Intracytoplasmic Sperm Injection Using 20-Year-Old Cryopreserved Sperm Results in Normal, Viable, and Reproductive Offspring in Xenopus laevis: A Major Pioneering Achievement for Amphibian Conservation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Animals and Ethic Statement
2.3. Animal Growth, Breeding, and Egg Production
2.4. Sperm Freezing Preparation and Storage
2.5. Intracytoplasmic Sperm Microinjection (ICSI)
2.6. In Vitro Egg Fertilization (IVF)
2.7. Tadpole Behavior/Mobility
2.8. Statistical Analyses
3. Results
3.1. ICSI Using an Old Cryoconserved Sperm Preparation Gives Rise to Normal Larval Development Without Phenotypic Defects
3.2. ICSI Using Recent and Old Cryoconserved Sperm Preparations Results in Comparable Animal Development but Is Less Efficient than IVF
3.3. Progeny from Recent and Old Cryopreserved Sperm Preparations Display Comparable Development with Animals Obtained via IVF
3.4. Sex Ratio Does Not Differ Between Frogs Issued from the Old Cryoconserved Sperm Preparation and Frogs Obtained by Conventional IVF
3.5. Behavior Is Comparable Between Tadpoles Issued from Old or Recent Cryoconserved Sperm Preparations and Tadpoles Obtained via IVF
3.6. F2 Generation Obtained from Breeding Animals Generated from the Old Cryopreserved Sperm Preparation Shows Normal Growth and Behavior
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICSI | intracytoplasmic sperm injection |
IVF | in vitro fertilization |
WT | wild type |
vs | versus |
References
- Browne, R.K.; Luo, Q.; Wang, P.; Mansour, N.; Kaurova, S.A.; Gakhova, E.N.; Shishova, N.V.; Uteshev, V.K.; Kramarova, L.I.; Venu, G.; et al. The Sixth Mass Extinction and Amphibian Species Sustainability Through Reproduction and Advanced Biotechnologies, Biobanking of Germplasm and Somatic Cells, and Conservation Breeding Programs (RBCs). Animals 2024, 14, 3395. [Google Scholar] [CrossRef] [PubMed]
- The IUCN Red List of Threatened Species. IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/en (accessed on 30 April 2025).
- Della Togna, G.; Howell, L.G.; Clulow, J.; Langhorne, C.J.; Marcec-Greaves, R.; Calatayud, N.E. Evaluating amphibian biobanking and reproduction for captive breeding programs according to the Amphibian Conservation Action Plan objectives. Theriogenology 2020, 150, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Luedtke, J.A.; Chanson, J.; Neam, K.; Hobin, L.; Maciel, A.O.; Catenazzi, A.; Borzée, A.; Hamidy, A.; Aowphol, A.; Jean, A.; et al. Ongoing declines for the world’s amphibians in the face of emerging threats. Nature 2023, 622, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Clulow, J.; Trudeau, V.L.; Kouba, A.J. Amphibian declines in the twenty-first century: Why we need assisted reproductive technologies. Adv. Exp. Med. Biol. 2014, 753, 275–316. [Google Scholar]
- Clulow, J.; Upton, R.; Trudeau, V.L.; Clulow, S. Amphibian Assisted Reproductive Technologies: Moving from Technology to Application. In Reproductive Sciences in Animal Conservation; Comizzoli, P., Brown, J.L., Holt, W.V., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 413–463. [Google Scholar] [CrossRef]
- Gascon, C. Amphibian Conservation Action Plan: Proceedings of the IUCN/SSC Amphibian Conservation Summit 2005; IUCN—The World Conservation Union: Gland, Switzerland, 2007. [Google Scholar]
- Amphibian Conservation Action Plan; IUCN: Gland, Switzerland, 2024; Available online: https://portals.iucn.org/library/node/51531 (accessed on 30 April 2025).
- Anastas, Z.M.; Byrne, P.G.; O’Brien, J.K.; Hobbs, R.J.; Upton, R.; Silla, A.J. The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals 2023, 13, 2094. [Google Scholar] [CrossRef]
- Browne, R.K.; Silla, A.J.; Upton, R.; Della-Togna, G.; Marcec-Greaves, R.; Shishova, N.V.; Uteshev, V.K.; Proaño, B.; Pérez, O.D.; Mansour, N.; et al. Sperm collection and storage for the sustainable management of amphibian biodiversity. Theriogenology 2019, 133, 187–200. [Google Scholar] [CrossRef]
- Guy, E.L.; Gillis, A.B.; Kouba, A.J.; Barber, D.; Poole, V.; Marcec-Greaves, R.M.; Kouba, C.K. Sperm collection and cryopreservation for threatened newt species. Cryobiology 2020, 94, 80–88. [Google Scholar] [CrossRef]
- Germano, J.M.; Cree, A.; Molinia, F.; Arregui, L.; Bishop, P.J. Hormone treatment does not reliably induce spermiation or mating in Hamilton’s frog from the archaic leiopelmatid lineage. Reprod. Fertil. Dev. 2022, 34, 447–452. [Google Scholar] [CrossRef]
- Sargent, M.G.; Mohun, T.J. Cryopreservation of sperm of Xenopus laevis and Xenopus tropicalis. Genesis 2005, 41, 41–46. [Google Scholar] [CrossRef]
- Mansour, N.; Lahnsteiner, F.; Patzner, R.A. Optimization of the cryopreservation of African clawed frog (Xenopus laevis) sperm. Theriogenology 2009, 72, 1221–1228. [Google Scholar] [CrossRef]
- Pearl, E.; Morrow, S.; Noble, A.; Lerebours, A.; Horb, M.; Guille, M. An optimized method for cryogenic storage of Xenopus sperm to maximise the effectiveness of research using genetically altered frogs. Theriogenology 2017, 92, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Kroll, K.L.; Amaya, E. Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 1996, 122, 3173–3183. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.J.; Fairclough, L.; Latinkic, B.V.; Sparrow, D.B.; Mohun, T.J. Xenopus laevis transgenesis by sperm nuclear injection. Nat. Protoc. 2006, 1, 2195–2203. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Kroll, K.L.; Amaya, E. Generating Transgenic Frog Embryos by Restriction Enzyme Mediated Integration (REMI). In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 917, pp. 185–203. [Google Scholar] [CrossRef]
- Nakayama, T.; Gray, J.; Grainger, R.M. Production of Transgenic F0 Animals and Permanent Lines by Sperm Nuclear Transplantation in Xenopus tropicalis. Cold Spring Harb. Protoc. 2023, 2023, pdb.prot107003. [Google Scholar] [CrossRef]
- Coen, L.; du Pasquier, D.; Le Mevel, S.; Brown, S.; Tata, J.; Mazabraud, A.; Demeneix, B.A. Xenopus Bcl-XL selectively protects Rohon-Beard neurons from metamorphic degeneration. Proc. Natl. Acad. Sci. USA 2001, 98, 7869–7874. [Google Scholar] [CrossRef]
- Hirsch, N.; Zimmerman, L.B.; Gray, J.; Chae, J.; Curran, K.L.; Fisher, M.; Ogino, H.; Grainger, R.M. Xenopus tropicalis transgenic lines and their use in the study of embryonic induction. Dev. Dyn. 2002, 225, 522–535. [Google Scholar] [CrossRef]
- Coen, L.; Le Blay, K.; Rowe, I.; Demeneix, B.A. Caspase-9 regulates apoptosis/proliferation balance during metamorphic brain remodeling in Xenopus. Proc. Natl. Acad. Sci. USA 2007, 104, 8502–8507. [Google Scholar] [CrossRef]
- Takagi, C.; Sakamaki, K.; Morita, H.; Hara, Y.; Suzuki, M.; Kinoshita, N.; Ueno, N. Transgenic Xenopus laevis for live imaging in cell and developmental biology. Dev. Growth Differ. 2013, 55, 422–433. [Google Scholar] [CrossRef]
- Paredes, R.; Ishibashi, S.; Borrill, R.; Robert, J.; Amaya, E. Xenopus: An in vivo model for imaging the inflammatory response following injury and bacterial infection. Dev. Biol. 2015, 408, 213–228. [Google Scholar] [CrossRef]
- Nieuwkoop, P.D.; Faber, J. (Eds.) Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis; Garland Pub: New York, NY, USA, 1994; 252p. [Google Scholar]
- Zahn, N.; James-Zorn, C.; Ponferrada, V.G.; Adams, D.S.; Grzymkowski, J.; Buchholz, D.R.; Nascone-Yoder, N.M.; Horb, M.; Moody, S.A.; Vize, P.D.; et al. Normal Table of Xenopus development: A new graphical resource. Development 2022, 149, dev200356. [Google Scholar] [CrossRef]
- Zippel, K.; Johnson, K.; Gagliardo, R.; Gibson, R.; Browne, R.; Martinez, C.; Townsend, E. The Amphibian Ark: A Global Community for Ex Situ Conservation of Amphibians. Herpetol. Conserv. Biol. 2011, 6, 340–352. [Google Scholar]
- Della Togna, G.; Trudeau, V.L.; Gratwicke, B.; Evans, M.; Augustine, L.; Chia, H.; Bronikowski, E.J.; Murphy, J.B.; Comizzoli, P. Effects of hormonal stimulation on the concentration and quality of excreted spermatozoa in the critically endangered Panamanian golden frog (Atelopus zeteki). Theriogenology 2017, 91, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Poo, S.; Hinkson, K.M. Amphibian conservation using assisted reproductive technologies: Cryopreserved sperm affects offspring morphology, but not behavior, in a toad. Glob. Ecol. Conserv. 2020, 21, e00809. [Google Scholar] [CrossRef]
- Upton, R.; Clulow, S.; Calatayud, N.E.; Colyvas, K.; Seeto, R.G.Y.; Wong, L.A.M.; Mahony, M.J.; Clulow, J. Generation of reproductively mature offspring from the endangered green and golden bell frog Litoria aurea using cryopreserved spermatozoa. Reprod. Fertil. Dev. 2021, 33, 562. [Google Scholar] [CrossRef]
- Naranjo, R.E.; Naydenova, E.; Proaño-Bolaños, C.; Vizuete, K.; Debut, A.; Arias, M.T.; Coloma, L.A. Development of assisted reproductive technologies for the conservation of Atelopus sp. (spumarius complex). Cryobiology 2022, 105, 20–31. [Google Scholar] [CrossRef]
- Burger, I.J.; Lampert, S.S.; Kouba, C.K.; Morin, D.J.; Kouba, A.J. Development of an amphibian sperm biobanking protocol for genetic management and population sustainability. Conserv. Physiol. 2022, 10, coac032. [Google Scholar] [CrossRef]
- Zimkus, B.M.; Hassapakis, C.L.; Houck, M.L. Integrating current methods for the preservation of amphibian genetic resources and viable tissues to achieve best practices for species conservation. Amphib. Reptile Conserv. 2018, 12, 1–27 (e165). [Google Scholar]
- Browne, R.K.; Kaurova, S.A.; Uteshev, V.K.; Shishova, N.V.; McGinnity, D.; Figiel, C.R.; Mansour, N.; Agnew, D.; Wu, M.; Gakhova, E.N.; et al. Sperm motility of externally fertilizing fish and amphibians. Theriogenology 2015, 83, 1–13.e8. [Google Scholar] [CrossRef]
- van der Horst, G. Status of Sperm Functionality Assessment in Wildlife Species: From Fish to Primates. Animals 2021, 11, 1491. [Google Scholar] [CrossRef]
- Hezavehei, M.; Sharafi, M.; Kouchesfahani, H.M.; Henkel, R.; Agarwal, A.; Esmaeili, V.; Shahverdi, A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod. Biomed. Online 2018, 37, 327–339. [Google Scholar] [CrossRef]
- Buchholz, D.R.; Fu, L.; Shi, Y.B. Cryopreservation of Xenopus transgenic lines. Mol. Reprod. Dev. 2004, 67, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, S.; Kroll, K.L.; Amaya, E. A Method for Generating Transgenic Frog Embryos. Methods Mol. Biol. 2008, 461, 447–466. [Google Scholar] [CrossRef] [PubMed]
- Di Santo, M.; Tarozzi, N.; Nadalini, M.; Borini, A. Human Sperm Cryopreservation: Update on Techniques, Effect on DNA Integrity, and Implications for ART. Adv. Urol. 2012, 2012, 854837. [Google Scholar] [CrossRef] [PubMed]
- Kopeika, J.; Thornhill, A.; Khalaf, Y. The effect of cryopreservation on the genome of gametes and embryos: Principles of cryobiology and critical appraisal of the evidence. Hum. Reprod. Update 2015, 21, 209–227. [Google Scholar] [CrossRef]
- Fini, J.B.; Mughal, B.B.; Mével, S.L.; Leemans, M.; Lettmann, M.; Spirhanzlova, P.; Affaticati, P.; Jenett, A.; Demeneix, B.A. Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos. Sci. Rep. 2017, 7, 43786. [Google Scholar] [CrossRef]
- Leemans, M.; Spirhanzlova, P.; Couderq, S.; Le Mével, S.; Grimaldi, A.; Duvernois-Berthet, E.; Demeneix, B.; Fini, J.B. A Mixture of Chemicals Found in Human Amniotic Fluid Disrupts Brain Gene Expression and Behavior in Xenopus laevis. Int. J. Mol. Sci. 2023, 24, 2588. [Google Scholar] [CrossRef]
- Vance, C.K.; Julien, A.; Counsell, K.; Marcec, R.; Agcanas, L.; Tucker, A.; Kouba, A. Amphibian art over the generations: Frozen sperm offspring produce viable F2 generation. Cryobiology 2018, 85, 178. [Google Scholar] [CrossRef]
- Lampert, S.S.; Burger, I.J.; Julien, A.R.; Gillis, A.B.; Kouba, A.J.; Barber, D.; Kouba, C.K. Sperm Cryopreservation as a Tool for Amphibian Conservation: Production of F2 Generation Offspring from Cryo-Produced F1 Progeny. Animals 2022, 13, 53. [Google Scholar] [CrossRef]
Division 0 dpf | Gastrulation at 1 dpf | Normal Animals at 4 dpf | Normal Animals at 6 dpf | Normal Animals at 15 dpf | Metamorphosed Froglet | |
---|---|---|---|---|---|---|
From Total | From Cleaved | From Cleaved | From Cleaved | |||
(From Normal Animals at 4 dpf) | ||||||
In vitro fertilization (IVF) | 43.43% a | _ | 91.53% a | 65.72% a | 60.08% a | 33.06% a |
(71.80%) a | (65.64%) a | (36.12%) a | ||||
ICSI with recent frozen sperm preparation | 32.41% b | 73.55% a | 38.28% b | 23.65% b | 20.21% b | 10.58% b |
(61.80%) b | (52.81%) b | (25.59%) b | ||||
ICSI with old frozen sperm preparation | 33.73% b | 75.75% a | 35.35% b | 20.25% c | 17.18% b | 5.86% c |
(57.27%) b | (48.60%) b | (16.57%) c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Péricard, L.; Le Mével, S.; Marquis, O.; Locatelli, Y.; Coen, L. Intracytoplasmic Sperm Injection Using 20-Year-Old Cryopreserved Sperm Results in Normal, Viable, and Reproductive Offspring in Xenopus laevis: A Major Pioneering Achievement for Amphibian Conservation. Animals 2025, 15, 1941. https://doi.org/10.3390/ani15131941
Péricard L, Le Mével S, Marquis O, Locatelli Y, Coen L. Intracytoplasmic Sperm Injection Using 20-Year-Old Cryopreserved Sperm Results in Normal, Viable, and Reproductive Offspring in Xenopus laevis: A Major Pioneering Achievement for Amphibian Conservation. Animals. 2025; 15(13):1941. https://doi.org/10.3390/ani15131941
Chicago/Turabian StylePéricard, Louise, Sébastien Le Mével, Olivier Marquis, Yann Locatelli, and Laurent Coen. 2025. "Intracytoplasmic Sperm Injection Using 20-Year-Old Cryopreserved Sperm Results in Normal, Viable, and Reproductive Offspring in Xenopus laevis: A Major Pioneering Achievement for Amphibian Conservation" Animals 15, no. 13: 1941. https://doi.org/10.3390/ani15131941
APA StylePéricard, L., Le Mével, S., Marquis, O., Locatelli, Y., & Coen, L. (2025). Intracytoplasmic Sperm Injection Using 20-Year-Old Cryopreserved Sperm Results in Normal, Viable, and Reproductive Offspring in Xenopus laevis: A Major Pioneering Achievement for Amphibian Conservation. Animals, 15(13), 1941. https://doi.org/10.3390/ani15131941