Comparison of Fibrinolysis in Peripartum and Non-Pregnant Mares Using Modified Thromboelastography †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. General
3.2. MA
3.3. CL30
3.4. LY30
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TEG | Thromboelastograpy |
MA | Maximum amplitude (clot strength) |
tPA | Tissue plasminogen activator |
TF | Tissue factor |
CL30 | (A30/MA) × 100 |
A30 | Amplitude at 30 min post-MA |
Ly30 | Percent decrease in the area under the curve compared to the MA30 min after reaching MA |
References
- Bazzano, M.; Giannetto, C.; Fazio, F.; Marafioti, S.; Giudice, E.; Piccione, G. Hemostatic profile during late pregnancy and early postpartum period in mares. Theriogenology 2014, 81, 639–643. [Google Scholar] [CrossRef]
- Gentry, P.A.; Feldman, B.F.; O’Neill, S.L.; Madigan, J.E.; Zinkl, J.G. Evaluation of the haemostatic profile in the pre- and post parturient mare, with particular focus on the perinatal period. Equine Vet. J. 1992, 24, 33–36. [Google Scholar] [CrossRef]
- Hellgren, M. Hemostasis during normal pregnancy and puerperium. Semin. Thromb. Hemost. 2003, 29, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Bunck, C.F.; Mischke, R.; Gunzel-Apel, A.R. Investigation of the fibrinolytic system during nonpregnant and pregnant oestrous cycles of bitches. J. Reprod. Fertil. Suppl. 2001, 57, 207–214. [Google Scholar] [PubMed]
- Faramarzi, B.; Rich, L.J.; Wu, J. Hematological and serum biochemical profile values in pregnant and non-pregnant mares. Can. J. Vet. Res. 2018, 82, 287–293. [Google Scholar] [PubMed]
- Waters, J.H. The role of viscoelastic testing in the management of the parturient. Transfusion 2020, 60, 70–74. [Google Scholar] [CrossRef]
- McMichael, M.A.; Smith, S.A. Viscoelastic coagulation testing: Technology, applications, and limitations. Vet. Clin. Pathol. 2011, 40, 140–153. [Google Scholar] [CrossRef]
- Karlsson, O.; Sporrong, T.; Hillarp, A.; Jeppsson, A.; Hellgren, M. Prospective longitudinal study of thromboelastography and standard hemostatic laboratory tests in healthy women during normal pregnancy. Anesth. Analg. 2012, 115, 890–898. [Google Scholar] [CrossRef]
- Goldenberg, N.A.; Hathaway, W.E.; Jacobson, L.; Manco-Johnson, M.J. A new global assay of coagulation and fibrinolysis. Thromb. Res. 2005, 116, 345–356. [Google Scholar] [CrossRef]
- Bremme, K.A. Haemostatic changes in pregnancy. Best Pract. Res. Clin. Haematol. 2003, 16, 153–168. [Google Scholar] [CrossRef]
- Arnold, C.E.; Payne, M.; Thompson, J.A.; Slovis, N.M.; Bain, F.T. Periparturient hemorrhage in mares: 73 cases (1998–2005). J. Am. Vet. Med. Assoc. 2008, 232, 1345–1351. [Google Scholar] [CrossRef]
- Novikova, N.; Hofmeyr, G.J. Tranexamic acid for preventing postpartum haemorrhage. Cochrane Database Syst. Rev. 2010, 7, CD007872. [Google Scholar]
- Gonzalez-Brown, V.; Schneider, P. Prevention of postpartum hemorrhage. Semin. Fetal Neonatal Med. 2020, 25, 101129. [Google Scholar] [CrossRef] [PubMed]
- Whitta, R.K.; Cox, D.J.; Mallett, S.V. Thrombelastography reveals two causes of haemorrhage in HELLP syndrome. Br. J. Anaesth. 1995, 74, 464–468. [Google Scholar] [CrossRef]
- Epstein, K.L.; Brainard, B.M.; Lopes, M.A.; Barton, M.H.; Moore, J.N. Thrombelastography in 26 healthy horses with and without activation by recombinant human tissue factor. J. Vet. Emerg. Crit. Care 2009, 19, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Epstein, K.L.; Brainard, B.M.; Giguere, S.; Vrono, Z.; Moore, J.N. Serial viscoelastic and traditional coagulation testing in horses with gastrointestinal disease. J. Vet. Emerg. Crit. Care 2013, 23, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Hyldahl Laursen, S.; Andersen, P.H.; Kjelgaard-Hansen, M.; Wiinberg, B. Comparison of components of biological variation between 3 equine thromboelastography assays. Vet. Clin. Pathol. 2013, 42, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Epstein, K.L.; Brainard, B.M.; Gomez-Ibanez, S.E.; Lopes, M.A.; Barton, M.H.; Moore, J.N. Thrombelastography in horses with acute gastrointestinal disease. J. Vet. Intern. Med. 2011, 25, 307–314. [Google Scholar] [CrossRef]
- Leclere, M.; Lavoie, J.P.; Dunn, M.; Bedard, C. Evaluation of a modified thrombelastography assay initiated with recombinant human tissue factor in clinically healthy horses. Vet. Clin. Pathol. 2009, 38, 462–466. [Google Scholar] [CrossRef]
- Mendez-Angulo, J.L.; Mudge, M.C.; Vilar-Saavedra, P.; Stingle, N.; Couto, C.G. Thromboelastography in healthy horses and horses with inflammatory gastrointestinal disorders and suspected coagulopathies. J. Vet. Emerg. Crit. Care 2010, 20, 488–493. [Google Scholar] [CrossRef]
- Kupesiz, A.; Rajpurkar, M.; Warrier, I.; Hollon, W.; Tosun, O.; Lusher, J.; Chitlur, M. Tissue plasminogen activator induced fibrinolysis: Standardization of method using thromboelastography. Blood Coagul. Fibrinolysis 2010, 21, 320–324. [Google Scholar] [CrossRef]
- Larsen, J.B.; Hvas, C.L.; Hvas, A.M. Modified Rotational Thromboelastometry Protocol Using Tissue Plasminogen Activator for Detection of Hypofibrinolysis and Hyperfibrinolysis. Methods Mol. Biol. 2023, 2663, 763–773. [Google Scholar]
- Spodsberg, E.H.; Wiinberg, B.; Jessen, L.R.; Marschner, C.B.; Kristensen, A.T. Endogenous fibrinolytic potential in tissue-plasminogen activator-modified thromboelastography analysis is significantly decreased in dogs suffering from diseases predisposing to thrombosis. Vet. Clin. Pathol. 2013, 42, 281–290. [Google Scholar] [CrossRef]
- Fletcher, D.J.; Rozanski, E.A.; Brainard, B.M.; de Laforcade, A.M.; Brooks, M.B. Assessment of the relationships among coagulopathy, hyperfibrinolysis, plasma lactate, and protein C in dogs with spontaneous hemoperitoneum. J. Vet. Emerg. Crit. Care 2016, 26, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, D.J.; Brainard, B.M.; Epstein, K.; Radcliffe, R.; Divers, T. Therapeutic plasma concentrations of epsilon aminocaproic acid and tranexamic acid in horses. J. Vet. Intern. Med. 2013, 27, 1589–1595. [Google Scholar] [CrossRef]
- Hanel, R.M.; Chan, D.L.; Conner, B.; Gauthier, V.; Holowaychuk, M.; Istvan, S.; Walker, J.M.; Wood, D.; Goggs, R.; Wiinberg, B. Systematic evaluation of evidence on veterinary viscoelastic testing part 4: Definitions and data reporting. J. Vet. Emerg. Crit. Care 2014, 24, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Golyshenkov, S.P.; Iakimova, E.A. Seasonal and individual characteristics of the blood fibrinolytic system reaction to the physical load. Fiziol. Cheloveka 2014, 40, 116–123. [Google Scholar] [PubMed]
- Mavri, A.; Guzic-Salobir, B.; Salobir-Pajnic, B.; Keber, I.; Stare, J.; Stegnar, M. Seasonal variation of some metabolic and haemostatic risk factors in subjects with and without coronary artery disease. Blood Coagul. Fibrinol. 2001, 12, 359–365. [Google Scholar] [CrossRef]
- Chang, M.C.; Zhong, B.H.; Lee, H.N.; Chuang, F.H.; Lee, M.S.; Chang, H.H.; Pan, Y.H.; Jeng, J.H. Melatonin exerts anti-fibrinolytic effects by regulating IL-1β-induced changes in uPA, uPAR, and PAI-1 expression/production in human dental pulp cells. J. Food Drug Anal. 2022, 30, 466–478. [Google Scholar] [CrossRef]
- Siddqui, N.I.; Shoeb, M.; Bose, S. Fibrinolytic Activity of Blood and its Determinants in Healthy Medical Students. J. Clin. Diagn. Res. 2015, 9, CC05-7. [Google Scholar] [CrossRef]
- Wang, J.; Lim, H.Y.; Nandurkar, H.; Ho, P. Age, sex and racial differences in fibrin formation and fibrinolysis within the healthy population. Blood Coagul. Fibrinolysis 2022, 33, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Giardina, E.G.; Chen, H.J.; Sciacca, R.R.; Rabbani, L.E. Dynamic variability of hemostatic and fibrinolytic factors in young women. J. Clin. Endocrinol. Metab. 2004, 89, 6179–6184. [Google Scholar] [CrossRef] [PubMed]
- Dörr, P.J.; Brommer, E.J.P.; Dooijewaard, G.; Vemer, H.M. Parameters of fibrinolysis in peritoneal fluid and plasma in different stages of the menstrual cycle. Thromb. Haemost. 1993, 70, 873–875. [Google Scholar] [CrossRef] [PubMed]
- Womack, C.J.; Nagelkirk, P.R.; Coughlin, A.M. Exercise-induced changes in coagulation and fibrinolysis in healthy populations and patients with cardiovascular disease. Sports Med. 2003, 33, 795–807. [Google Scholar] [CrossRef]
- El-Sayed, M.S. Effects of exercise on blood coagulation, fibrinolysis and platelet aggregation. Sports Med. 1996, 22, 282–298. [Google Scholar] [CrossRef]
- Wang, J.S. Exercise prescription and thrombogenesis. J. Biomed. Sci. 2006, 13, 753–761. [Google Scholar] [CrossRef]
- Goggs, R.; Brainard, B.; de Laforcade, A.M.; Flatland, B.; Hanel, R.; McMichael, M.; Wiinberg, B. Partnership on Rotational ViscoElastic Test Standardization (PROVETS): Evidence-based guidelines on rotational viscoelastic assays in veterinary medicine. J. Vet. Emerg. Crit. Care 2014, 24, 1–22. [Google Scholar] [CrossRef]
- Levy, J.H.; Dutton, R.P.; Hemphill, J.C., III; Shander, A.; Cooper, D.; Paidas, M.J.; Kessler, C.M.; Holcomb, J.B.; Lawson, J.H. Multidisciplinary approach to the challenge of hemostasis. Anesth. Analg. 2010, 110, 354–364. [Google Scholar] [CrossRef]
- Epstein, K.; Hart, K.A.; Giguère, S. Comparison of Fibrinolysis in peripartum and non-pregnant mares using modified thromboelastography. In Proceedings of the ACVIM 2016 Forum, Denver, CO, USA, 9–11 June 2016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epstein, K.L.; Hart, K.A.; Chakravarty, E.J.; Giguère, S. Comparison of Fibrinolysis in Peripartum and Non-Pregnant Mares Using Modified Thromboelastography. Animals 2025, 15, 1822. https://doi.org/10.3390/ani15131822
Epstein KL, Hart KA, Chakravarty EJ, Giguère S. Comparison of Fibrinolysis in Peripartum and Non-Pregnant Mares Using Modified Thromboelastography. Animals. 2025; 15(13):1822. https://doi.org/10.3390/ani15131822
Chicago/Turabian StyleEpstein, Kira L., Kelsey A. Hart, Ella J. Chakravarty, and Steeve Giguère. 2025. "Comparison of Fibrinolysis in Peripartum and Non-Pregnant Mares Using Modified Thromboelastography" Animals 15, no. 13: 1822. https://doi.org/10.3390/ani15131822
APA StyleEpstein, K. L., Hart, K. A., Chakravarty, E. J., & Giguère, S. (2025). Comparison of Fibrinolysis in Peripartum and Non-Pregnant Mares Using Modified Thromboelastography. Animals, 15(13), 1822. https://doi.org/10.3390/ani15131822