: Harnessing the Microbiome–Gut–Brain Axis for Stress Management and Production Enhancement in Fish. Animals 2025, 15, 2726. https://doi.org/10.3390/ani15182726
Churilov MN, Prazdnova EV, Rudoy DV. Psychobiotics in Aquaculture: Harnessing the Microbiome–Gut–Brain Axis for Stress Management and Production Enhancement in Fish. Animals. 2025; 15(18):2726. https://doi.org/10.3390/ani15182726
Chicago/Turabian StyleChurilov, Mikhail Nikolaevich, Evgeniya Valeryevna Prazdnova, and Dmitry Vladimirovich Rudoy. 2025. "Psychobiotics in Aquaculture: Harnessing the Microbiome–Gut–Brain Axis for Stress Management and Production Enhancement in Fish" Animals 15, no. 18: 2726. https://doi.org/10.3390/ani15182726
APA StyleChurilov, M. N., Prazdnova, E. V., & Rudoy, D. V. (2025). Psychobiotics in Aquaculture: Harnessing the Microbiome–Gut–Brain Axis for Stress Management and Production Enhancement in Fish. Animals, 15(18), 2726. https://doi.org/10.3390/ani15182726