Impact of Feeding Level and Multi-Nutrient Blocks with Polyherbals on Weight Changes and Greenhouse Gas Emissions in Lambs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Maintenance | Growth | |
---|---|---|
Corn stover, % | 71.0 | 50.0 |
Cracked corn, % | 21.0 | 34.0 |
Soybean meal, % | 8.0 | 16.0 |
Total | 100 | 100 |
Chemical composition | ||
Dry matter, % | 89.74 | 88.92 |
Neutral detergent fiber, % | 59.18 | 49.17 |
Crude protein, % | 9.00 | 13.24 |
Ash, % | 6.32 | 5.58 |
Ether extract, % | 2.25 | 2.46 |
Metabolizable energy, Mcal/kg a | 1.85 | 2.15 |
2.1. Enteric Methane and Carbon Dioxide Estimations
2.2. Statistical Analysis
3. Results
Validation of Methane Estimation
4. Discussion
4.1. Validation of Methane Estimates with Mechanistic Equations
4.2. Lamb Performance and Methane Emissions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Hernández, B.A.; Domínguez, M.B.; Cervantes, A.P.; Barrientos, M.M. Ganadería Familiar En México Y Cambio Climático. In La Ganadería Familiar en México. Un Enfoque de Sustentabilidad; CEDRSSA: Ciudad de Mexico, Mexico, 2018; pp. 71–120. [Google Scholar]
- Herrera, H.J.G.; Mendoza, M.G.; Hernández, G.A. La Ganadería Familiar En México, Instituto Nacional De Estadística Geografía E Informática (INEGI), 2nd ed; Cornell University Press: New York, NY, USA, 1998. [Google Scholar]
- McGrath, J.; Duval, S.M.; Tamassia, L.F.; Kindermann, M.; Stemmler, R.T.; de Gouvea, V.N.; Acedo, T.S.; Immig, I.; Williams, S.N.; Celi, P. Nutritional Strategies in Ruminants: A Lifetime Approach. Res. Vet. Sci. 2018, 116, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, R.S.; Leng, R.A.; Nolan, J.V. Measurement of Methane Production Rate in the Rumen Using Isotopic Tracers. In Measuring Methane Production from Ruminants; Springer: Berlin/Heidelberg, Germany, 2007; pp. 93–103. [Google Scholar]
- Ezequiel, F.D.S.; Cartaxo, F.Q.; Sousa, W.H.; Pinto, M.D.S.D.C.; Cunha, M.D.G.; Ramos, J.D.F.; Leite, M.L.M.V.; Targino, L.C. Biomedical Performance of Grass Fed Goats with Multinutritional Blocks. Rev. Electron. Vet. 2017, 18, 101704. [Google Scholar]
- Reyes Montes, F.; Nava, G.; González, R. Performance of Grazing Growing Cattle Supplemented with Cocoite Foliage (Gliricidia Sepium), Multinutritional Blocks, and Commercial Diet in the Mexican Humid Tropic. Zootecnia Trop. 2008, 26, 343–346. [Google Scholar]
- Herrera-Torres, E.; Pámanes-Carrasco, G.; Araiza-Rosales, E.; Sánchez-Arroyo, F.; Palacios-Torres, J.; Murillo-Ortiz, M. In Vitro Gas Production, Rumen Fermentation and Production Performance of Steers Fed Multinutritional Prickly Pear Blocks. J. Anim. Feed Sci. 2022, 31, 258–264. [Google Scholar] [CrossRef]
- Faizi, M.U.; Siddiqui, M.M.; Habib, G. Effect of Urea-Molasses Block Supplementation on Nutrient Digestibility and Intake of Ammoniated Maize Stovers in Cow-Calves. Pak. Vet. J. 2004, 24, 13–17. [Google Scholar]
- Ünal, Y.; Kaya, I.; Öncüer, A. Use of Urea-Molasses Mineral Blocks in Lambs Fed with Straw. Rev. Med. Vet. 2005, 156, 217–220. [Google Scholar]
- Raghuvansi, S.K.S.; Prasad, R.; Tripathi, M.K.; Mishra, A.S.; Chaturvedi, O.H.; Misra, A.K.; Saraswat, B.L.; Jakhmola, R.C. Effect of Complete Feed Blocks or Grazing and Supplementation of Lambs on Performance, Nutrient Utilisation, Rumen Fermentation and Rumen Microbial Enzymes. Animal 2007, 1, 221–226. [Google Scholar] [CrossRef]
- Ramos, J.P.D.F.; Sousa, W.H.D.; Cavalcante, I.T.R.; Oliveira, J.S.; Santos, E.M.; Pimenta Filho, E.C.; de Freitas, F.F.; Leite, R.M. Multinutritional Blocks as a Food Strategy to Optimize the Use of Concentrate for Lactating Goats. Acta Sci. Anim. Sci. 2019, 41, e47441. [Google Scholar] [CrossRef]
- Mendoza, G.D.; Plata, F.X.; Vázquez, G.; Sánchez-Trocino, M.; Hernández, P.A.; Martínez, J.A. Intake and Digestibility with Nutritional Blocks for Brocked Deers (Mazama Americana and Mazama Temama). Int. J. Appl. Res. Vet. Med. 2017, 15, 26–30. [Google Scholar]
- Lira, A.B.; Gonzaga Neto, S.; Sousa, W.H.; Ramos, J.D.F.; Cartaxo, F.Q.; Santos, E.M.; Cézar, M.F.; Freitas, F.F. Performance and Carcass Characteristics of Two Biotypes of Santa Inês Sheep Grazing Pasture Supplemented with Multinutritional Blocks. Rev. Bras. Saude Prod. Anim. 2017, 18, 313–326. [Google Scholar] [CrossRef]
- Araque, C.; Arrieta, G.; Sandoval, E. Evaluación Del Efecto De Los Bloques Multinutricionales Con Y Sin Implante Sobre La Ganancia De Peso En Mautes. Rev. Fac. Agron. 2000, 17, 335–341. [Google Scholar]
- Salem, H.B.; Nefzaoui, A. Feed Blocks as Alternative Supplements for Sheep and Goats. Small Rumin. Res. 2003, 49, 275–288. [Google Scholar] [CrossRef]
- Sánchez, N.; Mendoza, G.; Martinez, J.; Hernández, P.; Miranda, L.; Villarreal, E.B.O. Efecto De Bloques Con Propionato De Calcio Sobre Respuestas Productivas En Corderos Y Gei in Vitro. Rev. MVZ Córdoba 2019, 24, 7188–7192. [Google Scholar] [CrossRef]
- Pereira, L.C.; Itavo, L.C.V.; Leal, E.S.; Miraglia, H.H.; Ferreira, M.B.; Carvalho, C.M.E. Evaluation of Sheep Fed on Multinutritional Blocks with Garlic Extract. Acta Vet. Bras. 2017, 11, 20–28. [Google Scholar]
- Mendoza-Martínez, G.D.; Orzuna-Orzuna, J.F.; Roque-Jiménez, J.A.; Gloria-Trujillo, A.; Martínez-García, J.A.; Sánchez-López, N.; Hernández-García, P.A.; Lee-Rangel, H.A. A Polyherbal Mixture with Nutraceutical Properties for Ruminants: A Meta-Analysis and Review of Biocholine Powder. Animals 2024, 14, 667. [Google Scholar] [CrossRef]
- Moreno, A.L.; Chaparro, A.L.; de la Torre Hernández, M.; Pérez, F.P.; Martínez, G.M. Comparison of a Polyherbal Mixture with a Rumen-Protected Lysine on Lamb Growth, Protozoan Count and Blood Chemistry. Int. J. Agric. Bios. 2020, 4, 32–39. [Google Scholar]
- Moreno, A.V.L.; de la Torre Hernández, M.E.; Chaparro, A.C.L.; Pérez, F.X.P.; Romero, L.A.M.; García, J.A.M.; Martínez, G.D.M. Ruminal Ammonia Concentration and Fermentation Kinetics of Commercial Herbal Feed Additives with Amino Acids. Rev. Fac. Cienc. Agrar. Univ. Nac. Cuyo. 2021, 53, 288–295. [Google Scholar]
- Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Gloria-Trujillo, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Growth Performance, Dietary Energetics, Blood Metabolites, Carcass Traits, Meat Quality, and Gene Expression of Lambs Supplemented with a Polyherbal Phytogenic Additive. Vet. Sci. 2024, 11, 520. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 14th ed.; Association of Official Analytical Chemists: Washington DC, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mendoza-Martínez, G.D.; Hernández-García, P.A.; Díaz-Galván, C.; Razo-Ortiz, P.B.; Ojeda-Carrasco, J.J.; Sánchez-López, N.; de la Torre-Hernández, M.E. Evaluation of Increasing Dietary Concentrations of a Multi-Enzyme Complex in Feedlot Lambs’ Rations. Animals 2024, 14, 1215. [Google Scholar] [CrossRef]
- Briceño-Poot, E.G.; Ruiz-González, A.; Chay-Canul, A.J.; Ayala-Burgos, A.J.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J.; Ku-Vera, J.C. Voluntary Intake, Apparent Digestibility and Prediction of Methane Production by Rumen Stoichiometry in Sheep Fed Pods of Tropical Legumes. Anim. Feed Sci. Technol. 2012, 176, 117–122. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: New York, NY, USA, 1994. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the Energetic Feed Value Obtained from Chemical Analysis and in Vitro Gas Production Using Rumen Fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Getachew, G.; Makkar, H.P.S.; Becker, K. Tropical Browses: Contents of Phenolic Compounds, in Vitro Gas Production and Stoichiometric Relationship between Short Chain Fatty Acid and in Vitro Gas Production. J. Agric. Sci. 2002, 139, 341–352. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A Simple Gas Production Method Using a Pressure Transducer to Determine the Fermentation Kinetics of Ruminant Feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Hegarty, R.S.; Alcock, D.; Robinson, D.L.; Goopy, J.P.; Vercoe, P.E. Nutritional and Flock Management Options to Reduce Methane Output and Methane Per Unit Product from Sheep Enterprises. Anim. Prod. Sci. 2010, 50, 1026–1033. [Google Scholar] [CrossRef]
- Ramírez-Díaz, R.; Pinto-Ruiz, R.; Miranda-Romero, L.A.; La O-Arias, M.A.; Hernández-Sánchez, D.; Raj-Aryal, D. Predicción de metano de dos frutos arbóreos por cromatografía de gases y gas In vitro. Ecosist. Recur. Agropec. 2023, 10, e3602. [Google Scholar] [CrossRef]
- Clauss, M.; Dittmann, M.T.; Vendl, C.; Hagen, K.B.; Frei, S.; Ortmann, S.; Müller, D.W.H.; Hammer, S.; Munn, A.J.; Schwarm, A.; et al. Review: Comparative Methane Production in Mammalian Herbivores. Animal 2020, 14, s113–s123. [Google Scholar] [CrossRef]
- Tobias, C.B.; Mendoza, M.G.D.; Aranda, I.E.; González, M.S.; Arjona, S.E.; Plata, P.F.; Vargas, V.L. A Simulation Model to Predict Body Weight Gain in Growing Steers Grazing Tropical Pastures. Agric. Syst. 2006, 90, 99–111. [Google Scholar] [CrossRef]
- Storm, I.M.; Hellwing, A.L.F.; Nielsen, N.I.; Madsen, J. Methods for Measuring and Estimating Methane Emission from Ruminants. Animals 2012, 2, 160–183. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Rodrigues, J.P.P.; Maurício, R.M.; Borges, A.L.C.C.; Reis e Silva, R.; Berchielli, T.T.; Valadares Filho, S.C.; Machado, F.S.; Campos, M.M.; Ferreira, A.L.; et al. Predicting Enteric Methane Production from Cattle in the Tropics. Animal 2020, 14, s438–s452. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- National Academies of Sciences, Engineering and Medicine. Nutrient Requirements of Dairy Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2021. [Google Scholar]
- Ouatahar, L.; Bannink, A.; Lanigan, G.; Amon, B. Modelling the Effect of Feeding Management on Greenhouse Gas and Nitrogen Emissions in Cattle Farming Systems. Sci. Total Environ. 2021, 776, 145932. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Abdalla, A.L.; Alvarez, C.; Anuga, S.W.; Arango, J.; Beauchemin, K.A.; Becquet, P.; Berndt, A.; Burns, R.; De Camillis, C.; et al. Quantification of Methane Emitted by Ruminants: A Review of Methods. J. Anim. Sci. 2022, 100, skac197. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.S.; Pereira, M.W.F.; Marcondes, M.I.; de Medeiros, A.N.; de Oliveira, R.L.; da Silva, L.P.; Mizubuti, I.Y.; Campos, A.C.N.; Heinzen, E.L.; Veras, A.S.C.; et al. Maintenance and Growth Requirements in Male and Female Hair Lambs. Small Rumin. Res. 2018, 159, 75–83. [Google Scholar] [CrossRef]
- Dabiri, N.; Thonney, M.L. Source and Level of Supplemental Protein for Growing Lambs. J. Anim. Sci. 2004, 82, 3237–3244. [Google Scholar] [CrossRef]
- Kaya, I.; Unal, Y.; Sahin, T.; Elmali, D. Effect of Different Protein Levels on Fattening Performance, Digestibility and Rumen Parameters in Finishing Lambs. J. Anim. Vet. Adv. 2009, 57, 309–312. [Google Scholar]
- Hatfield, P.G.; Hopkins, J.A.; Ramsey, W.S.; Gilmore, A. Effects of Level of Protein and Type of Molasses on Digesta Kinetics and Blood Metabolites in Sheep. Small Rumin. Res. 1998, 28, 161–170. [Google Scholar] [CrossRef]
- Arteaga-Wences, Y.J.; Estrada-Angulo, A.; Ríos-Rincón, F.G.; Castro-Pérez, B.I.; Mendoza-Cortéz, D.A.; Manriquez-Núñez, O.M.; Barreras, A.; Corona-Gochi, L.; Zinn, R.A.; Perea-Domínguez, X.P.; et al. The Effects of Feeding a Standardized Mixture of Essential Oils Vs Monensin on Growth Performance, Dietary Energy and Carcass Characteristics of Lambs Fed a High-Energy Finishing Diet. Small Rumin. Res. 2021, 205, 106557. [Google Scholar] [CrossRef]
- Meziane, R.; Mouss, A.K.; Hammouche, D.; Boughris, M.; Boughris, F. Practical Management of Sheep Farming in Eastern Algeria: Situation, Constraints and Perspectives. World 2024, 14, 389–399. [Google Scholar] [CrossRef]
- Silva, N.C.; Cabral-Filho, S.L.S.; Ferreira, M.S.; Silva, C.J.; Fonseca, A.A.; Geraseev, L.C.; Silva, B.D.M.; Ribeiro, M.D. Effect of Supplementation Strategies for Ewes During Gestation. Rev. Bras. Zootec. 2024, 53, e20230106. [Google Scholar] [CrossRef]
- McCoard, S.A.; Sales, F.A.; Sciascia, Q.L. Amino Acids in Sheep Production. Front. Biosci. 2016, 8, 264–288. [Google Scholar] [CrossRef]
- Al-Badri, Y.H.A.N.; Hassan, A.F. The Effect of Adding Protected Amino Acids (Methionine and Lysine) on the Performance and Carcass Characteristics of Male Arabi Lambs. Multidiscip. Sci. J. 2020, 2, 2020008. [Google Scholar] [CrossRef]
- Liu, H.; Yang, G.; Degen, A.; Ji, K.; Jiao, D.; Liang, Y.; Xiao, L.; Long, R.; Zhou, J. Effect of Feed Level and Supplementary Rumen Protected Lysine and Methionine on Growth Performance, Rumen Fermentation, Blood Metabolites and Nitrogen Balance in Growing Tan Lambs Fed Low Protein Diets. Anim. Feed Sci. Technol. 2021, 279, 115024. [Google Scholar] [CrossRef]
- Grassi, G.; Di Gregorio, P.; Capasso, G.; Rando, A.; Perna, A.M. Effect of Dietary Supplementation with Rumen-Protected Amino Acids, Lysine and Methionine, on the Performance of Comisana Ewes and on the Growth of Their Lambs. Anim. Sci. J. 2024, 95, e70018. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Galván, C.; Méndez-Olvera, E.T.; Martínez-Gómez, D.; Gloria-Trujillo, A.; Hernández-García, P.A.; Espinosa-Ayala, E.; Palacios-Martínez, M.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Velázquez-Cruz, L.A. Influence of a Polyherbal Mixture in Dairy Calves: Growth Performance and Gene Expression. Front. Vet. Sci. 2021, 7, 623710. [Google Scholar] [CrossRef]
- Roque-Jiménez, J.A.; Mendoza-Martínez, G.D.; Vázquez-Valladolid, A.; Guerrero-González, M.d.l.L.; Flores-Ramírez, R.; Pinos-Rodriguez, J.M.; Loor, J.J.; Relling, A.E.; Lee-Rangel, H.A. Supplemental Herbal Choline Increases 5-Hmc DNA on Whole Blood from Pregnant Ewes and Offspring. Animals 2020, 10, 1277. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Effects of Dietary Tannins’ Supplementation on Growth Performance, Rumen Fermentation, and Enteric Methane Emissions in Beef Cattle: A Meta-Analysis. Sustainability 2021, 13, 7410. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Chay-Canul, A.J.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D. Meta-Analysis of Flavonoids Use into Beef and Dairy Cattle Diet: Performance, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Milk Composition. Front. Vet. Sci. 2023, 10, 1134925. [Google Scholar] [CrossRef]
- Al Rharad, A.; El Aayadi, S.; Avril, C.; Souradjou, A.; Sow, F.; Camara, Y.; Hornick, J.-L.; Boukrouh, S. Meta-Analysis of Dietary Tannins in Small Ruminant Diets: Effects on Growth Performance, Serum Metabolites, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Fatty Acid Profile. Animals 2025, 15, 596. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Hornick, J.L.; Chentouf, M.; Cabaraux, J.F. Effects of Sulla Flexuosa Hay as Alternative Feed Resource on Goat’s Milk Production and Quality. Animals 2023, 13, 709. [Google Scholar] [CrossRef]
- Arndt, C.; Hristov, A.N.; Price, W.J.; McClelland, S.C.; Pelaez, A.M.; Cueva, S.F.; Oh, J.; Dijkstra, J.; Bannink, A.; Bayat, A.R.; et al. Full Adoption of the Most Effective Strategies to Mitigate Methane Emissions by Ruminants Can Help Meet the 1.5 °C Target by 2030 but Not 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2111294119. [Google Scholar] [CrossRef]
- Charmley, E.; Stephens, M.L.; Kennedy, P.M. Predicting Livestock Productivity and Methane Emissions in Northern Australia: Development of a Bio-Economic Modelling Approach. Aust. J. Exp. Agric. 2008, 48, 109–113. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Ungerfeld, E.M.; Eckard, R.J.; Wang, M. Review: Fifty Years of Research on Rumen Methanogenesis: Lessons Learned and Future Challenges for Mitigation. Animal 2020, 14, s2–s16. [Google Scholar] [CrossRef] [PubMed]
- Kebreab, E.; Feng, X. Strategies to Reduce Methane Emissions from Enteric and Lagoon Sources. Contract 17RD018; California Air Resources Board Research Division: Sacramento, CA, USA, 2021; p. 57. [Google Scholar]
Phosphatidylcholine/lysine/methionine | |||
---|---|---|---|
(0:0:0) | (3:0:0) | (3:0.75:0.25) | |
Molasses | 40 | 40 | 40 |
Corn stover | 13 | 13 | 13 |
Soybean meal | 10 | 5 | 5 |
Urea | 10 | 10 | 10 |
Ground corn | 9.85 | 9 | 9 |
Mineral premix a | 6 | 6 | 6 |
Cement | 5.15 | 5.85 | 4.85 |
Lime | 5 | 4.4 | 4 |
Salt | 1 | 0 | 0 |
Sodium sulfate | 0 | 1 | 1 |
Chelated minerals b | 0 | 0.15 | 0.15 |
Sodium propionate | 0 | 1 | 1 |
Sodium hexametaphosphate | 0 | 2 | 2 |
BioCholine | 0 | 3 | 3 |
OptiMethionine | 0 | 0 | 0.25 |
OptiLysine | 0 | 0 | 0.75 |
TOTAL | 100 | 100 | 100 |
Chemical composition | |||
Dry matter, % | 84.66 | 85.06 | 86.87 |
Ash, % | 24.4 | 26.84 | 25.08 |
Crude protein, % | 36.96 | 34.39 | 35.07 |
Neutral detergent fiber, % | 13.97 | 12.96 | 13.0 |
Ether extract, % | 0.77 | 0.66 | 0.55 |
Methane, g/d | |
---|---|
Observed | 20.98 a |
Mechanistic equations | 22.15 a |
SEM | 0.7632 |
Feeding Level | ||||
---|---|---|---|---|
Maintenance | Growth | SEM | p-Value | |
Initial BW, kg | 15.63 | 16.87 | 0.578 | 0.13 |
Final BW, kg | 16.43 b | 26.23 a | 0.835 | 0.0001 |
Dry matter intake, g/d | 512.8 b | 1009.1 a | 37.404 | 0.0001 |
Block intake, g/d | 61.3 b | 84.2 a | 5.9102 | 0.0083 |
ADG, g | 26.87 b | 187.12 a | 9.1097 | 0.0001 |
Estimated methane | ||||
CH4, g/d | 8.74 b | 18.18 a | 1.320 | 0.0001 |
CH4, g/kg DMI | 15.25 b | 16.65 a | 0.436 | 0.0001 |
CH4, g/kg PV0.75 | 1.08 b | 1.81 a | 0.096 | 0.0001 |
CH4/kg of lamb, g | 231.14 | 105.47 | 15.519 | 0.0002 |
Polyherbal % Included in Multi-Nutrient Block (Phosphatidylcholine/lysine/methionine) | ||||||
---|---|---|---|---|---|---|
Control | (0:0:0) | (3:0:0) | (3:0.75:0.25) | SEM | p-Value | |
Initial BW, kg | 16.58 | 16.35 | 16.09 | 15.99 | 0.8176 | 0.95 |
Final BW, kg | 19.63 | 22.04 | 21.50 | 22.18 | 1.1819 | 0.40 |
Dry matter intake, g/d | 779.5 | 728.8 | 728.4 | 807.11 | 52.898 | 0.65 |
Block intake, g/d | 0.0 b | 112.4 a | 89.6 a | 89.03 a | 8.3584 | 0.0001 |
Average daily gain (ADG), g | 56.9 b | 123.5 a | 113.2 a | 134.2 a | 18.2194 | 0.0004 |
Estimated methane | ||||||
CH4, g/d | 13.33 | 14.40 | 13.85 | 15.31 | 0.9561 | 0.52 |
CH4, g/kg DMI | 17.10 | 19.76 | 19.01 | 18.96 | 0.4433 | 0.70 |
CH4, g/kg PV0.75 | 1.48 | 1.33 | 1.34 | 1.48 | 0.0418 | 0.15 |
CH4/kg of lamb produced | 388.17 | 213.47 | 215.27 | 207.50 | 15.5186 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-López, N.; Mendoza-Martínez, G.D.; de la Torre-Hernández, M.E.; Hernández-García, P.A.; Díaz-Galván, C.; Ortega-Navarro, G.C.; Fuentes Ponce, M.H.; Leal-González, A.J.; López Ridaura, S.; Van Loon, J. Impact of Feeding Level and Multi-Nutrient Blocks with Polyherbals on Weight Changes and Greenhouse Gas Emissions in Lambs. Animals 2025, 15, 2541. https://doi.org/10.3390/ani15172541
Sánchez-López N, Mendoza-Martínez GD, de la Torre-Hernández ME, Hernández-García PA, Díaz-Galván C, Ortega-Navarro GC, Fuentes Ponce MH, Leal-González AJ, López Ridaura S, Van Loon J. Impact of Feeding Level and Multi-Nutrient Blocks with Polyherbals on Weight Changes and Greenhouse Gas Emissions in Lambs. Animals. 2025; 15(17):2541. https://doi.org/10.3390/ani15172541
Chicago/Turabian StyleSánchez-López, Nallely, Germán David Mendoza-Martínez, María Eugenia de la Torre-Hernández, Pedro Abel Hernández-García, Cesar Díaz-Galván, Gilberto Carlos Ortega-Navarro, Mariela Hada Fuentes Ponce, Abel Jaime Leal-González, Santiago López Ridaura, and Jelle Van Loon. 2025. "Impact of Feeding Level and Multi-Nutrient Blocks with Polyherbals on Weight Changes and Greenhouse Gas Emissions in Lambs" Animals 15, no. 17: 2541. https://doi.org/10.3390/ani15172541
APA StyleSánchez-López, N., Mendoza-Martínez, G. D., de la Torre-Hernández, M. E., Hernández-García, P. A., Díaz-Galván, C., Ortega-Navarro, G. C., Fuentes Ponce, M. H., Leal-González, A. J., López Ridaura, S., & Van Loon, J. (2025). Impact of Feeding Level and Multi-Nutrient Blocks with Polyherbals on Weight Changes and Greenhouse Gas Emissions in Lambs. Animals, 15(17), 2541. https://doi.org/10.3390/ani15172541