Impacts of Climate Change on Habitat Suitability and Landscape Connectivity of the Amur Tiger in the Sino-Russian Transboundary Region
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Environmental Variables
2.4. Suitable Habitat Modeling
2.5. Landscape Connectivity Assessment
3. Results
3.1. Environmental and Occurrence Data Screening and Model Setup
3.2. Model Result Accuracy
3.3. Distribution of Suitable Habitat for the Amur Tiger
3.4. Current and Predicted Future Landscape Connectivity
4. Discussion
4.1. Effects of Environmental Factors
4.2. Effects of Climate Change on Amur Tiger’s Suitable Habitat
4.3. Effects of Climate Change on Landscape Connectivity
4.4. Implications for Conservation
4.5. Limitations of the Method in This Article
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Meteorological Organization (WMO). State of the Global Climate 2025; WMO-No. 1368; World Meteorological Organization: Geneva, Switzerland, 2025; Volume 1368, ISBN 978-92-63-11368-5. [Google Scholar]
- Lovejoy, T.E.; Hannah, L.J. Climate Change and Biodiversity; Yale University Press: New Haven, CT, USA, 2006. [Google Scholar]
- Shen, Y.; Tu, Z.; Zhang, Y.; Zhong, W.; Xia, H.; Hao, Z.; Zhang, C.; Li, H. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance. J. Environ. Manag. 2022, 322, 116024. [Google Scholar] [CrossRef]
- Leadley, P.; Pereira, H.M.; Alkemade, R.; Fernandez-Manjarres, J.F.; Proenca, V.; Scharlemann, J.P.W. Biodiversity Scenarios: Projections of 21st Century Change in Biodiversity and Associated Ecosystem Services; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2010; pp. 1–132. [Google Scholar]
- Luo, Z.; Yu, H.; Yang, S.; Long, Y.; Liu, P.; Wang, T.; Zhao, C.; Liu, Q.; Xu, A. Climate change may improve the habitat suitability and connectivity of sika deer (Cervus nippon) in the Shennongjia area of China. Ecol. Inform. 2024, 81, 102558. [Google Scholar] [CrossRef]
- Ramasamy, M.; Das, B.; Ramesh, R. Predicting climate change impacts on potential worldwide distribution of fall armyworm based on CMIP6 projections. J. Pest Sci. 2022, 95, 841–854. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, J.; Zhao, X.; Wei, W.; Hong, M.; Zhou, H.; Zhang, J.; Zhang, Z. The fate of giant panda and its sympatric mammals under future climate change. Biol. Conserv. 2022, 274, 109715. [Google Scholar] [CrossRef]
- Ramalho, Q.; Vale, M.; Manes, S.; Diniz, P.; Malecha, A.; Prevedello, J.A. Evidence of stronger range shift response to ongoing climate change by ectotherms and high-latitude species. Biol. Conserv. 2023, 279, 109911. [Google Scholar] [CrossRef]
- State Forestry Administration. Investigation of Resources of Key Terrestrial Wildlife Animal in China; China Forestry Publishing: Beijing, China, 2009. [Google Scholar]
- Li, X.; Jiang, G.; Tian, H.; Xu, L.; Yan, C.; Wang, Z.; Wei, F.; Zhang, Z. Human impact and climate cooling caused range contraction of large mammals in China over the past two millennia. Ecography 2015, 38, 74–82. [Google Scholar] [CrossRef]
- Liang, D.; Li, C. Habitat suitability, distribution modelling and gap analysis of Przewalski’s gazelle conservation. Animals 2024, 14, 149. [Google Scholar] [CrossRef]
- Abolmaali, S.M.R.; Tarkesh, M.; Bashari, H. MaxEnt modeling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol. Inform. 2018, 43, 116–123. [Google Scholar] [CrossRef]
- Cong, W.; Li, J.; Zhang, Y.; Huang, T.; Gao, S.; Yu, J.; Li, D. Snow Leopard habitat vulnerability assessment under climate change and connectivity corridor in Xinjiang Uygur autonomous region, China. Sci. Rep. 2025, 15, 14583. [Google Scholar] [CrossRef]
- Han, X.; Oliver, C.D.; Ge, J.; Guo, Q.; Kou, X. Managing Forest stand structures to enhance conservation of the Amur tiger (Panthera tigris altaica). In A Goal-Oriented Approach to Forest Landscape Restoration; Springer: Dordrecht, The Netherlands, 2012; Volume 16, pp. 93–128. [Google Scholar]
- Ma, J.; Zhang, M.; Jiang, G.; Lu, J. Challenges and Strategies for Conservation of Tigers and Their Habitats in China. Chin. J. Wildl. 2015, 36, 129–133. [Google Scholar]
- Gu, J. The Status of Current Population and Distribution, Winter Prey Selection and Movement Characteristics of Amur Tiger (Panthera tigris altaica) in China. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2017. [Google Scholar]
- Wang, S. China Red Data Book of Endangered Animals: Mammals; Yue, P., Chen, Y., Eds.; Science Press: Beijing, China, 1998; Volume 4. [Google Scholar]
- Danilov-Danilian, V.I. Red Data Book of the Russian Federation (Animals); AST Astrel: Moscow, Russia, 2001. [Google Scholar]
- Goodrich, J.; Wibisono, H.; Miquelle, D.; Lynam, A.J.; Sanderson, E.; Chapman, S.; Gray, T.N.E.; Chanchani, P.; Harihar, A. Panthera tigris. In The IUCN Red List of Threatened Species 2022: E.; International Union for Conservation of Nature: Gland, Switzerland, 2022; IUCN 2022: T15955A214862019. [Google Scholar]
- Jeong, D.; Hyun, J.Y.; Marchenkova, T.; Matiukhina, D.; Cho, S.; Lee, J.; Kim, D.Y.; Li, Y.; Darman, Y.; Min, M.S.; et al. Genetic insights and conservation strategies for Amur tigers in Southwest Primorye Russia. Sci. Rep. 2024, 14, 29985. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Su, Y.; Smith, J.L.; Ge, J.; Wang, T. Integrating direct anthropogenic disturbances and habitat connectivity to guide the restoration of the Amur tiger population in a newly established national park in China. Landsc. Ecol. 2025, 40, 86. [Google Scholar] [CrossRef]
- Wang, T.; Feng, L.; Mou, P.U.; Wu, J.; Smith, J.L.; Xiao, W.; Yang, H.; Dou, H.; Zhao, X.; Cheng, Y.; et al. Amur tigers and leopards returning to China: Direct evidence and a landscape conservation plan. Landsc. Ecol. 2016, 31, 491–503. [Google Scholar] [CrossRef]
- Xiao, W.; Feng, L.; Mou, P.; Miquelle, D.G.; Hebblewhite, M.; Goldberg, J.F.; Robinson, H.S.; Zhao, X.; Zhou, B.; Wang, T.; et al. Estimating abundance and density of Amur tigers along the Sino–Russian border. Integr. Zool. 2016, 11, 322–332. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Jiang, L.; Wang, Z. The Amur tiger needs transborder protection. Science 2022, 377, 826. [Google Scholar] [CrossRef]
- Miquelle, D.G.; Goodrich, J.M.; Kerley, L.L.; Pikunov, D.G.; Dunishenko, Y.M.; Aramiliev, V.; Nikolaev, I.G.; Smirnov, E.N.; Salkina, G.P.; Endi, Z.; et al. Science-based conservation of Amur tigers in the Russian Far East and Northeast China. In Tiger of the World: The Science, Politics, and Conservation of Panthera Tigris, 2nd ed.; Tilson, R., Nyhus, P.J., Eds.; William Andrew Publishing: Norwich, NY, USA, 2010; Chapter 32; pp. 403–423. [Google Scholar]
- Tian, Y.; Wu, J.; Smith, A.T.; Wang, T.; Kou, X.; Ge, J. Population viability of the Amur Tiger in a changing landscape: Going, going and gone. Ecol. Model. 2011, 222, 3166–3180. [Google Scholar] [CrossRef]
- Meng, L. Assessment of Chinese Wild Amur Tiger Habitat and Potential Habitat Selection and Protection. Ph.D. Thesis, Harbin Normal University, Harbin, China, 2016. [Google Scholar]
- Tian, Y.; Wu, J.; Wang, T.; Ge, J. Climate change and landscape fragmentation jeopardize the population viability of the Amur tiger (Panthera tigris altaica). Landsc. Ecol. 2014, 29, 621–637. [Google Scholar] [CrossRef]
- Moya, W.; Jacome, G.; Yoo, C. Past, current, and future trends of red spiny lobster based on PCA with MaxEnt model in Galapagos Islands, Ecuador. Ecol. Evol. 2017, 7, 4881–4890. [Google Scholar] [CrossRef]
- Kafash, A.; Ashrafi, S.; Ohler, A.; Yousefi, M.; Malakoutikhah, S.; Koehler, G.; Schmidt, B.R. Climate change produces winners and losers: Differential responses of amphibians in mountain forests of the Near East. Glob. Ecol. Conserv. 2018, 16, e00471. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Chen, J. Research on Conservation Biology of Amur Tiger in Jilin Hunchun Nature Reserve. Master’s Thesis, Northeast Forestry University, Harbin, China, 2011. [Google Scholar]
- Liu, F. Jilin Hunchun Wild Amur Tiger Habitat Evaluation and Potential Corridor Analysis. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2016. [Google Scholar]
- Gu, J. Integration of Natural Preserve Based on Potential Habitat Protection of the Amur Tiger and Zoning of the Amur Tiger and Leopard National Park. Master’s Thesis, Northeast Forestry University, Harbin, China, 2021. [Google Scholar]
- Zhu, H.; Jiang, Z.; Li, L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6. Sci. Bull. 2021, 66, 2528–2537. [Google Scholar] [CrossRef] [PubMed]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; Van Vuuren, D.P.; Van Den Berg, M.; Feng, L.; Klein, D.; et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef]
- Porfirio, L.L.; Harris, R.M.; Lefroy, E.C.; Hugh, S.; Gould, S.F.; Lee, G.; Bindoff, N.L.; Mackey, B. Improving the use of species distribution models in conservation planning and management under climate change. PLoS ONE 2014, 9, e113749. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef]
- Jia, T.; Qi, Y.; Zhao, H.; Xian, X.; Li, J.; Huang, H.; Yu, W.; Liu, W.X. Estimation of climate-induced increased risk of Centaurea solstitialis L. invasion in China: An integrated study based on biomod2. Front. Ecol. Evol. 2023, 11, 1113474. [Google Scholar] [CrossRef]
- Wade, A.A.; McKelvey, K.S.; Schwartz, M.K. Resistance-Surface-Based Wildlife Conservation Connectivity Modeling: SUMMARY of Efforts in the United States and Guide for Practitioners; US Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2015; Volume 93, p. 333. [Google Scholar]
- Hilty, J.; Worboys, G.L.; Keeley, A.; Woodley, S.; Lausche, B.J.; Locke, H.; Carr, M.; Pulsford, I.; Pittock, J.; White, J.W.; et al. Guidelines for Conserving Connectivity Through Ecological Networks and Corridors; Best Practice Protected Area Guidelines Series No. 30; IUCN: Gland, Switzerland, 2020. [Google Scholar]
- Cushman, S.A.; McRae, B.; Adriaensen, F.; Beier, P.; Shirley, M.; Zeller, K.C. Biological corridors and connectivity. In Key Topics in Conservation Biology 2; Macdonald, D.W., Willis, K.J., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; Chapter 21; pp. 384–404. [Google Scholar]
- Li, Y. The Research on Ecology Corridor of Amur Tiger Based on Habitat Choice Research in Hunchun Area. Ph.D. Thesis, Yanbian University, Yanji, China, 2011. [Google Scholar]
- Miquelle, D.G.; Rozhnov, V.V.; Ermoshin, V.; Murzin, A.A.; Nikolaev, I.G.; HERNANDEZ-BLANCO, J.A.; Naidenko, S.V. Identifying ecological corridors for Amur tigers (Panthera tigris altaica) and Amur leopards (Panthera pardus orientalis). Integr. Zool. 2015, 10, 389–402. [Google Scholar] [CrossRef]
- Li, W.; Bao, H.; Zhang, M. Habitat analysis and design of potential ecological corridors for Amur tiger in Northeastern China. Acta Theriol. Sin. 2017, 37, 317. [Google Scholar]
- McRae, B.H.; Kavanagh, D.M. Linkage Mapper Connectivity Analysis Software; The Nature Conservancy: Seattle, WA, USA, 2011. [Google Scholar]
- Wang, T.; Royle, J.A.; Smith, J.L.; Zou, L.; Lü, X.; Li, T.; Yang, H.; Li, Z.; Feng, R.; Bian, Y.; et al. Living on the edge: Opportunities for Amur tiger recovery in China. Biol. Conserv. 2018, 217, 269–279. [Google Scholar] [CrossRef]
- Jiang, G.; Ma, J.; Zhang, M.; Stott, P. Multiple spatial-scale resource selection function models in relation to human disturbance for moose in northeastern China. Ecol. Res. 2009, 24, 423–440. [Google Scholar] [CrossRef]
- Li, Z.; Kang, A.; Gu, J.; Xue, Y.; Ren, Y.I.; Zhu, Z.; Liu, P.; Ma, J.; Jiang, G. Effects of human disturbance on vegetation, prey and Amur tigers in Hunchun Nature Reserve, China. Ecol. Model. 2017, 353, 28–36. [Google Scholar] [CrossRef]
- Liao, J.; Li, G.; Zhang, S.; Yang, Y.; Li, Y.; Dong, Z.; Guo, Y.; Wang, Z. Global warming exacerbates the risk of habitat loss for regional mangrove species. Sci. Rep. 2025, 15, 19710. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Shen, G.; Pimm, S.L.; Feng, C.; Ren, G.; Liu, Y.; Xu, W.; Li, J.; Si, X.; Xie, Z. Climate change challenges the current conservation strategy for the giant panda. Biol. Conserv. 2015, 190, 43–50. [Google Scholar] [CrossRef]
- Rüter, S.; Vos, C.C.; van Eupen, M.; Rühmkorf, H. Transboundary ecological networks as an adaptation strategy to climate change: The example of the Dutch–German border. Basic Appl. Ecol. 2014, 15, 639–650. [Google Scholar] [CrossRef]
- Fonseca, L.G.D. The Future of Provisioning Ecosystem Services in the Caatinga Under the Influence of Climate Change. Master’s Thesis, Federal University of Rio Grande do Norte, Rio de Janeiro, Brazil, 2025. [Google Scholar]
- Zhou, J.; Tape, K.D.; Prugh, L.; Kofinas, G.; Carroll, G.; Kielland, K. Enhanced shrub growth in the Arctic increases habitat connectivity for browsing herbivores. Glob. Change Biol. 2020, 26, 3809–3820. [Google Scholar] [CrossRef]
- Fall, A.; Fortin, M.J.; Manseau, M.; O’Brien, D. Spatial graphs: Principles and applications for habitat connectivity. Ecosystems 2007, 10, 448–461. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Thomas, C.D.; Wintle, B.A.; Moilanen, A. Climate change, connectivity and conservation decision making: Back to basics. J. Appl. Ecol. 2009, 46, 964–969. [Google Scholar] [CrossRef]
- Koen, E.L.; Bowman, J.; Sadowski, C.; Walpole, A.A. Landscape connectivity for wildlife: Development and validation of multispecies linkage maps. Methods Ecol. Evol. 2014, 5, 626–633. [Google Scholar] [CrossRef]
- Sun, H.; Lu, X.; Wu, J.; Yin, Y.; Li, L.; Zhou, S.; Yu, H.; Lu, Y. Ecological Corridor Investigation and Protection Planning of Amur Tiger. For. Sci. Technol. 2015, 40, 46–51. [Google Scholar]
- Zhang, J.; Chen, Y. The development status and evaluation of Hunchun wild Amur tiger reserve and Sino-Russian ecological corridor construction. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Dublin, Ireland; Bristol, UK, 2021; Volume 864, p. 012012. [Google Scholar]
- Hof, C.; Araújo, M.B.; Jetz, W.; Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 2011, 480, 516–519. [Google Scholar] [CrossRef] [PubMed]
Types | Variables | Description | Units | Whether to Select |
---|---|---|---|---|
Climatic factors | Bio1 | Annual Mean Temperature | °C | |
Bio2 | Mean Diurnal Range (mean of monthly (max temp–min temp)) | °C | √ | |
Bio3 | Isothermality (Bio2/Bio7) (×100) | % | ||
Bio4 | Temperature Seasonality (standard deviation × 100) | % | √ | |
Bio5 | Max Temperature of Warmest Month | °C | √ | |
Bio6 | Min Temperature of Coldest Month | °C | ||
Bio7 | Temperature Annual Range (BIO5-BIO6) | °C | ||
Bio8 | Mean Temperature of Wettest Quarter | °C | ||
Bio9 | Mean Temperature of Driest Quarter | °C | ||
Bio10 | Mean Temperature of Warmest Quarter | °C | ||
Bio11 | Mean Temperature of Coldest Quarter | °C | √ | |
Bio12 | Annual Precipitation | mm | √ | |
Bio13 | Precipitation in Wettest Month | mm | ||
Bio14 | Precipitation in Driest Month | mm | √ | |
Bio15 | Precipitation Seasonality (Coefficient of Variation) | % | ||
Bio16 | Precipitation in Wettest Quarter | mm | √ | |
Bio17 | Precipitation in Driest Quarter | mm | ||
Bio18 | Precipitation in Warmest Quarter | mm | ||
Bio19 | Precipitation in Coldest Quarter | mm | ||
EDSC | Eight_Day_Snow_Cover | - | √ | |
SCE | Maximum_Snow_Extent | - | ||
Vegetation factor | NDVI | Normalized Difference Vegetation Index | - | |
EVI | Enhanced Vegetation Index | - | ||
NPP | Net Primary Production | - | √ | |
FVC | Fractional Vegetation Cover | - | ||
Veg | Vegetation Type | - | √ | |
Landcover | Land Cover | - | √ | |
Geographical factors | Altitude | Altitude | m | √ |
Aspect | Aspect | - | ||
Slope | Slope Degree | ° | ||
Dis_river | Distance from River | m | ||
Anthropogenic factor | Dis_road | Distance from Road | m | |
GDP | Gross Domestic Product | - | √ | |
Pop | The Population Density | people/km2 | ||
HFP | Human Footprint | - | ||
DSE | Distance to the Nearest Settlement | m | √ | |
DMM | Distance to the Nearest Man-Made Area | m | √ |
Climate Scenarios | Decade | Total Study Area (km2) | Total Suitable Habitat (km2) | Percentage of Total Area (%) | Highly Suitable Habitat (km2) | Percentage of Total Area (%) | Moderately Suitable Habitat (km2) | Percentage of Total Area (%) | Slightly Suitable Habitat (km2) | Percentage of total Area (%) |
---|---|---|---|---|---|---|---|---|---|---|
Current | Current | 17,868.16 | 4941.94 | 27.64 | 1147.63 | 6.42 | 1580.69 | 8.84 | 2213.62 | 12.38 |
SSP1-2.6 | 2050s | 17,868.16 | 5155.24 | 28.84 | 1115.77 | 6.24 | 1468.10 | 8.21 | 2571.37 | 14.39 |
SSP1-2.6 | 2070s | 17,868.16 | 5584.52 | 31.24 | 1321.02 | 7.39 | 1723.91 | 9.64 | 2539.59 | 14.21 |
SSP2-4.5 | 2050s | 17,868.16 | 5203.46 | 29.11 | 1180.33 | 6.60 | 1571.16 | 8.79 | 2451.97 | 13.72 |
SSP2-4.5 | 2070s | 17,868.16 | 6275.95 | 35.11 | 1477.89 | 8.27 | 1942.10 | 10.86 | 2855.96 | 15.98 |
SSP3-7.0 | 2050s | 17,868.16 | 5088.47 | 28.46 | 1166.11 | 6.52 | 1627.17 | 9.10 | 2295.19 | 12.84 |
SSP3-7.0 | 2070s | 17,868.16 | 4197.24 | 23.48 | 916.79 | 5.13 | 1174.28 | 6.57 | 2106.17 | 11.78 |
SSP5-8.5 | 2050s | 17,868.16 | 5075.01 | 28.39 | 1214.06 | 6.79 | 1699.67 | 9.51 | 2161.28 | 12.09 |
SSP5-8.5 | 2070s | 17,868.16 | 5494.26 | 30.74 | 1383.03 | 7.74 | 1828.75 | 10.23 | 2282.48 | 12.77 |
Climate Scenarios | Time Period | No. of Core Patches | Total Area of Core Patches (km2) | Area of Largest Core Patches (km2) | No. of LCPs |
---|---|---|---|---|---|
Current | Current | 10 | 1122.04 | 769.62 | 15 |
SSP1-2.6 | 2050s | 5 | 1095.59 | 1043.33 | 6 |
SSP1-2.6 | 2070s | 6 | 1308.25 | 1223.90 | 8 |
SSP2-4.5 | 2050s | 11 | 1150.66 | 804.17 | 17 |
SSP2-4.5 | 2070s | 9 | 1461.97 | 1257.19 | 14 |
SSP3-7.0 | 2050s | 11 | 1141.84 | 693.37 | 19 |
SSP3-7.0 | 2070s | 6 | 887.05 | 254.48 | 6 |
SSP5-8.5 | 2050s | 4 | 1191.38 | 1123.79 | 4 |
SSP5-8.5 | 2070s | 6 | 1353.77 | 1161.66 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Li, W.; Guo, N.; Li, C. Impacts of Climate Change on Habitat Suitability and Landscape Connectivity of the Amur Tiger in the Sino-Russian Transboundary Region. Animals 2025, 15, 2466. https://doi.org/10.3390/ani15172466
Wang D, Li W, Guo N, Li C. Impacts of Climate Change on Habitat Suitability and Landscape Connectivity of the Amur Tiger in the Sino-Russian Transboundary Region. Animals. 2025; 15(17):2466. https://doi.org/10.3390/ani15172466
Chicago/Turabian StyleWang, Die, Wen Li, Nichun Guo, and Chunwang Li. 2025. "Impacts of Climate Change on Habitat Suitability and Landscape Connectivity of the Amur Tiger in the Sino-Russian Transboundary Region" Animals 15, no. 17: 2466. https://doi.org/10.3390/ani15172466
APA StyleWang, D., Li, W., Guo, N., & Li, C. (2025). Impacts of Climate Change on Habitat Suitability and Landscape Connectivity of the Amur Tiger in the Sino-Russian Transboundary Region. Animals, 15(17), 2466. https://doi.org/10.3390/ani15172466