Long-Term Study of Physical, Haematological, and Biochemical Parameters in Cattle with Different Embryo Origins
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Physical Evaluation
2.3. Blood Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. Physical Findings
3.2. Haematological Findings
3.3. Biochemical Findings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALB | Albumin |
ALT | Alanine aminotransferase |
ALP | Alkaline phosphatase |
AMS | Amylase |
AST | Aspartate aminotransferase |
BMI | Body mass index |
CHr | Reticulocyte haemoglobin content |
CHCM | Cell haemoglobin concentration mean |
CHDW | Cell haemoglobin distribution width |
CHOL | Cholesterol |
CK | Creatinine kinase |
CREA | Creatinine |
GGT | Gamma-glutamyl transpeptidase |
GLOB | Globulin |
GLUC | Glucose |
HDW | Haemoglobin distribution width |
MCH | Mean corpuscular haemoglobin |
MCHC | Mean cell haemoglobin concentration |
MCV | Mean corpuscular volume |
MCVr | Mean corpuscular volume of reticulocyte |
LIP | Lipase |
MPV | Mean platelet volume |
MPC | Mean platelet component |
MPM | Mean platelet mass |
PCT | Plateletcrit |
PDW | Platelet distribution width |
PLT | Platelets |
RBC | Red blood cells |
RDW | Red blood cell distribution width |
TB | Total bilirubin |
TP | Total protein |
TRIG | Triglycerides |
WBC | White blood cells |
References
- Ferré, L.B.; Kjelland, M.E.; Strøbech, L.B.; Hyttel, P.; Mermillod, P.; Ross, P.J. Review: Recent Advances in Bovine in Vitro Embryo Production: Reproductive Biotechnology History and Methods. Animal 2020, 14, 991–1004. [Google Scholar] [CrossRef] [PubMed]
- Sanches, B.V.; Zangirolamo, A.F.; Seneda, M.M. Intensive Use of IVF by Large-Scale Dairy Programs. Anim. Reprod. 2019, 16, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Berean, D.; Bogdan, L.M.; Opris, P.; Cimpean, R. Economical Implications and the Impact of Gonadotropin-Releasing Hormone Administration at the Time of Artificial Insemination in Cows Raised in the Extensive System in North Romania. Front. Vet. Sci. 2023, 10, 1167387. [Google Scholar] [CrossRef]
- Viana, J.H.M. 2022 Statistics of Embryo Production and Transfer in Domestic Farm Animals. Embryo Technol. Newsl. 2023, 41, 22–40. [Google Scholar]
- Chen, M.; Heilbronn, L.K. The Health Outcomes of Human Offspring Conceived by Assisted Reproductive Technologies (ART). J. Dev. Orig. Health Dis. 2017, 8, 388–402. [Google Scholar] [CrossRef]
- Ceelen, M.; Van Weissenbruch, M.M.; Vermeiden, J.P.W.; Van Leeuwen, F.E.; Delemarre-Van De Waal, H.A. Cardiometabolic Differences in Children Born After in Vitro Fertilization: Follow-Up Study. J. Clin. Endocrinol. Metab. 2008, 93, 1682–1688. [Google Scholar] [CrossRef]
- Zandstra, H.; Van Montfoort, A.P.A.; Dumoulin, J.C.M.; Zimmermann, L.J.I.; Touwslager, R.N.H. Increased Blood Pressure and Impaired Endothelial Function after Accelerated Growth in IVF/ICSI Children. Hum. Reprod. Open 2020, 2020, hoz037. [Google Scholar] [CrossRef] [PubMed]
- Halliday, J.; Lewis, S.; Kennedy, J.; Burgner, D.P.; Juonala, M.; Hammarberg, K.; Amor, D.J.; Doyle, L.W.; Saffery, R.; Ranganathan, S.; et al. Health of Adults Aged 22 to 35 Years Conceived by Assisted Reproductive Technology. Fertil. Steril. 2019, 112, 130–139. [Google Scholar] [CrossRef]
- Novakovic, B.; Lewis, S.; Halliday, J.; Kennedy, J.; Burgner, D.P.; Czajko, A.; Kim, B.; Sexton-Oates, A.; Juonala, M.; Hammarberg, K.; et al. Assisted Reproductive Technologies Are Associated with Limited Epigenetic Variation at Birth That Largely Resolves by Adulthood. Nat. Commun. 2019, 10, 3922. [Google Scholar] [CrossRef]
- Rizos, D.; Clemente, M.; Bermejo-Alvarez, P.; De La Fuente, J.; Lonergan, P.; Gutiérrez-Adán, A. Consequences of in Vitro Culture Conditions on Embryo Development and Quality. Reprod. Domest. Anim. 2008, 43, 44–50. [Google Scholar] [CrossRef]
- Canovas, S.; Ivanova, E.; Hamdi, M.; Perez-Sanz, F.; Rizos, D.; Kelsey, G.; Coy, P. Culture Medium and Sex Drive Epigenetic Reprogramming in Preimplantation Bovine Embryos. Int. J. Mol. Sci. 2021, 22, 6426. [Google Scholar] [CrossRef] [PubMed]
- Tutt, D.A.R.; Silvestri, G.; Serrano-Albal, M.; Simmons, R.J.; Kwong, W.Y.; Guven-Ates, G.; Canedo-Ribeiro, C.; Labrecque, R.; Blondin, P.; Handyside, A.H.; et al. Analysis of Bovine Blastocysts Indicates Ovarian Stimulation Does Not Induce Chromosome Errors, nor Discordance between Inner-Cell Mass and Trophectoderm Lineages. Theriogenology 2021, 161, 108–119. [Google Scholar] [CrossRef]
- Hansen, P.J.; Block, J.; Loureiro, B.; Bonilla, L.; Hendricks, K.E.M. Effects of Gamete Source and Culture Conditions on the Competence of in Vitro-Produced Embryos for Post-Transfer Survival in Cattle. Reprod. Fertil. Dev. 2009, 22, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J.S.; Alcázar-Triviño, E.; Soriano-úbeda, C.; Hamdi, M.; Cánovas, S.; Rizos, D.; Coy, P. Reproductive Outcomes and Endocrine Profile in Artificially Inseminated versus Embryo Transferred Cows. Animals 2020, 10, 1359. [Google Scholar] [CrossRef]
- Chavatte-Palmer, P.; Heyman, Y.; Richard, C.; Monget, P.; LeBourhis, D.; Kann, G.; Chilliard, Y.; Vignon, X.; Renard, J.P. Clinical, Hormonal, and Hematologic Characteristics of Bovine Calves Derived from Nuclei from Somatic Cells. Biol. Reprod. 2002, 66, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Merton, J.S.; Knijn, H.M.; Flapper, H.; Dotinga, F.; Roelen, B.A.J.; Vos, P.L.A.M.; Mullaart, E. Cysteamine Supplementation during in Vitro Maturation of Slaughterhouse- and Opu-Derived Bovine Oocytes Improves Embryonic Development without Affecting Cryotolerance, Pregnancy Rate, and Calf Characteristics. Theriogenology 2013, 80, 365–371. [Google Scholar] [CrossRef]
- Sangild, P.T.; Schmidt, M.; Jacobsen, H.; Fowden, A.L.; Forhead, A.; Avery, B.; Greve, T. Blood Chemistry, Nutrient Metabolism, and Organ Weights in Fetal and Newborn Calves Derived from In Vitro-Produced Bovine Embryos. Biol. Reprod. 2000, 62, 1495–1504. [Google Scholar] [CrossRef]
- Lopes, J.S.; Soriano-Úbeda, C.; París-Oller, E.; Navarro-Serna, S.; Canha-Gouveia, A.; Sarrias-Gil, L.; Cerón, J.J.; Coy, P. Year-Long Phenotypical Study of Calves Derived From Different Assisted-Reproduction Technologies. Front. Vet. Sci. 2022, 8, 739041. [Google Scholar] [CrossRef]
- Jacobsen, H.; Holm, P.; Schmidt, M.; Avery, B.; Greve, T.; Callesen, H. No Peri- and Postnatal Effects on Calves Born after Transfer of in Vitro Produced Embryos Vitrified by the Open Pulled Straw (OPS) Method. Acta Vet. Scand. 2003, 44, 87–95. [Google Scholar] [CrossRef]
- Kannampuzha-Francis, J.; Denicol, A.C.; Loureiro, B.; Kaniyamattam, K.; Ortega, M.S.; Hansen, P.J. Exposure to Colony Stimulating Factor 2 during Preimplantation Development Increases Postnatal Growth in Cattle. Mol. Reprod. Dev. 2015, 82, 892–897. [Google Scholar] [CrossRef]
- Guyot, H.; Legroux, D.; Eppe, J.; Bureau, F.; Cannon, L.; Ramery, E. Hematologic and Serum Biochemical Characteristics of Belgian Blue Cattle. Vet. Sci. 2024, 11, 222. [Google Scholar] [CrossRef]
- Heras, S.; Lopes, J.S.; Quintero-Moreno, A.; Romero-Aguirregomezcorta, J.; Canovas, S.; Romar, R.; Coy, P. Growth Parameters and Growth-Related Hormone Profile in a Herd of Cattle up to 4 Years of Age Derived from Assisted Reproductive Technologies. Animals 2025, 15, 631. [Google Scholar] [CrossRef]
- Tanaka, T.; Akaboshi, N.; Inoue, Y.; Kamomae, H.; Kaneda, Y. Fasting-Induced Suppression of Pulsatile Luteinizing Hormone Secretion Is Related to Body Energy Status in Ovariectomized Goats. Anim. Reprod. Sci. 2002, 72, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.; Block, J.; Seidel, G.E.; Brink, Z.; McSweeney, K.; Farin, P.W.; Bonilla, L.; Hansen, P.J. Pregnancy Rates of Lactating Cows after Transfer of in Vitro Produced Embryos Using X-Sorted Sperm. Theriogenology 2013, 79, 453–461. [Google Scholar] [CrossRef]
- Siqueira, L.G.B.; Dikmen, S.; Ortega, M.S.; Hansen, P.J. Postnatal Phenotype of Dairy Cows Is Altered by in Vitro Embryo Production Using Reverse X-Sorted Semen. J. Dairy Sci. 2017, 100, 5899–5908. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, L.G.; Silva, M.V.G.; Panetto, J.C.; Viana, J.H. Consequences of Assisted Reproductive Technologies for Offspring Function in Cattle. Reprod. Fertil. Dev. 2020, 32, 82–97. [Google Scholar] [CrossRef] [PubMed]
- Weinert, D.; Waterhouse, J. Daily Activity and Body Temperature Rhythms Do Not Change Simultaneously with Age in Laboratory Mice. Physiol. Behav. 1999, 66, 605–612. [Google Scholar] [CrossRef]
- Weinert, D.; Waterhouse, J. The Circadian Rhythm of Core Temperature: Effects of Physical Activity and Aging. Physiol. Behav. 2007, 90, 246–256. [Google Scholar] [CrossRef]
- Gubin, D.G.; Gubin, G.D.; Waterhouse, J.; Weinert, D. The Circadian Body Temperature Rhythm in the Elderly: Effect of Single Daily Melatonin Dosing. Chronobiol. Int. 2006, 23, 639–658. [Google Scholar] [CrossRef]
- Gomolin, I.H.; Aung, M.M.; Wolf-Klein, G.; Auerbach, C. Older Is Colder: Temperature Range and Variation in Older People. J. Am. Geriatr. Soc. 2005, 53, 2170–2172. [Google Scholar] [CrossRef]
- Czeisler, C.A.; Dumont, M.; Duffy, J.F.; Steinberg, J.D.; Richardson, G.S.; Brown, E.N.; Sánchez, R.; Ríos, C.D.; Ronda, J.M. Association of Sleep-Wake Habits in Older People with Changes in Output of Circadian Pacemaker. Lancet 1992, 340, 933–936. [Google Scholar] [CrossRef] [PubMed]
- Refinetti, R. Metabolic Heat Production, Heat Loss and the Circadian Rhythm of Body Temperature in the Rat. Exp. Physiol. 2003, 88, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Kendall, P.E.; Webster, J.R. Season and Physiological Status Affects the Circadian Body Temperature Rhythm of Dairy Cows. Livest. Sci. 2009, 125, 155–160. [Google Scholar] [CrossRef]
- Rérat, M.; Zbinden, Y.; Saner, R.; Hammon, H.; Blum, J.W. In Vitro Embryo Production: Growth Performance, Feed Efficiency, and Hematological, Metabolic, and Endocrine Status in Calves. J. Dairy Sci. 2005, 88, 2579–2593. [Google Scholar] [CrossRef]
- Fleming, S.; Thompson, M.; Stevens, R.; Heneghan, C.; Plüddemann, A.; MacOnochie, I.; Tarassenko, L.; Mant, D. Normal Ranges of Heart Rate and Respiratory Rate in Children from Birth to 18 Years of Age: A Systematic Review of Observational Studies. Lancet 2011, 377, 1011–1018. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Jurkovich, V.; Kulcsár-Huszenicza, M.; Tözsér, J.; Hillmann, E. Heart Rate Variability as an Indicator of Chronic Stress Caused by Lameness in Dairy Cows. PLoS ONE 2015, 10, e0134792. [Google Scholar] [CrossRef]
- Kramer, J.W. Normal Hematology of Cattle, Sheep and Goats. Schalm’s Vet. Hematol. 2000, 5, 1075–1084. [Google Scholar]
- Mohri, M.; Sharifi, K.; Eidi, S. Hematology and Serum Biochemistry of Holstein Dairy Calves: Age Related Changes and Comparison with Blood Composition in Adults. Res. Vet. Sci. 2007, 83, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Derkho, M.; Mukhamedyarova, L.; Rubjanova, G.; Burkov, P.; Schnyakina, T.; Shcherbakov, P.; Shcherbakova, T.; Stepanova, K.; Kazhibayeva, G. Erythrocytes and Their Transformations in the Organism of Cows. Int. J. Vet. Sci. 2019, 8, 61–66. [Google Scholar]
- Higuchi, H.; Nagahata, H.; Hiroki, M.; Noda, H. Relationship between Age-Dependent Changes of Bovine Neutrophil Functions and Their Intracellular Ca2+ Concentrations. J. Vet. Med. Sci. 1997, 59, 271–276. [Google Scholar] [CrossRef]
- Pellegrino, R.; Paganelli, R.; Di Iorio, A.; Bandinelli, S.; Moretti, A.; Iolascon, G.; Sparvieri, E.; Tarantino, D.; Tanaka, T.; Ferrucci, L. Neutrophil, Lymphocyte Count, and Neutrophil to Lymphocyte Ratio Predict Multimorbidity and Mortality-Results from the Baltimore Longitudinal Study on Aging Follow-up Study. Geroscience 2024, 46, 3047–3059. [Google Scholar] [CrossRef] [PubMed]
- Pliszczak-Król, A.; Rząsa, A.; Gemra, M.; Król, J.; Łuczak, G.; Zyzak, A.; Zalewski, D.; Iwaszko-Simonik, A.; Graczyk, S. Age-Related Changes of Platelet and Plasma Coagulation Parameters in Young Pigs. J. Vet. Diagn. Investig. 2016, 28, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Agerholm, J.S.; Madsen, S.E.; Krogh, A.K.H.; Najafzadeh, V.; Secher, J.B.M. Health Assessment of Holstein Calves Born after in Vitro Fertilization, Biopsy-Based Genotyping at the Blastocyst Stage and Subsequent Embryo Transfer. Theriogenology 2023, 211, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Doornenbal, H.; Tong, A.K.; Murray, N.L. Reference Values of Blood Parameters in Beef Cattle of Different Ages and Stages of Lactation. Can. J. Vet. Res. 1988, 52, 99. [Google Scholar]
- Kurt, Ö.; Demirci, H.; Ozturk, K.; Kantarcioglu, M.; Uygun, A. Severe Serum Amylase Elevation, with Only Chronic Kidney Disease. Ren. Fail. 2015, 37, 915. [Google Scholar] [CrossRef]
- González-Garduño, R.; Zaragoza-Vera, C.; Chay-Canul, A.J.; Flores-Santiago, E.d.J. Haematological Values in Cattle Reared in Humid and Subhumid Tropics of Mexico. Trop. Anim. Health Prod. 2023, 55, 251. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano-Albal, M.; Romero-Aguirregomezcorta, J.; Cánovas, S.; Heras, S.; Gadea, J.; Coy, P.; Romar, R. Long-Term Study of Physical, Haematological, and Biochemical Parameters in Cattle with Different Embryo Origins. Animals 2025, 15, 1763. https://doi.org/10.3390/ani15121763
Serrano-Albal M, Romero-Aguirregomezcorta J, Cánovas S, Heras S, Gadea J, Coy P, Romar R. Long-Term Study of Physical, Haematological, and Biochemical Parameters in Cattle with Different Embryo Origins. Animals. 2025; 15(12):1763. https://doi.org/10.3390/ani15121763
Chicago/Turabian StyleSerrano-Albal, María, Jon Romero-Aguirregomezcorta, Sebastián Cánovas, Sonia Heras, Joaquín Gadea, Pilar Coy, and Raquel Romar. 2025. "Long-Term Study of Physical, Haematological, and Biochemical Parameters in Cattle with Different Embryo Origins" Animals 15, no. 12: 1763. https://doi.org/10.3390/ani15121763
APA StyleSerrano-Albal, M., Romero-Aguirregomezcorta, J., Cánovas, S., Heras, S., Gadea, J., Coy, P., & Romar, R. (2025). Long-Term Study of Physical, Haematological, and Biochemical Parameters in Cattle with Different Embryo Origins. Animals, 15(12), 1763. https://doi.org/10.3390/ani15121763