Evaluation of Blood-Based Diagnostic Biomarkers for Canine Cognitive Dysfunction Syndrome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sample Collection
2.3. Questionnaires
2.4. Blood-Based Biomarkers
2.5. Data Analysis
3. Results
3.1. Population and Ages
3.2. Concentrations of Blood-Based Biomarkers
3.2.1. Amyloid-Beta 40,42 Concentrations
3.2.2. Neurofilament Light Chain Concentration
3.2.3. Glial Fibrillary Acidic Protein Concentration
3.3. ROC Curve Analysis of Serum NfL Concentration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CDS | Canine cognitive dysfunction syndrome |
Aβ40 | amyloid-beta 40 |
Aβ42 | amyloid-beta 42 |
NfL | Neurofilament light chain |
GFAP | Glial fibrillary acidic protein |
CCDR | Canine Cognitive Dysfunction Rating scale |
CADES | Canine Dementia Scale |
CCAS | Canine Cognitive Assessment Scale |
References
- Osella, M.C.; Re, G.; Odore, R.; Girardi, C.; Badino, P.; Barbero, R.; Bergamasco, L. Canine Cognitive Dysfunction Syndrome: Prevalence, Clinical Signs and Treatment with a Neuroprotective Nutraceutical. Appl. Anim. Behav. Sci. 2007, 105, 297–310. [Google Scholar] [CrossRef]
- Benzal, A.S.; Rodríguez, A.G. Recent Developments in Canine Cognitive Dysfunction Syndrome. Pet Behav. Sci. 2016, 1, 47–59. [Google Scholar] [CrossRef]
- Manteca, X. Nutrition and Behavior in Senior Dogs. Top. Companion Anim. Med. 2011, 26, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Salvin, H.E.; McGreevy, P.D.; Sachdev, P.S.; Valenzuela, M.J. The Canine Cognitive Dysfunction Rating Scale (CCDR): A Data-Driven and Ecologically Relevant Assessment Tool. Vet. J. 2011, 188, 331–336. [Google Scholar] [CrossRef]
- Madari, A.; Farbakova, J.; Katina, S.; Smolek, T.; Novak, P.; Weissova, T.; Novak, M.; Zilka, N.; Hanes, J. Assessment of Severity and Progression of Canine Cognitive Dysfunction Syndrome Using the CAnine DEmentia Scale (CADES). Appl. Anim. Behav. Sci. 2015, 171, 138–145. [Google Scholar] [CrossRef]
- Le Brech, S.; Blanchard, G.; Hernandez, J.; Marsac, C.; Gatta, B.; Dalibart, R.; Desquilbet, L.; Viguier, É. Evaluation of Two Practical Tools to Assess Cognitive Impairment in Aged Dogs. Animals 2022, 12, 3538. [Google Scholar] [CrossRef]
- Prpar Mihevc, S.; Majdič, G. Canine Cognitive Dysfunction and Alzheimer’s Disease–Two Facets of the Same Disease. Front. Neurosci. 2019, 13, 604. [Google Scholar] [CrossRef]
- Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Dore, V.; Fowler, C.; Li, Q.-X.; Martins, R.; Rowe, C.; et al. High Performance Plasma Amyloid-β Biomarkers for Alzheimer’s Disease. Nature 2018, 554, 249–254. [Google Scholar] [CrossRef]
- Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association of Plasma Neurofilament Light with Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurol. 2017, 74, 557–566. [Google Scholar] [CrossRef]
- Oeckl, P.; Halbgebauer, S.; Anderl-Straub, S.; Steinacker, P.; Huss, A.; Neugebauer, H.; von Arnim, C.A.F.; Diehl-Schmid, J.; Grimmer, T.; Kornhuber, J.; et al. Serum GFAP Differentiates Alzheimer’s Disease from Frontotemporal Dementia and Predicts MCI-to-Dementia Conversion. J. Neurol. Neurosurg. Psychiatry 2022, 93, 659–667. [Google Scholar] [CrossRef]
- Head, E.; Callahan, H.; Muggenburg, B.A.; Cotman, C.W.; Milgram, N.W. Amyloid-β Peptide and Oligomers in the Brain and Cerebrospinal Fluid of Aged Canines. J. Alzheimers Dis. 2010, 20, 637–646. [Google Scholar] [CrossRef]
- Urfer, S.R.; Greer, K.; Wolf, N.S.; Kaeberlein, M.; Promislow, D.E.L. Canine Cognitive Dysfunction (CCD) Scores Correlate with Amyloid Beta 42 Levels in Dog Brain Tissue. GeroScience 2021, 43, 2379–2386. [Google Scholar] [CrossRef] [PubMed]
- González-Martínez, Á.; Rosado, B.; Pesini, P.; Suárez, M.L.; Santamarina, G.; García-Belenguer, S. Plasma β-Amyloid Peptides in Canine Aging and Cognitive Dysfunction as a Model of Alzheimer’s Disease. Exp. Gerontol. 2011, 46, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Stylianaki, I.; Gruber, A.D.; Arndt, G.; Matiasek, K.; Failing, K.; Herden, C. Amyloid-Beta Plasma and Cerebrospinal Fluid Biomarkers in Aged Dogs with Cognitive Dysfunction Syndrome. J. Vet. Intern. Med. 2020, 34, 1532–1540. [Google Scholar] [CrossRef]
- Panek, W.K.; Colle, M.A.; O’Brien, D.P.; Araujo, J.A.; Head, E. Plasma Amyloid Beta Concentrations in Aged and Cognitively Impaired Pet Dogs. Mol. Neurobiol. 2021, 58, 483–489. [Google Scholar] [CrossRef]
- Yun, T.; Lee, S.-G.; Park, E.S.; Jeong, S.M.; Choi, J.-H.; Kang, B.-T.; Jung, D.-I. Neurofilament Light Chain as a Biomarker of Meningoencephalitis of Unknown Etiology in Dogs. J. Vet. Intern. Med. 2021, 35, 1865–1872. [Google Scholar] [CrossRef]
- Fowler, K.M.; McGrath, S.; Lim, C.; Wood, T.; Mauler, D.; Aleman, M. Evaluation of Neurofilament Light Chain as a Biomarker in Dogs with Structural and Idiopathic Epilepsy. J. Vet. Intern. Med. 2024, 38, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.; Lee, H.-C.; Song, K.-H.; Kang, B.-T.; Jung, D.-I. Use of Neurofilament Light Chain to Identify Structural Brain Diseases in Dogs. J. Vet. Intern. Med. 2024, 38, 2196–2203. [Google Scholar] [CrossRef]
- Panek, W.K.; Head, E.; Muggenburg, B.A.; Milgram, N.W.; Zicker, S.C.; Cotman, C.W. Plasma Neurofilament Light Chain as a Translational Biomarker of Aging and Neurodegeneration in Dogs. Mol. Neurobiol. 2020, 57, 3143–3149. [Google Scholar] [CrossRef]
- Vikartovska, Z.; Cizkova, D.; Lehotsky, J.; Madari, A.; Smolek, T.; Novak, P.; Zilka, N. Novel Diagnostic Tools for Identifying Cognitive Impairment in Dogs: Behavior, Biomarkers, and Pathology. Front. Vet. Sci. 2021, 7, 551895. [Google Scholar] [CrossRef]
- Toda, Y.; Ueda, Y.; Shibuya, M.; Okuda, M.; Nishida, H. Glial Fibrillary Acidic Protein (GFAP) and Anti-GFAP Autoantibody in Canine Necrotising Meningoencephalitis. Vet. Rec. 2007, 161, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Fujita, N.; Kitagawa, M.; Yu, Y.; Nishimura, R. Serum Glial Fibrillary Acidic Protein as a Diagnostic Biomarker in Dogs with Progressive Myelomalacia. J. Vet. Med. Sci. 2013, 75, 949–953. [Google Scholar] [CrossRef]
- Dewey, C.W.; Davies, E.; Xie, H. Canine Cognitive Dysfunction: Pathophysiology, Diagnosis, and Treatment. Vet. Clin. N. Am. Small Anim. Pract. 2019, 49, 477–499. [Google Scholar] [CrossRef]
- Kim, S.S.; Choi, D.; Yu, H.; Ju, J.; Hong, S.; Shin, J.; Lee, J.H. Prevalence and risk factors of canine cognitive dysfunction syndrome in South Korea. Appl. Anim. Behav. Sci. 2023, 268, 106066. [Google Scholar] [CrossRef]
- Landsberg, G.M.; Nichol, J.; Araujo, J.A. Cognitive Dysfunction Syndrome: A Disease of Canine and Feline Brain Aging. Vet. Clin. N. Am. Small Anim. Pract. 2012, 42, 749–768. [Google Scholar] [CrossRef]
- Wu, C.-H.; Chen, M.-L.; Lin, Y.-C.; Chiang, C.-S.; Hsueh, K.-H.; Lin, C.-C. Plasma Neurofilament Light Chains as Blood-Based Biomarkers for Early Diagnosis of Canine Cognitive Dysfunction Syndrome. Int. J. Mol. Sci. 2023, 24, 13771. [Google Scholar] [CrossRef] [PubMed]
- Haake, J.; Schregel, J.; Fischer, A.; Mayer, U. Comparing Standard Screening Questionnaires of Canine Behavior for Assessment of Cognitive Dysfunction. Front. Vet. Sci. 2024, 11, 1374511. [Google Scholar] [CrossRef]
- Pereira, J.B.; Janelidze, S.; Stomrud, E.; Palmqvist, S.; Zetterberg, H.; Blennow, K.; Hansson, O. Plasma GFAP Is an Early Marker of Amyloid-β but Not Tau Pathology in Alzheimer’s Disease. Brain 2021, 144, 3505–3516. [Google Scholar] [CrossRef]
- Shibuya, M.; Okuda, M.; Higuchi, S.; Nakayama, H.; Ueda, Y. Autoantibodies against Glial Fibrillary Acidic Protein (GFAP) in Cerebrospinal Fluids from Pug Dogs with Necrotizing Meningoencephalitis. J. Vet. Med. Sci. 2007, 69, 241–245. [Google Scholar] [CrossRef]
- Miyake, H.; Okuda, M.; Nishida, H.; Ueda, Y.; Shibuya, M. Serum Glial Fibrillary Acidic Protein as a Specific Marker for Necrotizing Meningoencephalitis in Pug Dogs. J. Vet. Med. Sci. 2013, 75, 1543–1545. [Google Scholar] [CrossRef]
- Harvey, N.D. How Old Is My Dog? Identification of Rational Age Groupings in Pet Dogs Based upon Normative Age-Linked Processes. Front. Vet. Sci. 2021, 8, 643085. [Google Scholar] [CrossRef] [PubMed]
Variables | <7 years | ≥7 years | ||
---|---|---|---|---|
Young Control (n = 14) | Aged Control (n = 32) | At-Risk (n = 11) | CDS (n = 15) | |
Sex, n (%) | ||||
Castrated Male | 4 (28.6) | 15 (46.9) | 5 (45.5) | 10 (50.0) |
Male | 1 (7.1) | 1 (3.1) | 1 (9.0) | 0 (0.0) |
Spayed Female | 8 (57.1) | 15 (46.9) | 5 (45.5) | 9 (45.0) |
Female | 1 (7.1) | 1 (3.1) | 0 (0.0) | 1 (5.0) |
Breed, n (%) | ||||
Poodle | 2 (14.3) | 5 (15.6) | 4 (36.4) | 7 (35.0) |
Maltese | 0 (0.0) | 7 (21.9) | 4 (36.4) | 3 (15.0) |
Bichon Frise | 1 (7.1) | 2 (6.3) | 0 (0.0) | 2 (10.0) |
Yorkshire Terrier | 0 (0.0) | 2 (6.3) | 1 (9.0) | 1 (5.0) |
Shih Tzu | 1 (7.1) | 2 (6.3) | 0 (0.0) | 1 (5.0) |
Mixed | 2 (14.3) | 6 (18.8) | 1 (9.0) | 5 (25.0) |
Others * | 8 (57.1) | 8 (25.0) | 1 (9.0) | 1 (5.0) |
Age (years) | 3.20 ± 1.90 | 11.76 ± 2.85 | 13.50 ± 1.91 | 15.06 ± 2.36 |
Variables | <7 years | ≥7 years | |||
---|---|---|---|---|---|
Young Control (n = 14) | Aged Control (n = 8) | Mild (n = 23) | Moderate (n = 17) | Severe (n = 15) | |
Sex, n (%) | |||||
Castrated Male | 4 (28.6) | 4 (50.0) | 12 (52.2) | 5 (29.4) | 9 (60.0) |
Male | 1 (7.1) | 1 (12.5) | 0 (0.0) | 1 (5.9) | 0 (0.0) |
Spayed Female | 8 (57.1) | 3 (37.5) | 9 (39.1) | 11 (64.7) | 6 (40.0) |
Female | 1 (7.1) | 0 (0.0) | 2 (8.7) | 0 (0.0) | 0 (0.0) |
Breed, n (%) | |||||
Poodle | 2 (14.3) | 1 (12.5) | 4 (17.4) | 7 (41.2) | 4 (26.7) |
Maltese | 0 (0.0) | 2 (25.0) | 7 (30.4) | 3 (17.6) | 2 (13.3) |
Bichon Frise | 1 (7.1) | 0 (0.0) | 2 (8.7) | 0 (00.0) | 2 (13.3) |
Yorkshire Terrier | 0 (0.0) | 0 (0.0) | 1 (4.3) | 2 (11.8) | 1 (6.7) |
Shih Tzu | 1 (7.1) | 1 (12.5) | 1 (4.3) | 0 (0.0) | 1 (6.7) |
Mixed | 2 (14.3) | 2 (25.0) | 2 (8.7) | 4 (23.5) | 4 (26.7) |
Others * | 8 (57.1) | 2 (25.0) | 6 (26.1) | 1 (5.9) | 1 (6.7) |
Age (years) | 3.20 ± 1.90 | 10.48 ± 1.53 | 12.51 ± 3.21 | 13.36 ± 2.69 | 15.15 ± 1.17 |
Variables | <7 years | ≥7 years | ||
---|---|---|---|---|
Young Control (n = 14) | Aged Control (n = 14) | Mild (n = 32) | Severe (n = 17) | |
Sex, n (%) | ||||
Castrated Male | 4 (28.6) | 7 (50.0) | 17 (53.1) | 6 (35.3) |
Male | 1 (7.1) | 1 (7.1) | 0 (0.0) | 1 (5.9) |
Spayed Female | 8 (57.1) | 5 (35.8) | 14 (43.8) | 10 (58.8) |
Female | 1 (7.1) | 1 (7.1) | 1 (3.1) | 0 (0.0) |
Breed, n (%) | ||||
Poodle | 2 (14.3) | 2 (14.3) | 8 (25.0) | 6 (35.3) |
Maltese | 0 (0.0) | 2 (14.3) | 9 (28.1) | 3 (17.6) |
Bichon Frise | 1 (7.1) | 0 (0.0) | 3 (9.4) | 1 (5.9) |
Yorkshire Terrier | 0 (0.0) | 1 (7.1) | 2 (6.3) | 1 (5.9) |
Shih Tzu | 1 (7.1) | 1 (7.1) | 2 (6.3) | 0 (0.0) |
Mixed | 2 (14.3) | 3 (21.4) | 5 (15.6) | 4 (23.5) |
Others * | 8 (57.1) | 5 (35.8) | 3 (9.4) | 2 (11.8) |
Age (years) | 3.20 ± 1.90 | 10.42 ± 1.75 | 13.56 ± 2.72 | 14.48 ± 2.76 |
Variables | n | Aβ-40 | Aβ-42 | Aβ-42/Aβ-40 | NfL | GFAP | |
---|---|---|---|---|---|---|---|
YC | 14 | 34.35 (28.93–37.64) | 22.20 (18.86–29.13) | 0.66 (0.61–0.74) | 8.59 (5.13–20.03) | 0.286 (0.270–0.313) | |
CCDR | AC | 32 | 32.57 (29.73–35.13) | 21.36 (20.04–25.47) | 0.67 (0.62–0.75) | 14.57 (3.72–26.35) | 0.270 (0.253–0.281) |
At-risk | 11 | 34.19 (30.47–34.69) | 22.51 (17.92–24.77) | 0.71 (0.64–0.75) | 43.24 (11.49–64.85) | 0.203 (0.176–0.284) | |
CDS | 15 | 35.31 (28.19–38.77) | 21.97 (19.04–26.35) | 0.68 (0.58–0.71) | 50.30 (20.62–63.40) | 0.238 (0.210–0.268) | |
CADES | AC | 8 | 33.87 (32.32–36.58) | 21.33 (19.37–27.07) | 0.62 (0.62–0.70) | 3.38 (2.52–18.61) | 0.281 (0.271–0.293) |
Mild | 23 | 30.29 (27.32–32.89) | 21.38 (19.80–25.95) | 0.70 (0.65–0.77) | 14.57 (4.70–31.52) | 0.269 (0.253–0.285) | |
Moderate | 17 | 34.67 (30.68–36.05) | 22.51 (20.10–25.29) | 0.67 (0.63–0.72) | 43.24 (14.11–68.46) | 0.222 (0.202–0.254) | |
Severe | 15 | 34.51 (30.04–38.63) | 22.13 (18.23–26.54) | 0.67 (0.58–0.71) | 52.28 (21.12–63.67) | 0.237 (0.200–0.264) | |
CCAS | AC | 14 | 32.99 (30.43–35.62) | 21.04 (18.85–25.38) | 0.63 (0.61–0.74) | 3.38 (2.47–16.04) | 0.276 (0.271–0.292) |
Mild | 32 | 32.08 (28.90–35.57) | 21.36 (20.00–24.85) | 0.70 (0.65–0.75) | 22.33 (10.34–60.81) | 0.253 (0.206–0.268) | |
Severe | 17 | 34.51 (30.87–38.29) | 22.85 (18.90–27.05) | 0.65 (0.59–0.71) | 45.78 (17.86–61.77) | 0.237 (0.211–0.283) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, J.-W.; Nam, C.-S.; Lee, K.-S.; Dan, T.-J.; Jeon, H.-J.; Kang, M.-A.; Park, H.-M. Evaluation of Blood-Based Diagnostic Biomarkers for Canine Cognitive Dysfunction Syndrome. Animals 2025, 15, 1974. https://doi.org/10.3390/ani15131974
Yoon J-W, Nam C-S, Lee K-S, Dan T-J, Jeon H-J, Kang M-A, Park H-M. Evaluation of Blood-Based Diagnostic Biomarkers for Canine Cognitive Dysfunction Syndrome. Animals. 2025; 15(13):1974. https://doi.org/10.3390/ani15131974
Chicago/Turabian StyleYoon, Jun-Won, Chan-Sik Nam, Kwang-Sup Lee, Tae-Jung Dan, Hee-Jung Jeon, Mi-Ae Kang, and Hee-Myung Park. 2025. "Evaluation of Blood-Based Diagnostic Biomarkers for Canine Cognitive Dysfunction Syndrome" Animals 15, no. 13: 1974. https://doi.org/10.3390/ani15131974
APA StyleYoon, J.-W., Nam, C.-S., Lee, K.-S., Dan, T.-J., Jeon, H.-J., Kang, M.-A., & Park, H.-M. (2025). Evaluation of Blood-Based Diagnostic Biomarkers for Canine Cognitive Dysfunction Syndrome. Animals, 15(13), 1974. https://doi.org/10.3390/ani15131974