The Effect of Heat Stress During the Insemination Period on the Conception Outcomes of Dairy Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Conception
2.3. Meteorological Data
- T = air temperature (°C)
- RH = relative humidity (%)
2.4. Statistical Analysis
- = log odds of the probability of insemination success
- = intercept
- = the fixed effect of the THI threshold
- = the sum of the random intercepts (parity, year, semen, cow and inseminator)
- = log odds of the probability of insemination success
- = the intercept, representing the log odds of success under the reference category, which is No Heat Stress (THI < 60).
- = the period (P1, P2, P3, P4, or P5).
- = the heat stress category (1: Small, 2: Medium, 3: Severe).
- = the coefficient for the heat stress category k in period p.
- = an indicator variable that is 1 if the cow is in heat stress level k during period p, and 0 otherwise.
- = the sum of random intercepts (parity, year, semen, cow and inseminator)
- = Heritability: proportion of total phenotypic variance attributable to additive genetic variance.
- = Additive genetic variance: variance in insemination success due to genetic differences among cows.
- = variance due to year, semen, inseminator, and parity.
- = residual variance, fixed at 1 for binary outcomes on the liability scale.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georgiades, P.; Economou, T.; Proestos, Y.; Araya, J.; Lelieveld, J.; Neira, M. Global Projections of Heat Stress at High Temporal Resolution Using Machine Learning. Earth Syst. Sci. Data 2025, 17, 1153–1171. [Google Scholar] [CrossRef]
- Wankar, A.K.; Rindhe, S.N.; Doijad, N.S. Heat Stress in Dairy Animals and Current Milk Production Trends, Economics, and Future Perspectives: The Global Scenario. Trop. Anim. Health Prod. 2021, 53, 70. [Google Scholar] [CrossRef]
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K. IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPC: Geneva, Switzerland, 2023. [Google Scholar]
- Yousef, M.K. Stress Physiology in Livestock. Volume I. Basic Principles; CRC Press: Boca Raton, FL, USA, 1985; ISBN 0849356679. [Google Scholar]
- North, M.A.; Franke, J.A.; Ouweneel, B.; Trisos, C.H. Global Risk of Heat Stress to Cattle from Climate Change. Environ. Res. Lett. 2023, 18, 94027. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries1. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef]
- Cartwright, S.L.; Schmied, J.; Karrow, N.; Mallard, B.A. Impact of Heat Stress on Dairy Cattle and Selection Strategies for Thermotolerance: A Review. Front. Vet. Sci. 2023, 10, 1198697. [Google Scholar] [CrossRef]
- Mauger, G.; Bauman, Y.; Nennich, T.; Salathé, E. Impacts of Climate Change on Milk Production in the United States. Prof. Geogr. 2015, 67, 121–131. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, A.; Joy, A.; Dunshea, F.R.; Chauhan, S.S. The Impact of Heat Stress on Immune Status of Dairy Cattle and Strategies to Ameliorate the Negative Effects. Animals 2022, 13, 107. [Google Scholar] [CrossRef]
- Do Amaral, B.C.; Connor, E.E.; Tao, S.; Hayen, J.; Bubolz, J.; Dahl, G.E. Heat Stress Abatement during the Dry Period Influences Prolactin Signaling in Lymphocytes. Domest. Anim. Endocrinol. 2010, 38, 38–45. [Google Scholar] [CrossRef]
- Chen, L.; Thorup, V.M.; Kudahl, A.B.; Østergaard, S. Effects of Heat Stress on Feed Intake, Milk Yield, Milk Composition, and Feed Efficiency in Dairy Cows: A Meta-Analysis. J. Dairy Sci. 2024, 107, 3207–3218. [Google Scholar] [CrossRef] [PubMed]
- Cowley, F.C.; Barber, D.G.; Houlihan, A.V.; Poppi, D.P. Immediate and Residual Effects of Heat Stress and Restricted Intake on Milk Protein and Casein Composition and Energy Metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef] [PubMed]
- Dunn, R.J.H.; Mead, N.E.; Willett, K.M.; Parker, D.E. Analysis of Heat Stress in UK Dairy Cattle and Impact on Milk Yields. Environ. Res. Lett. 2014, 9, 64006. [Google Scholar] [CrossRef]
- Ataallahi, M.; Cheon, S.N.; Park, G.-W.; Nugrahaeningtyas, E.; Jeon, J.H.; Park, K.-H. Assessment of Stress Levels in Lactating Cattle: Analyzing Cortisol Residues in Commercial Milk Products in Relation to the Temperature-Humidity Index. Animals 2023, 13, 2407. [Google Scholar] [CrossRef]
- Zachut, M.; Kra, G.; Nemes-Navon, N.; Ben-Aharon, N.; Moallem, U.; Lavon, Y.; Jacoby, S. Seasonal Heat Load Is More Potent than the Degree of Body Weight Loss in Dysregulating Immune Function by Reducing White Blood Cell Populations and Increasing Inflammation in Holstein Dairy Cows. J. Dairy Sci. 2020, 103, 10809–10822. [Google Scholar] [CrossRef]
- Antanaitis, R.; Džermeikaitė, K.; Krištolaitytė, J.; Juodžentytė, R.; Stankevičius, R.; Palubinskas, G.; Rutkauskas, A. Short-Term Effects of Heat Stress on Cow Behavior, Registered by Innovative Technologies and Blood Gas Parameters. Animals 2024, 14, 2390. [Google Scholar] [CrossRef]
- Ninomiya, S.; Goto, Y.; Onishi, H.; Kurachi, M.; Ito, A. Lying Posture as a Behavioural Indicator of Heat Stress in Dairy Cows. Appl. Anim. Behav. Sci. 2023, 265, 105981. [Google Scholar] [CrossRef]
- Ojo, T.O.; Vandenplas, J.; Mulder, H.A.; van Pelt, M.L.; Calus, M.P.L. Genetic Analysis of the Impact of Heat Stress on Fertility Traits in Dairy Cows in the Netherlands. J. Dairy Sci. 2025, 108, 1699–1713. [Google Scholar] [CrossRef]
- Roth, Z. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte. Annu. Rev. Anim. Biosci. 2017, 5, 151–170. [Google Scholar] [CrossRef]
- Hansen, P.J. Effects of Heat Stress on Mammalian Reproduction. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 3341–3350. [Google Scholar] [CrossRef]
- Silva, C.F.; Sartorelli, E.S.; Castilho, A.C.S.; Satrapa, R.A.; Puelker, R.Z.; Razza, E.M.; Ticianelli, J.S.; Eduardo, H.P.; Loureiro, B.; Barros, C.M. Effects of Heat Stress on Development, Quality and Survival of Bos Indicus and Bos Taurus Embryos Produced in Vitro. Theriogenology 2013, 79, 351–357. [Google Scholar] [CrossRef]
- Sigdel, A.; Liu, L.; Abdollahi-Arpanahi, R.; Aguilar, I.; Peñagaricano, F. Genetic Dissection of Reproductive Performance of Dairy Cows under Heat Stress. Anim. Genet. 2020, 51, 511–520. [Google Scholar] [CrossRef]
- Schüller, L.K.; Michaelis, I.; Heuwieser, W. Impact of Heat Stress on Estrus Expression and Follicle Size in Estrus under Field Conditions in Dairy Cows. Theriogenology 2017, 102, 48–53. [Google Scholar] [CrossRef]
- Wolfenson, D.; Roth, Z. Impact of Heat Stress on Cow Reproduction and Fertility. Anim. Front. 2019, 9, 32–38. [Google Scholar] [CrossRef]
- Aggarwal, A.; Upadhyay, R. Heat Stress and Animal Productivity; Springer: Delhi, India, 2013; Volume 113. [Google Scholar]
- Ingraham, R.H.; Gillette, D.D.; Wagner, W.D. Relationship of Temperature and Humidity to Conception Rate of Holstein Cows in Subtropical Climate. J. Dairy Sci. 1974, 57, 476–481. [Google Scholar] [CrossRef]
- Stefanska, B.; Pruszynska-Oszmalek, E.; Fievez, V.; Purwin, C.; Nowak, W. Impact of Heat Stress during Close-up Dry Period on Performance, Fertility and Immunometabolic Blood Indices of Dairy Cows: Prospective Cohort Study. Sci. Rep. 2024, 14, 21211. [Google Scholar] [CrossRef]
- Putney, D.J.; Gross, T.S.; Thatcher, W.W. Prostaglandin Secretion by Endometrium of Pregnant and Cyclic Cattle at Day 17 after Oestrus in Response to In-Vitro Heat Stress. Reproduction 1988, 84, 475–483. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, E.Y.; JeOn, K.; Cui, X.; Lee, W.D.; Kim, N.; Park, S.P.; Lim, J.H. Survivin Acts as Anti-apoptotic Factor during the Development of Bovine Pre-implantation Embryos. Mol. Reprod. Dev. 2007, 74, 582–590. [Google Scholar] [CrossRef]
- Da Costa, R.A.; dos Santos, M.L.P.; Castro, I.C.; Mattiello, M.; Souza, J.A.; Almeida, W.F.; Boettcher, D.L.; Cuchi, D.; Paim, B.H.R.; Vieira, F.M.C. 126 Effect of Astaxanthin Supplementation on in Vitro Embryo Development and Immune Response of Dairy Cows. Reprod. Fertil. Dev. 2021, 33, 171. [Google Scholar] [CrossRef]
- Nabenishi, H.; Ohta, H.; Nishimoto, T.; Morita, T.; Ashizawa, K.; Tsuzuki, Y. Effect of the Temperature-Humidity Index on Body Temperature and Conception Rate of Lactating Dairy Cows in Southwestern Japan. J. Reprod. Dev. 2011, 57, 450–456. [Google Scholar] [CrossRef]
- Jordan, E.R. Effects of Heat Stress on Reproduction. J. Dairy Sci. 2003, 86, E104–E114. [Google Scholar] [CrossRef]
- García-Ispierto, I.; López-Gatius, F.; Bech-Sabat, G.; Santolaria, P.; Yániz, J.L.; Nogareda, C.; De Rensis, F.; López-Béjar, M. Climate Factors Affecting Conception Rate of High Producing Dairy Cows in Northeastern Spain. Theriogenology 2007, 67, 1379–1385. [Google Scholar] [CrossRef] [PubMed]
- De Rensis, F.; Garcia-Ispierto, I.; López-Gatius, F. Seasonal Heat Stress: Clinical Implications and Hormone Treatments for the Fertility of Dairy Cows. Theriogenology 2015, 84, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Spicer, L.J.; Echternkamp, S.E. Ovarian Follicular Growth, Function and Turnover in Cattle: A Review1. J. Anim. Sci. 1986, 62, 428–451. [Google Scholar] [CrossRef] [PubMed]
- Ginther, O.J.; Kastelic, J.P.; Knopf, L. Composition and Characteristics of Follicular Waves during the Bovine Estrous Cycle. Anim. Reprod. Sci. 1989, 20, 187–200. [Google Scholar] [CrossRef]
- Hafez, E.S.E.; Hafez, B. Reproduction in Farm Animals; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 1118710703. [Google Scholar]
- Wiltbank, M.C.; Souza, A.H.; Carvalho, P.D.; Cunha, A.P.; Giordano, J.O.; Fricke, P.M.; Baez, G.M.; Diskin, M.G. Physiological and Practical Effects of Progesterone on Reproduction in Dairy Cattle. Animal 2014, 8, 70–81. [Google Scholar] [CrossRef]
- Sartori, R.; Haughian, J.M.; Shaver, R.D.; Rosa, G.J.M.; Wiltbank, M.C. Comparison of Ovarian Function and Circulating Steroids in Estrous Cycles of Holstein Heifers and Lactating Cows. J. Dairy Sci. 2004, 87, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Dieleman, S.J.; Bevers, M.M.; Van Tol, H.T.M.; Willemse, A.H. Peripheral Plasma Concentrations of Oestradiol, Progesterone, Cortisol, LH and Prolactin during the Oestrous Cycle in the Cow, with Emphasis on the Peri-Oestrous Period. Anim. Reprod. Sci. 1986, 10, 275–292. [Google Scholar] [CrossRef]
- De Rensis, F.; Dall’Olio, E.; Gnemmi, G.M.; Tummaruk, P.; Andrani, M.; Saleri, R. Interval from Oestrus to Ovulation in Dairy Cows—A Key Factor for Insemination Time: A Review. Vet. Sci. 2024, 11, 152. [Google Scholar] [CrossRef]
- Driancourt, M.A.; Thatcher, W.W.; Terqui, M.; Andrieu, D. Dynamics of Ovarian Follicular Development in Cattle during the Estrous Cycle, Early Pregnancy and in Response to PMSG. Domest. Anim. Endocrinol. 1991, 8, 209–221. [Google Scholar] [CrossRef]
- Parrish, J.J.; Susko-Parrish, J.L.; Handrow, R.R.; Sims, M.M.; First, N.L. Capacitation of Bovine Spermatozoa by Oviduct Fluid. Biol. Reprod. 1989, 40, 1020–1025. [Google Scholar] [CrossRef]
- Hansen, P.J.; Tríbulo, P. Regulation of Present and Future Development by Maternal Regulatory Signals Acting on the Embryo during the Morula to Blastocyst Transition–Insights from the Cow. Biol. Reprod. 2019, 101, 526–537. [Google Scholar] [CrossRef]
- Memili, E.; First, N.L. Zygotic and Embryonic Gene Expression in Cow: A Review of Timing and Mechanisms of Early Gene Expression as Compared with Other Species. Zygote 2000, 8, 87–96. [Google Scholar] [CrossRef]
- Picha, Y.; Tibary, A.; Memon, M.; Kasimanickam, R.; Sumar, J. Chronology of Early Embryonic Development and Embryo Uterine Migration in Alpacas. Theriogenology 2013, 79, 702–708. [Google Scholar] [CrossRef]
- Lemley, C.O.; Camacho, L.E.; Vonnahme, K.A. Maternal Recognition and Physiology of Pregnancy. In Bovine Reproduction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 324–338. ISBN 9781119602484. [Google Scholar]
- Bazer, F.W.; Ott, T.L.; Spencer, T.E. Endocrinology of the Transition from Recurring Estrous Cycles to Establishment of Pregnancy in Subprimate Mammals. In Endocrinology of Pregnancy; Humana Press: Totowa, NJ, USA, 1998; pp. 1–34. [Google Scholar]
- Degrelle, S.A.; Campion, E.; Cabau, C.; Piumi, F.; Reinaud, P.; Richard, C.; Renard, J.-P.; Hue, I. Molecular Evidence for a Critical Period in Mural Trophoblast Development in Bovine Blastocysts. Dev. Biol. 2005, 288, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Sponchiado, M.; Gomes, N.S.; Fontes, P.K.; Martins, T.; Del Collado, M.; Pastore, A.d.A.; Pugliesi, G.; Nogueira, M.F.G.; Binelli, M. Pre-Hatching Embryo-Dependent and-Independent Programming of Endometrial Function in Cattle. PLoS ONE 2017, 12, e0175954. [Google Scholar] [CrossRef]
- Lonergan, P.; Fair, T.; Forde, N.; Rizos, D. Embryo Development in Dairy Cattle. Theriogenology 2016, 86, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, S.; Alava, E.; Pontes, E.; Fear, J.M.; Dikmen, B.Y.; Olson, T.A.; Hansen, P.J. Differences in Thermoregulatory Ability between Slick-Haired and Wild-Type Lactating Holstein Cows in Response to Acute Heat Stress. J. Dairy Sci. 2008, 91, 3395–3402. [Google Scholar] [CrossRef]
- R Core Team. RA Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function. J. Dairy Sci. 2000, 83, 2120–2125. [Google Scholar] [CrossRef]
- Morton, J.M.; Tranter, W.P.; Mayer, D.G.; Jonsson, N.N. Effects of Environmental Heat on Conception Rates in Lactating Dairy Cows: Critical Periods of Exposure. J. Dairy Sci. 2007, 90, 2271–2278. [Google Scholar] [CrossRef]
- Hadfield, J.D. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef]
- Vazquez, A.I.; Bates, D.M.; Rosa, G.J.M.; Gianola, D.; Weigel, K.A. Technical Note: An R Package for Fitting Generalized Linear Mixed Models in Animal Breeding1. J. Anim. Sci. 2010, 88, 497–504. [Google Scholar] [CrossRef]
- Kipp, C.; Brügemann, K.; Yin, T.; Halli, K.; König, S. Genotype by Heat Stress Interactions for Production and Functional Traits in Dairy Cows from an Across-Generation Perspective. J. Dairy Sci. 2021, 104, 10029–10039. [Google Scholar] [CrossRef]
- Sammad, A.; Umer, S.; Shi, R.; Zhu, H.; Zhao, X.; Wang, Y. Dairy Cow Reproduction under the Influence of Heat Stress. J. Anim. Physiol. Anim. Nutr. (Berl.) 2020, 104, 978–986. [Google Scholar] [CrossRef]
- Llamas-Luceño, N.; Hostens, M.; Mullaart, E.; Broekhuijse, M.; Lonergan, P.; Van Soom, A. High Temperature-Humidity Index Compromises Sperm Quality and Fertility of Holstein Bulls in Temperate Climates. J. Dairy Sci. 2020, 103, 9502–9514. [Google Scholar] [CrossRef]
- Tippenhauer, C.M.; Plenio, J.-L.; Madureira, A.M.L.; Cerri, R.L.A.; Heuwieser, W.; Borchardt, S. Timing of Artificial Insemination Using Fresh or Frozen Semen after Automated Activity Monitoring of Estrus in Lactating Dairy Cows. J. Dairy Sci. 2021, 104, 3585–3595. [Google Scholar] [CrossRef]
- Wolfenson, D.; Roth, Z.; Meidan, R. Impaired Reproduction in Heat-Stressed Cattle: Basic and Applied Aspects. Anim. Reprod. Sci. 2000, 60, 535–547. [Google Scholar] [CrossRef]
- Schüller, L.-K.; Burfeind, O.; Heuwieser, W. Effect of Short- and Long-Term Heat Stress on the Conception Risk of Dairy Cows under Natural Service and Artificial Insemination Breeding Programs. J. Dairy Sci. 2016, 99, 2996–3002. [Google Scholar] [CrossRef]
- Schüller, L.K.; Burfeind, O.; Heuwieser, W. Impact of Heat Stress on Conception Rate of Dairy Cows in the Moderate Climate Considering Different Temperature–Humidity Index Thresholds, Periods Relative to Breeding, and Heat Load Indices. Theriogenology 2014, 81, 1050–1057. [Google Scholar] [CrossRef]
- Adams, G.P.; Singh, J. Ovarian Follicular and Luteal Dynamics in Cattle. In Bovine Reproduction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 292–323. [Google Scholar]
- Minela, T.; Gibb, P.; McBeth, S.; Santos, A.; Pursley, J.R. Reduced Period from Follicular Wave Emergence to Luteolysis Generated Greater Steroidogenic Follicles and Estrus Intensity in Dairy Cows. Sci. Rep. 2023, 13, 22818. [Google Scholar] [CrossRef]
- De Rensis, F.; Saleri, R.; Garcia-Ispierto, I.; Scaramuzzi, R.; López-Gatius, F. Effects of Heat Stress on Follicular Physiology in Dairy Cows. Animals 2021, 11, 3406. [Google Scholar] [CrossRef]
- Boni, R. Heat Stress, a Serious Threat to Reproductive Function in Animals and Humans. Mol. Reprod. Dev. 2019, 86, 1307–1323. [Google Scholar] [CrossRef]
- Dovolou, E.; Giannoulis, T.; Nanas, I.; Amiridis, G.S. Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows. Animals 2023, 13, 1846. [Google Scholar] [CrossRef]
- Roth, Z.; Arav, A.; Bor, A.; Zeron, Y.; Braw-Tal, R.; Wolfenson, D. Improvement of Quality of Oocytes Collected in the Autumn by Enhanced Removal of Impaired Follicles from Previously Heat-Stressed Cows. Reproduction 2001, 122, 737–744. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, C.; Nahla Abdalla Hassan, E.; Li, C.; Yang, F.; Wang, G.; Li, L. HO-1 Reduces Heat Stress-Induced Apoptosis in Bovine Granulosa Cells by Suppressing Oxidative Stress. Aging 2019, 11, 5535. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Swelum, A.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Taha, A.E.; Abdo, M. Cellular and Functional Adaptation to Thermal Stress in Ovarian Granulosa Cells in Mammals. J. Therm. Biol. 2020, 92, 102688. [Google Scholar] [CrossRef]
- Negrón-Pérez, V.M.; Fausnacht, D.W.; Rhoads, M.L. Invited Review: Management Strategies Capable of Improving the Reproductive Performance of Heat-Stressed Dairy Cattle. J. Dairy Sci. 2019, 102, 10695–10710. [Google Scholar] [CrossRef]
- Roth, Z. Influence of Heat Stress on Reproduction in Dairy Cows—Physiological and Practical Aspects. J. Anim. Sci. 2020, 98, S80–S87. [Google Scholar] [CrossRef]
- Al-Katanani, Y.M.; Paula-Lopes, F.F.; Hansen, P.J. Effect of Season and Exposure to Heat Stress on Oocyte Competence in Holstein Cows1. J. Dairy Sci. 2002, 85, 390–396. [Google Scholar] [CrossRef]
- Sartori, R.; Rosa, G.J.M.; Wiltbank, M.C. Ovarian Structures and Circulating Steroids in Heifers and Lactating Cows in Summer and Lactating and Dry Cows in Winter. J. Dairy Sci. 2002, 85, 2813–2822. [Google Scholar] [CrossRef]
- López-Gatius, F.; Hunter, R.H.F. Clinical Relevance of Pre-Ovulatory Follicular Temperature in Heat-Stressed Lactating Dairy Cows. Reprod. Domest. Anim. 2017, 52, 366–370. [Google Scholar] [CrossRef]
- Morita, Y.; Ozaki, R.; Mukaiyama, A.; Sasaki, T.; Tatebayashi, R.; Morishima, A.; Kitagawa, Y.; Suzumura, R.; Abe, R.; Tsukamura, H.; et al. Establishment of Long-Term Chronic Recording Technique of in Vivo Ovarian Parenchymal Temperature in Japanese Black Cows. J. Reprod. Dev. 2020, 66, 271–275. [Google Scholar] [CrossRef]
- Amaral, C.S.; Koch, J.; Correa Júnior, E.E.; Bertolin, K.; Mujica, L.K.S.; Fiorenza, M.F.; Rosa, S.G.; Nogueira, C.W.; Comim, F.V.; Portela, V.V.M.; et al. Heat Stress on Oocyte or Zygote Compromises Embryo Development, Impairs Interferon Tau Production and Increases Reactive Oxygen Species and Oxidative Stress in Bovine Embryos Produced in Vitro. Mol. Reprod. Dev. 2020, 87, 899–909. [Google Scholar] [CrossRef]
- Hendricks, K.E.M.; Martins, L.; Hansen, P.J. Consequences for the Bovine Embryo of Being Derived from a Spermatozoon Subjected to Post-Ejaculatory Aging and Heat Shock: Development to the Blastocyst Stage and Sex Ratio. J. Reprod. Dev. 2009, 55, 69–74. [Google Scholar] [CrossRef]
- Pérez-Crespo, M.; Pintado, B.; Gutiérrez-Adán, A. Scrotal Heat Stress Effects on Sperm Viability, Sperm DNA Integrity, and the Offspring Sex Ratio in Mice. Mol. Reprod. Dev. 2008, 75, 40–47. [Google Scholar] [CrossRef]
- Sakatani, M.; Yamanaka, K.; Balboula, A.Z.; Takenouchi, N.; Takahashi, M. Heat Stress during in Vitro Fertilization Decreases Fertilization Success by Disrupting Anti-Polyspermy Systems of the Oocytes. Mol. Reprod. Dev. 2015, 82, 36–47. [Google Scholar] [CrossRef]
- Hansen, P.J. Exploitation of Genetic and Physiological Determinants of Embryonic Resistance to Elevated Temperature to Improve Embryonic Survival in Dairy Cattle during Heat Stress. Theriogenology 2007, 68, S242–S249. [Google Scholar] [CrossRef]
- García-Ispierto, I.; López-Gatius, F.; Santolaria, P.; Yániz, J.L.; Nogareda, C.; López-Béjar, M.; De Rensis, F. Relationship between Heat Stress during the Peri-Implantation Period and Early Fetal Loss in Dairy Cattle. Theriogenology 2006, 65, 799–807. [Google Scholar] [CrossRef]
- López-Gatius, F. Is Fertility Declining in Dairy Cattle?: A Retrospective Study in Northeastern Spain. Theriogenology 2003, 60, 89–99. [Google Scholar] [CrossRef]
- Halloran, K.M.; Stenhouse, C.; Moses, R.M.; Seo, H.; Johnson, G.A.; Wu, G.; Bazer, F.W. Progesterone and Interferon Tau Regulate Expression of Polyamine Enzymes during the Ovine Peri-Implantation Period†. Biol. Reprod. 2022, 106, 865–878. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Kasimanickam, V. Impact of Heat Stress on Embryonic Development during First 16 Days of Gestation in Dairy Cows. Sci. Rep. 2021, 11, 14839. [Google Scholar] [CrossRef]
- Biggers, B.G.; Geisert, R.D.; Wetteman, R.P.; Buchanan, D.S. Effect of Heat Stress on Early Embryonic Development in the Beef Cow. J. Anim. Sci. 1987, 64, 1512–1518. [Google Scholar] [CrossRef]
- Sakai, S.; Yagi, M.; Fujime, N.; Kuse, M.; Sakumoto, R.; Yamamoto, Y.; Okuda, K.; Kimura, K. Heat Stress Influences the Attenuation of Prostaglandin Synthesis by Interferon Tau in Bovine Endometrial Cells. Theriogenology 2021, 165, 52–58. [Google Scholar] [CrossRef]
- Samal, L. Heat Stress in Dairy Cows-Reproductive Problems and Control Measures. Int. J. Livest. Res. 2013, 3, 14–23. [Google Scholar]
- Amaral, C.d.S.; Correa, G.R.E.; Serrano Mujica, L.K.; Fiorenza, M.F.; Rosa, S.G.; Nogueira, C.W.; Portela, V.M.; Comim, F.V.; Schoenau, W.; Smirnova, N.P.; et al. Heat Stress Modulates Polymorphonuclear Cell Response in Early Pregnancy Cows: I. Interferon Pathway and Oxidative Stress. PLoS ONE 2021, 16, e0257418. [Google Scholar] [CrossRef]
- Ealy, A.D.; Drost, M.; Hansen, P.J. Developmental Changes in Embryonic Resistance to Adverse Effects of Maternal Heat Stress in Cows1. J. Dairy Sci. 1993, 76, 2899–2905. [Google Scholar] [CrossRef]
- Driancourt, M.A.; Guet, P.; Reynaud, K.; Chadli, A.; Catelli, M.G. Presence of an Aromatase Inhibitor, Possibly Heat Shock Protein 90, in Dominant Follicles of Cattle. Reproduction 1999, 115, 45–58. [Google Scholar] [CrossRef]
- Edwards, J.L.; Hansen, P.J. Differential Responses of Bovine Oocytes and Preimplantation Embryos to Heat Shock. Mol. Reprod. Dev. Inc. Gamete Res. 1997, 46, 138–145. [Google Scholar] [CrossRef]
- Gupta, S.; Choi, A.; Yu, H.Y.; Czerniak, S.M.; Holick, E.A.; Paolella, L.J.; Agarwal, A.; Combelles, C.M.H. Fluctuations in Total Antioxidant Capacity, Catalase Activity and Hydrogen Peroxide Levels of Follicular Fluid during Bovine Folliculogenesis. Reprod. Fertil. Dev. 2011, 23, 673–680. [Google Scholar] [CrossRef]
- Krebs, C.J.; Jarvis, E.D.; Pfaff, D.W. The 70-KDa Heat Shock Cognate Protein (Hsc73) Gene Is Enhanced by Ovarian Hormones in the Ventromedial Hypothalamus. Proc. Natl. Acad. Sci. USA 1999, 96, 1686–1691. [Google Scholar] [CrossRef]
- Sakatani, M. Effects of Heat Stress on Bovine Preimplantation Embryos Produced in Vitro. J. Reprod. Dev. 2017, 63, 347–352. [Google Scholar] [CrossRef]
- Bonilla, A.Q.S.; Oliveira, L.J.; Ozawa, M.; Newsom, E.M.; Lucy, M.C.; Hansen, P.J. Developmental Changes in Thermoprotective Actions of Insulin-like Growth Factor-1 on the Preimplantation Bovine Embryo. Mol. Cell Endocrinol. 2011, 332, 170–179. [Google Scholar] [CrossRef]
- Sakatani, M.; Alvarez, N.V.; Takahashi, M.; Hansen, P.J. Consequences of Physiological Heat Shock Beginning at the Zygote Stage on Embryonic Development and Expression of Stress Response Genes in Cattle. J. Dairy Sci. 2012, 95, 3080–3091. [Google Scholar] [CrossRef]
- Hassan, F.; Nawaz, A.; Rehman, M.S.; Ali, M.A.; Dilshad, S.M.R.; Yang, C. Prospects of HSP70 as a Genetic Marker for Thermo-Tolerance and Immuno-Modulation in Animals under Climate Change Scenario. Anim. Nutr. 2019, 5, 340–350. [Google Scholar] [CrossRef]
- Sakatani, M.; Kobayashi, S.-I.; Takahashi, M. Effects of Heat Shock on in Vitro Development and Intracellular Oxidative State of Bovine Preimplantation Embryos. Mol. Reprod. Dev. 2004, 67, 77–82. [Google Scholar] [CrossRef]
- Edwards, J.L.; King, W.A.; Kawarsky, S.J.; Ealy, A.D. Responsiveness of Early Embryos to Environmental Insults: Potential Protective Roles of HSP70 and Glutathione. Theriogenology 2001, 55, 209–223. [Google Scholar] [CrossRef]
- Vinet, A.; Mattalia, S.; Vallée, R.; Bertrand, C.; Barbat, A.; Promp, J.; Cuyabano, B.C.D.; Boichard, D. Effect of Temperature-Humidity Index on the Evolution of Trade-Offs between Fertility and Production in Dairy Cattle. Genet. Sel. Evol. 2024, 56, 23. [Google Scholar] [CrossRef]
- Falconer, D.S. Introduction to Quantitative Genetics; Always Learning; Pearson Education: London, UK, 1996; ISBN 9788131727409. [Google Scholar]
- Berry, D.P.; Wall, E.; Pryce, J.E. Genetics and Genomics of Reproductive Performance in Dairy and Beef Cattle. Animal 2014, 8, 105–121. [Google Scholar] [CrossRef]
- González-Recio, O.; Alenda, R. Genetic Parameters for Female Fertility Traits and a Fertility Index in Spanish Dairy Cattle. J. Dairy Sci. 2005, 88, 3282–3289. [Google Scholar] [CrossRef]
- Heringstad, B.; Rekaya, R.; Gianola, D.; Klemetsdal, G.; Weigel, K.A. Genetic Change for Clinical Mastitis in Norwegian Cattle: A Threshold Model Analysis. J. Dairy Sci. 2003, 86, 369–375. [Google Scholar] [CrossRef]
- Visscher, P.M.; Hill, W.G.; Wray, N.R. Heritability in the Genomics Era—Concepts and Misconceptions. Nat. Rev. Genet. 2008, 9, 255–266. [Google Scholar] [CrossRef]
- Toghiani, S.; Hay, E.; Sumreddee, P.; Geary, T.W.; Rekaya, R.; Roberts, A.J. Genomic Prediction of Continuous and Binary Fertility Traits of Females in a Composite Beef Cattle Breed. J. Anim. Sci. 2017, 95, 4787–4795. [Google Scholar] [CrossRef] [PubMed]
- Pryce, J.E.; Royal, M.D.; Garnsworthy, P.C.; Mao, I.L. Fertility in the High-Producing Dairy Cow. Livest. Prod. Sci. 2004, 86, 125–135. [Google Scholar] [CrossRef]
THI Threshold | B Slope | Odds Ratio | 95% Confidence Interval | N ≥ Threshold | p | Success Rate (%) |
---|---|---|---|---|---|---|
≤44 | Reference | |||||
45 | 0.02 | 1.02 | (0.89–1.18) | 1053 | 0.75 | 34.9 |
46 | 0 | 1 | (0.88–1.15) | 1110 | 0.952 | 34 |
47 | 0.02 | 1.02 | (0.9–1.15) | 1377 | 0.761 | 33.8 |
48 | 0.08 | 1.09 | (0.94–1.26) | 912 | 0.282 | 34.6 |
49 | 0.03 | 1.03 | (0.9–1.19) | 1067 | 0.637 | 32.6 |
50 | 0.01 | 1.02 | (0.88–1.17) | 1119 | 0.832 | 32.8 |
51 | −0.07 | 0.93 | (0.81–1.07) | 1132 | 0.326 | 31 |
52 | 0.06 | 1.06 | (0.92–1.23) | 970 | 0.435 | 33.3 |
53 | −0.09 | 0.91 | (0.79–1.05) | 1047 | 0.2 | 32.7 |
54 | −0.06 | 0.94 | (0.81–1.09) | 1018 | 0.386 | 29.8 |
55 | −0.1 | 0.91 | (0.79–1.05) | 1121 | 0.181 | 31.6 |
56 | −0.05 | 0.95 | (0.82–1.09) | 1118 | 0.458 | 30.9 |
57 | −0.12 | 0.89 | (0.77–1.02) | 1170 | 0.089 | 29.9 |
58 | −0.03 | 0.98 | (0.84–1.14) | 903 | 0.75 | 31.3 |
59 | −0.14 | 0.87 | (0.76–0.99) | 1315 | 0.03 * | 29.8 |
60 | −0.18 | 0.84 | (0.73–0.95) | 1346 | 0.007 * | 28 |
61 | −0.11 | 0.9 | (0.78–1.04) | 1057 | 0.145 | 29 |
62 | −0.31 | 0.73 | (0.64–0.84) | 1252 | <0.001 * | 26 |
63 | −0.12 | 0.88 | (0.77–1.02) | 1108 | 0.083 | 30.4 |
64 | −0.34 | 0.71 | (0.61–0.82) | 1156 | <0.001 * | 26 |
65 | −0.29 | 0.75 | (0.65–0.87) | 1053 | <0.001 * | 26.6 |
66 | −0.44 | 0.65 | (0.56–0.75) | 1143 | <0.001 * | 23.8 |
67 | −0.45 | 0.64 | (0.55–0.74) | 1149 | <0.001 * | 23.6 |
68 | −0.42 | 0.65 | (0.58–0.74) | 1541 | <0.001 * | 24.3 |
69 | −0.52 | 0.59 | (0.51–0.69) | 1205 | <0.001 * | 22.5 |
70 | −0.56 | 0.57 | (0.5–0.66) | 1261 | <0.001 * | 23.5 |
71 | −0.53 | 0.59 | (0.51–0.69) | 1082 | <0.001 * | 22.7 |
72 | −0.63 | 0.53 | (0.45–0.62) | 1080 | <0.001 * | 20.3 |
73 | −0.64 | 0.53 | (0.44–0.63) | 878 | <0.001 * | 21.5 |
74 | −0.85 | 0.43 | (0.36–0.51) | 844 | <0.001 * | 19.7 |
75 | −0.64 | 0.53 | (0.44–0.63) | 765 | <0.001 * | 21.8 |
76 | −1.21 | 0.3 | (0.23–0.39) | 463 | <0.001 * | 14.7 |
77 | −0.79 | 0.46 | (0.37–0.55) | 697 | <0.001 * | 20.9 |
Time Period | Heat Stress Category | Odds Ratio | 95% CI (Odds Ratio) | N | p-Value |
---|---|---|---|---|---|
P1 | No HS | Reference | 29,028 | ||
Small Heat Stress | 0.823 | (0.759, 0.891) | 8381 | <0.001 *** | |
Medium Heat Stress | 0.697 | (0.625, 0.777) | 6339 | <0.001 *** | |
Severe Heat Stress | 0.773 | (0.675, 0.885) | 3451 | <0.001 *** | |
P2 | No HS | Reference | 28,924 | ||
Small Heat Stress | 0.973 | (0.886, 1.069) | 9343 | 0.574 | |
Medium Heat Stress | 0.913 | (0.792, 1.053) | 5369 | 0.212 | |
Severe Heat Stress | 1.005 | (0.844, 1.197) | 3536 | 0.952 | |
P3 | No HS | Reference | 28,892 | ||
Small Heat Stress | 0.926 | (0.835, 1.027) | 9343 | 0.147 | |
Medium Heat Stress | 0.887 | (0.757, 1.039) | 5396 | 0.137 | |
Severe Heat Stress | 0.693 | (0.565, 0.850) | 3536 | <0.001 *** | |
P4 | No HS | Reference | 29,028 | ||
Small Heat Stress | 0.941 | (0.858, 1.032) | 9247 | 0.195 | |
Medium Heat Stress | 0.935 | (0.814, 1.075) | 5318 | 0.345 | |
Severe Heat Stress | 0.922 | (0.776, 1.096) | 3606 | 0.353 | |
P5 | No HS | Reference | 29,827 | ||
Small Heat Stress | 1.058 | (0.978, 1.145) | 8600 | 0.165 | |
Medium Heat Stress | 0.941 | (0.840, 1.054) | 5815 | 0.300 | |
Severe Heat Stress | 0.854 | (0.743, 0.981) | 2957 | 0.026 * |
Period | Heat Stress Category | Heritability | CrI_2.5 | CrI_97.5 |
---|---|---|---|---|
P1 | No Heat Stress | 0.048 | 0.022 | 0.100 |
Small Heat Stress | 0.081 | 0.033 | 0.173 | |
Medium Heat Stress | 0.112 | 0.044 | 0.241 | |
Severe Heat Stress | 0.129 | 0.047 | 0.275 | |
P3 | No Heat Stress | 0.048 | 0.022 | 0.099 |
Small Heat Stress | 0.079 | 0.032 | 0.17 | |
Medium Heat Stress | 0.107 | 0.039 | 0.231 | |
Severe Heat Stress | 0.124 | 0.043 | 0.265 | |
P5 | No Heat Stress | 0.040 | 0.020 | 0.095 |
Small Heat Stress | 0.082 | 0.031 | 0.176 | |
Medium Heat Stress | 0.093 | 0.035 | 0.197 | |
Severe Heat Stress | 0.140 | 0.047 | 0.295 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baccouri, W.; Wanjala, G.; Tóth, V.; Komlósi, I.; Mikó, E. The Effect of Heat Stress During the Insemination Period on the Conception Outcomes of Dairy Cows. Animals 2025, 15, 2001. https://doi.org/10.3390/ani15132001
Baccouri W, Wanjala G, Tóth V, Komlósi I, Mikó E. The Effect of Heat Stress During the Insemination Period on the Conception Outcomes of Dairy Cows. Animals. 2025; 15(13):2001. https://doi.org/10.3390/ani15132001
Chicago/Turabian StyleBaccouri, Wissem, George Wanjala, Violetta Tóth, István Komlósi, and Edit Mikó. 2025. "The Effect of Heat Stress During the Insemination Period on the Conception Outcomes of Dairy Cows" Animals 15, no. 13: 2001. https://doi.org/10.3390/ani15132001
APA StyleBaccouri, W., Wanjala, G., Tóth, V., Komlósi, I., & Mikó, E. (2025). The Effect of Heat Stress During the Insemination Period on the Conception Outcomes of Dairy Cows. Animals, 15(13), 2001. https://doi.org/10.3390/ani15132001