Niche Competition and Overlapping Area Dynamics of Two Sympatric Ants Jointly Indicate Strong Adaptive and Dispersal Ability of Yellow Crazy Ant (Anoplolepis gracilipes)
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Insect
2.2. Comparison of Competitive Ability for Food Resources in the Wild Between Both Species
2.3. Study on Aggression Behavior and Ability for Both Species
2.4. Hunger and Thirst Tolerance Ability for Both Species
2.5. Occurrence Records for Both Species
2.6. Environmental Variables
2.7. Model Construction and Evaluation
2.8. Spatial Niche Overlap Analysis
2.9. Data Analyses
3. Results
3.1. Food Resource Competitive Ability of Both Species
3.2. Comparison of the Aggression Abilities of Both Species
3.3. Survival Time of Workers in the Hunger and Thirst State
3.4. Model Performance and Environmental Variable Importance
3.5. Suitable Habitat Dynamics and Geometric Centroid for Two Ant Species
3.6. Range Overlap Dynamics of Both Species
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.; Grosholz, E.D.; Ibañez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef]
- Lin, W.; Cheng, X.Y.; Xu, R.M. Impact of different economic factors on biological invasions on the global scale. PLoS ONE 2011, 6, e18794. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.A. Biotic globalization: Does competition from introduced species threaten biodiversity? Bioscience 2003, 53, 481–489. [Google Scholar] [CrossRef]
- Abbott, K.L. Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island: Forager activity patterns, density and biomass. Insect Soc. 2005, 52, 266–273. [Google Scholar] [CrossRef]
- Dunham, A.E.; Mikheyev, A.S. Influence of an invasive ant on grazing and detrital communities and nutrient fluxes in a tropical forest. Divers. Distrib. 2010, 16, 33–42. [Google Scholar] [CrossRef]
- Shuai, F.M.; Lek, S.; Li, X.H.; Zhao, T. Biological invasions undermine the functional diversity of fish community in a large subtropical river. Biol. Invasions 2018, 20, 2981–2996. [Google Scholar] [CrossRef]
- Garnas, J.R.; Auger-Rozenberg, M.A.; Roques, A.; Bertelsmeier, C.; Wingfield, M.J.; Saccaggi, D.L.; Roy, H.E.; Slippers, B. Complex patterns of global spread in invasive insects: Eco-evolutionary and management consequences. Biol. Invasions 2016, 18, 935–952. [Google Scholar] [CrossRef]
- Nie, P.X.; Cao, R.Y.; Yang, R.J.; Feng, J.M. Future range dynamics of Asian yellow-legged hornets (Vespa velutina) and their range overlap with Western honey bees (Apis mellifera) reveal major challenges for bee conservation in Europe. Pest. Manag. Sci. 2024, 80, 2785–2795. [Google Scholar] [CrossRef]
- Wetterer, J.K. Ants on Cecropia in Hawaii. Biotropica 1997, 29, 128–132. [Google Scholar] [CrossRef]
- Christian, C.E. Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 2001, 413, 635–639. [Google Scholar] [CrossRef]
- Davidson, D.W. Resource discovery versus resource domination in ants: A functional mechanism for breaking the trade-off. Ecol. Entomol. 1998, 23, 484–490. [Google Scholar] [CrossRef]
- Holway, D.A.; Lach, L.; Suarez, A.V.; Tsutsui, N.D.; Case, T.J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 2002, 33, 181–233. [Google Scholar] [CrossRef]
- Walters, A.C.; Mackay, D.A. Importance of large colony size for successful invasion by Argentine ants (Hymenoptera: Formicidae): Evidence for biotic resistance by native ants. Austral Ecol. 2005, 30, 395–406. [Google Scholar] [CrossRef]
- Ma, G.; Ma, C.S. Potential distribution of invasive crop pests under climate change: Incorporating mitigation responses of insects into prediction models. Curr. Opin. Insect Sci. 2022, 49, 15–21. [Google Scholar] [CrossRef]
- Suarez, A.V.; McGlynn, T.P.L.; Tsutsui, N.D. Biogeographic and taxonomic patterns of introduced ants. In Ant Ecology; Lach, L., Parr, C.L., Abbott, K.L., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 233–244. [Google Scholar] [CrossRef]
- Lester, P.J.; Tavite, A. Long-legged ants, Anoplolepis gracilipes (Hymenoptera: Formicidae), have invaded Tokelau, changing composition and dynamics of ant and invertebrate communities. Pac. Sci. 2004, 58, 391–401. [Google Scholar] [CrossRef]
- O’Dowd, D.J.; Green, P.T.; Lake, P.S. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 2003, 6, 812–817. [Google Scholar] [CrossRef]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species Database. In Encyclopedia of Biological Invasions; Simberloff, D., Rejmanek, M., Eds.; University of California press: Oakland, CA, USA, 2000; p. 12. [Google Scholar] [CrossRef]
- Hill, M.; Holm, K.; Vel, T.; Shah, N.J.; Matyot, P. Impact of the introduced yellow crazy ant Anoplolepis gracilipes on Bird Island, Seychelles. Biodivers. Conserv. 2003, 12, 1969–1984. [Google Scholar] [CrossRef]
- Matsui, S.; Kikuchi, T.; Akatani, K.; Horie, S.; Takagi, M. Harmful effects of invasive Yellow Crazy Ant Anoplolepis gracilipes on three land bird species of Minami-daito Island. Ornithol. Sci. 2009, 8, 81–86. [Google Scholar] [CrossRef]
- Nie, L.; Ni, M.H.; Ning, D.D.; Ran, H.; Hassan, B.; Xu, Y.J. Comparing mechanisms of competition among introduced and resident ants in China: From behavior to trophic position (Hymenoptera: Formicidae). Myrmecol. News 2019, 29, 125–133. [Google Scholar] [CrossRef]
- Darras, H.; Berney, C.; Hasin, S.; Drescher, J.; Feldhaar, H.; Keller, L. Obligate chimerism in male yellow crazy ants. Science 2023, 380, 55–58. [Google Scholar] [CrossRef]
- Heimpel, G.E.; de Boer, J.G. Sex determination in the Hymenoptera. Annu. Rev. Entomol. 2008, 53, 209–230. [Google Scholar] [CrossRef]
- Hölldobler, B.K.; Wilson, E.O. Weaver ants. Sci. Am. 1977, 237, 146–155. [Google Scholar] [CrossRef]
- Azuma, N.; Kikuchi, T.; Ogata, K.; Higashi, S. Molecular phylogeny among local populations of weaver ant Oecophylla smaragdina. Zool. Sci. 2002, 19, 1321–1328. [Google Scholar] [CrossRef] [PubMed]
- Andersen, A.N. Responses of ant communities to disturbance: Five principles for understanding the disturbance dynamics of a globally dominant faunal group. J. Anim. Ecol. 2019, 88, 350–362. [Google Scholar] [CrossRef] [PubMed]
- Van Mele, P. A historical review of research on the weaver ant Oecophylla in biological control. Agric. For. Entomol. 2008, 10, 13–22. [Google Scholar] [CrossRef]
- Ambethgar, V. Recognition of red weaver ants in integrated control of tea mosquito bug in cashew plantations in India. Acta Hortic. 2015, 1080, 393–400. [Google Scholar] [CrossRef]
- Forbes, S.J.; Northfield, T.D. Oecophylla smaragdina ants provide pest control in Australian cacao. Biotropica 2017, 49, 328–336. [Google Scholar] [CrossRef]
- Exélis, M.P.; Ramli, R.; Ibrahim, R.W.; Idris, A.H. Foraging behaviour and population dynamics of Asian weaver ants: Assessing its potential as biological control agent of the invasive bagworms Metisa plana (Lepidoptera: Psychidae) in oil palm plantations. Sustainability 2023, 15, 780. [Google Scholar] [CrossRef]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding pollinators and their values to human well-being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Dunn, R.R.; Agosti, D.; Andersen, A.N.; Arnan, X.; Bruhl, C.A.; Cerdá, X.; Ellison, A.M.; Fisher, B.L.; Fitzpatrick, M.C.; Gibb, H.; et al. Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecol. Lett. 2009, 12, 324–333. [Google Scholar] [CrossRef]
- Martins, A.C.; Silva, D.P.; De Marco, P.; Melo, G.A.R. Species conservation under future climate change: The case of Bombus bellicosus, a potentially threatened South American bumblebee species. J. Insect Conserv. 2015, 19, 33–43. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T. The trade-off between thermal tolerance and behavioural dominance in a subtropical South American ant community. J. Anim. Ecol. 2000, 69, 998–1009. [Google Scholar] [CrossRef]
- Cerdá, X.; Arnan, X.; Retana, J. Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology? Myrmecol. News 2013, 18, 131–147. [Google Scholar]
- IPCC. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, MA, USA, 2013. [Google Scholar] [CrossRef]
- Atwater, D.Z.; Ervine, C.; Barney, J.N. Climatic niche shifts are common in introduced plants. Nat. Ecol. Evol. 2018, 2, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Diamond, S.E.; Sorger, D.M.; Hulcr, J.; Pelini, S.L.; Toro, I.D.; Hirsch, C.; Oberg, E.; Dunn, R.R. Who likes it hot? A global analysis of the climatic, ecological, and evolutionary determinants of warming tolerance in ants. Glob. Change Biol. 2011, 18, 448–456. [Google Scholar] [CrossRef]
- Jayatilaka, P.; Narendra, A.; Reid, S.F.; Cooper, P.; Zeil, J. Different effects of temperature on foraging activity schedules in sympatric Myrmecia ants. J. Exp. Biol. 2011, 214, 2730–2738. [Google Scholar] [CrossRef] [PubMed]
- Pimid, M.; Ahmad, A.H.; Krishnan, K.T.; Scian, J. Food preferences and foraging activity of Asian weaver ants, Oecophylla smaragdina (Fabricius) (Hymenoptera: Formicidae). Trop. Life Sci. Res. 2019, 30, 167–179. [Google Scholar] [CrossRef]
- Parr, C.L.; Bishop, T.R. The response of ants to climate change. Glob. Change Biol. 2022, 28, 3188–3205. [Google Scholar] [CrossRef]
- Lokkers, C. The distribution of the weaver ant, Oecophylla smaragdina (Fabricius) (Hymenoptera: Formicidae) in Northern Australia. Aust. J. Zool. 1986, 34, 683–687. [Google Scholar] [CrossRef]
- Liu, W.J.; Li, H.M. Tourist climate resources in Xishuangbanna. Nat. Resour. 1997, 2, 62–66. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Grangier, J.; Le Breton, J.L.; Dejean, A.; Orivel, J. Coexistence between Cyphomyrmex ants and dominant populations of Wasmannia auropunctata. Behav. Process 2007, 74, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.W.; Chiu, M.C.; Lee, C.C.; Lee, C.Y.; Yang, C.C.S. The Association between Virus Prevalence and Intercolonial Aggression Levels in the Yellow Crazy Ant, Anoplolepis gracilipes (Jerdon). Insects 2019, 10, 436. [Google Scholar] [CrossRef] [PubMed]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Modell. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Warren, D.L.; Matzke, N.J.; Cardillo, M.; Baumgartner, J.B.; Beaumont, L.J.; Turelli, M.; Glor, R.E.; Huron, N.A.; Simões, M.; Iglesias, T.L.; et al. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 2021, 44, 504–511. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Kramer-schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.; Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 2013, 19, 1366–1379. [Google Scholar] [CrossRef]
- Noce, S.; Caporaso, L.; Santini, M. A new global dataset of bioclimatic indicators. Sci. Data 2020, 7, 398. [Google Scholar] [CrossRef]
- Bartlein, P.J.; Harrison, S.P.; Brewer, S.; Conner, S.; Davis, B.A.S.; Gajewski, K.; Guiot, J.; Harrison-Prentice, T.I.; Henderson, A.; Peyron, O.; et al. Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Clim. Dyn. 2011, 37, 775–802. [Google Scholar] [CrossRef]
- Fan, J.Y.; Zhao, N.X.; Li, M.; Gao, W.F.; Wang, M.L.; Zhu, G.P. What are the best predictors for invasive potential of weeds? Transferability evaluations of model predictions based on diverse environmental data sets for Flaveria bidentis. Weed Res. 2018, 58, 141–149. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Nazeri, M.; Jusoff, K.; Madani, N.; Mahmud, A.R.; Bahman, A.R.; Kumar, L. Predictive modeling and mapping of Malayan sun bear (Helarctos malayanus) distribution using maximum entropy. PLoS ONE 2012, 7, e48104. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.L.; Glor, R.E.; Turelli, M. ENMTools: A toolbox for comparative studies of environmental niche models. Ecography 2010, 33, 607–611. [Google Scholar] [CrossRef]
- Feng, Y.L.; Du, D.L.; van Kleunen, M. Global change and biological invasions. J. Plant Ecol. 2022, 15, 425–428. [Google Scholar] [CrossRef]
- Human, K.G.; Gordon, D.M. Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia 1996, 105, 405–412. [Google Scholar] [CrossRef]
- Morrison, L.W. Mechanisms of interspecific competition among an invasive and two native fire ants. Oikos 2000, 90, 238–252. [Google Scholar] [CrossRef]
- Blüthgen, N.; Fiedler, K. Interactions between weaver ants Oecophylla smaragdina, homopterans, trees and lianas in an Australian rain forest canopy. J. Anim. Ecol. 2002, 71, 793–801. [Google Scholar] [CrossRef]
- Ellwood, M.D.F.; Blüthgen, N.; Fayle, T.M.; Foster, W.A.; Menzel, F. Competition can lead to unexpected patterns in tropical ant communities. Acta Oecol 2016, 75, 24–34. [Google Scholar] [CrossRef]
- Halsch, C.A.; Shapiro, A.M.; Fordyce, J.A.; Nice, C.C.; Thorne, J.H.; Waetjen, D.P.; Forister, M.L. Insects and recent climate change. Proc. Natl. Acad. Sci. 2021, 118, e2002543117. [Google Scholar] [CrossRef]
- Chen, Y.H. Global potential distribution of an invasive species, the yellow crazy ant (Anoplolepis gracilipes) under climate change. Integr. Zool. 2008, 3, 166–175. [Google Scholar] [CrossRef]
- Valladares, F.; Matesanz, S.; Guilhaumon, F.; Araújo, M.B.; Balaguer, L.; Benito-Garzón, M.; Cornwell, W.; Gianoli, E.; van Kleunen, M.; Naya, D.E.; et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 2014, 17, 1351–1364. [Google Scholar] [CrossRef] [PubMed]
- Kumarathunge, D.P.; Medlyn, B.E.; Drake, J.E.; Tjoelker, M.G.; Aspinwall, M.J.; Battaglia, M.; Cano, F.J.; Carter, K.R.; Cavaleri, M.A.; Cernusak, L.A.; et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 2019, 222, 768–784. [Google Scholar] [CrossRef] [PubMed]
- Vahl, W.K.; Lok, T.; Van der Meer, J.; Piersma, T.; Weissing, F.J. Spatial clumping of food and social dominance affect interference competition among ruddy turnstones. Behav. Ecol. 2005, 16, 834–844. [Google Scholar] [CrossRef]
- Darmon, G.; Calenge, C.; Loison, A.; Jullien, J.M.; Maillard, D.; Lopez, J.F. Spatial distribution and habitat selection in coexisting species of mountain ungulates. Ecography 2012, 35, 44–53. [Google Scholar] [CrossRef]
- Kaiser-Bunbury, C.N.; Cuthbert, H.; Fox, R.; Birch, D.; Bunbury, N. Invasion of yellow crazy ant Anoplolepis gracilipes in a Seychelles UNESCO palm forest. NeoBiota 2014, 22, 43–57. [Google Scholar] [CrossRef]
- Thomas, M.L.; Becker, K.; Abbott, K.; Feldhaar, H. Supercolony mosaics: Two different invasions by the yellow crazy ant, Anoplolepis gracilipes, on Christmas Island, Indian Ocean. Biol. Invasions 2010, 12, 677–687. [Google Scholar] [CrossRef]
- Lee, C.Y.; Yang, C.C.S. Biology, ecology, and management of the invasive longlegged ant, Anoplolepis gracilipes. Annu. Rev. Entomol. 2022, 67, 43–63. [Google Scholar] [CrossRef]
- McGeoch, M.A.; Butchart, S.H.M.; Spear, D.; Marais, E.; Kleynhans, E.J.; Symes, A.; Chanson, J.; Hoffmann, M. Global indicators of biological invasion: Species numbers, biodiversity impact and policy responses. Divers. Distrib. 2010, 16, 95–108. [Google Scholar] [CrossRef]
Category | Code | Environmental Variable |
---|---|---|
Climate variable | bio1 | Annual Mean Temperature |
bio2 | Monthly Average Diurnal Temperature Range | |
bio3 | Isothermality (bio2/bio7) (×100) | |
bio7 | Annual Temperature Variation (bio5-bio6) | |
bio13 | Precipitation of the Wettest Month | |
bio14 | Precipitation of the Driest Month | |
bio15 | Precipitation Seasonality (Coeffificient of Variation) | |
bio18 | Warmest Season Precipitation | |
bio19 | Coldest Season Precipitation | |
Terrain variable | alt | Altitude |
sl | Slope | |
asp | Aspect |
Bait | Bait Detection Time (min) | Maximum Number of Recruited Workers | ||
---|---|---|---|---|
Yellow Crazy Ants | Weaver Ants | Yellow Crazy Ants | Weaver Ants | |
Apple | 3.26 ± 0.43 A | 21.50 ± 1.92 B | 20.47 ± 3.34 a | 1.73 ± 0.25 b |
Honey | 4.19 ± 0.58 A | 10.21 ± 1.11 B | 86.20 ± 7.59 a | 3.40 ± 0.72 b |
Sausage | 7.25 ± 1.62 A | 8.37 ± 1.53 A | 12.07 ± 3.13 a | 49.67 ± 6.78 b |
Environmental Variable Monthly Average Diurnal Temperature Range | Code | Yellow Crazy Ants | Weaver Ants | ||
---|---|---|---|---|---|
Contribution (%) | Importance (%) | Contribution (%) | Importance (%) | ||
Annual Mean Temperature | bio1 | 14.8 | 26.1 | 15.1 | 37.1 |
Monthly Average Diurnal Temperature Range | bio2 | 15 | 32.2 | 5.3 | 10.5 |
Isothermality | bio3 | 2.2 | 2.2 | 6.9 | 10.2 |
Annual temperature variation | bio7 | 29.7 | 8.1 | 4.2 | 4.9 |
Precipitation of Wettest Month | bio13 | 34.6 | 17.1 | 63.4 | 23.8 |
Precipitation of Driest Month | bio14 | 0.2 | 0.9 | 0.2 | 0.4 |
Precipitation Seasonality (Coeffificient of Variation) | bio15 | 0.7 | 1.6 | 0.3 | 2.4 |
Warmest Season Precipitation | bio18 | 0.6 | 3.2 | 1.1 | 3 |
Coldest Season Precipitation | bio19 | 0.5 | 2.9 | 1.3 | 3.1 |
Altitude | alt | 0.3 | 1.7 | 1.2 | 2.7 |
Slope | sl | 0.9 | 2.1 | 0.9 | 1.7 |
Aspect | asp | 0.5 | 1.9 | 0.1 | 0.2 |
Environmental Variable | Code | Yellow Crazy Ants | Weaver Ants | ||
---|---|---|---|---|---|
Suitable Ranges | Most Suitable Value | Suitable Ranges | Most Suitable Value | ||
Annual Mean Temperature (°C) | bio1 | 13.52–30.79 | 29.34 | 17.83–30.78 | 27.65 |
Mean diurnal range (Mean of monthly (max temp-min temp)) (°C) | bio2 | 1.69–20.67 | 8.16 | 1.84–20.02 | 8.09 |
Isothermality (bio2/bio7) (×100) (%) | bio3 | 9.61–100 | 59.45 | 9.55–100 | 50.96 |
Temperature annual range (bio5-bio6) (°C) | bio7 | 3.57–32.34 | 9.24 | 3.67–25.08 | 9.05 |
Precipitation of wettest month (mm) | bio13 | <2062 | 1686.03 | <2059 | 1934.36 |
Epoch | Niche Overlap INDEX | |
---|---|---|
Schoener Value (D) | Hellinger-Based Value (I) | |
Current epoch | 0.763 | 0.936 |
RCP2.6 2050 | 0.740 | 0.921 |
RCP2.6 2070 | 0.746 | 0.927 |
RCP8.5 2050 | 0.736 | 0.919 |
RCP8.5 2070 | 0.726 | 0.914 |
Species | Area (%) | ||||||
---|---|---|---|---|---|---|---|
LGM | MH | CE | RCP2.6 2050 | RCP2.6 2070 | RCP8.5 2050 | RCP8.5 2070 | |
Yellow crazy ants | 14.3 | 11.4 | 5.6 | 7.6 | 8.2 | 11.4 | 12.4 |
Weaver ants | 17.9 | 14.2 | 7.4 | 6.8 | 6.3 | 5.8 | 5.4 |
Overlap | N.D. | N.D. | 3.05 | 2.89 | 2.99 | 2.73 | 2.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Chen, C.; Zhang, Y.; Zhang, J.; Liao, Z.; Liu, F.; Huang, Z.Y.; Zhang, Y. Niche Competition and Overlapping Area Dynamics of Two Sympatric Ants Jointly Indicate Strong Adaptive and Dispersal Ability of Yellow Crazy Ant (Anoplolepis gracilipes). Animals 2025, 15, 2633. https://doi.org/10.3390/ani15172633
Yuan Y, Chen C, Zhang Y, Zhang J, Liao Z, Liu F, Huang ZY, Zhang Y. Niche Competition and Overlapping Area Dynamics of Two Sympatric Ants Jointly Indicate Strong Adaptive and Dispersal Ability of Yellow Crazy Ant (Anoplolepis gracilipes). Animals. 2025; 15(17):2633. https://doi.org/10.3390/ani15172633
Chicago/Turabian StyleYuan, Yulin, Changqi Chen, Ying Zhang, Jinlu Zhang, Zhouyang Liao, Fang Liu, Zachary Y. Huang, and Yuan Zhang. 2025. "Niche Competition and Overlapping Area Dynamics of Two Sympatric Ants Jointly Indicate Strong Adaptive and Dispersal Ability of Yellow Crazy Ant (Anoplolepis gracilipes)" Animals 15, no. 17: 2633. https://doi.org/10.3390/ani15172633
APA StyleYuan, Y., Chen, C., Zhang, Y., Zhang, J., Liao, Z., Liu, F., Huang, Z. Y., & Zhang, Y. (2025). Niche Competition and Overlapping Area Dynamics of Two Sympatric Ants Jointly Indicate Strong Adaptive and Dispersal Ability of Yellow Crazy Ant (Anoplolepis gracilipes). Animals, 15(17), 2633. https://doi.org/10.3390/ani15172633