The Density of Recombination-Associated Genomic Features Does Not Generally Explain the Broad-Scale Crossover Patterns in Chicken and Guinea Fowl
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chicken and Guinea Fowl Recombination Maps
2.2. Conversion of Physical Distances Along Chromosomes into Genomic Distances
2.3. Recombination Maps Along Macrobivalents
2.4. Maps of Sequence Features at the Chromosome Level
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LD | Linkage disequilibrium |
CGI | CpG islands |
GGA | Gallus Gallus (chicken) |
NME | Numida meleagris (guinea fowl) |
References
- Charlesworth, B.; Charlesworth, D. The degeneration of Y chromosomes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2000, 355, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Reeve, J.; Ortiz-Barrientos, D.; Engelstädter, J. The evolution of recombination rates in finite populations during ecological speciation. Proc. Biol. Sci. 2016, 283, 20161243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maynard Smith, J.; Haigh, J. Hitch-hiking effect of a favorable gene. Genet. Res 1974, 23, 23–35. [Google Scholar] [CrossRef]
- Jensen-Seaman, M.I.; Furey, T.S.; Payseur, B.A.; Lu, Y.; Roskin, K.M.; Chen, C.F.; Thomas, M.A.; Haussler, D.; Jacob, H.J. Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 2004, 14, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Auton, A.; McVean, G. Recombination rate estimation in the presence of hotspots. Genome Res. 2007, 17, 1219–1227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singhal, S.; Leffler, E.M.; Sannareddy, K.; Turner, I.; Venn, O.; Hooper, D.M.; Strand, A.I.; Li, Q.; Raney, B.; Balakrishnan, C.N.; et al. Stable recombination hotspots in birds. Science 2015, 350, 928–932. [Google Scholar] [CrossRef]
- Chan, A.H.; Jenkins, P.A.; Song, Y.S. Genome-wide fine-scale recombination rate variation in Drosophila melanogaster. PLoS Genet. 2012, 8, e1003090. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peñalba, J.V.; Wolf, J.B.W. From molecules to populations: Appreciating and estimating recombination rate variation. Nat. Rev. Genet. 2020, 21, 476–492. [Google Scholar] [CrossRef]
- Stapley, J.; Feulner, P.G.D.; Johnston, S.E.; Santure, A.W.; Smadja, C.M. Variation in recombination frequency and distribution across eukaryotes: Patterns and processes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160455. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yun, Y.; Ito, M.; Sandhu, S.; Hunter, N. Cytological Monitoring of Meiotic Crossovers in Spermatocytes and Oocytes. Methods Mol. Biol. 2021, 2153, 267–286. [Google Scholar] [CrossRef] [PubMed]
- Lisachov, A.P.; Tishakova, K.V.; Tsepilov, Y.A.; Borodin, P.M. Male Meiotic Recombination in the Steppe Agama, Trapelus sanguinolentus (Agamidae, Iguania, Reptilia). Cytogenet. Genome Res. 2019, 157, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Mary, N.; Barasc, H.; Ferchaud, S.; Billon, Y.; Meslier, F.; Robelin, D.; Calgaro, A.; Loustau-Dudez, A.M.; Bonnet, N.; Yerle, M.; et al. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica). PLoS ONE 2014, 9, e99123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia-Cruz, R.; Pacheco, S.; Brieno, M.A.; Steinberg, E.R.; Mudry, M.D.; Ruiz-Herrera, A.; Garcia-Caldes, M. A comparative study of the recombination pattern in three species of Platyrrhini monkeys (primates). Chromosoma 2011, 120, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Borodin, P.M.; Karamysheva, T.V.; Belonogova, N.M.; Torgasheva, A.A.; Rubtsov, N.B.; Searle, J.B. Recombination map of the common shrew, Sorex araneus (Eulipotyphla, Mammalia). Genetics 2008, 178, 621–632. [Google Scholar] [CrossRef]
- Calderón, P.L.; Pigozzi, M.I. MLH1-focus mapping in birds shows equal recombination between sexes and diversity of crossover patterns. Chromosome Res. 2006, 14, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.K.; Lohmiller, L.D.; Tang, X.; Hammond, D.B.; Javernick, L.; Shearer, L.; Basu-Roy, S.; Martin, O.C.; Falque, M. Combined fluorescent and electron microscopic imaging unveils the specific properties of two classes of meiotic crossovers. Proc. Natl. Acad. Sci. USA 2014, 111, 13415–13420. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hultén, M.; Tease, C. Genetic Mapping: Comparison of Direct and Indirect Approaches. In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001. [Google Scholar]
- Veller, C.; Kleckner, N.; Nowak, M.A. A Rigorous Meas. Genome-Wide Genet. Shuffling That Takes Into Account Crossover Positions Mendel’s Second law. Proc. Natl. Acad. Sci. USA 2019, 116, 1659–1668. [Google Scholar] [CrossRef]
- Pigozzi, M.I. A bird’s eye view of chromosomes during meiotic prophase I. BAG J. Basic Appl. Genet. 2022, 23, 27–47. [Google Scholar] [CrossRef]
- del Priore, L.; Pigozzi, M.I. Meiotic recombination analysis in female ducks (Anas platyrhynchos). Genetica 2016, 144, 625. [Google Scholar] [CrossRef] [PubMed]
- del Priore, L.; Pigozzi, M.I. Broad-scale recombination pattern in the primitive bird Rhea americana (Ratites, Palaeognathae). PLoS ONE 2017, 12, e0187549. [Google Scholar] [CrossRef] [PubMed]
- del Priore, L.; Pigozzi, M.I. MLH1 focus mapping in the guinea fowl (Numida meleagris) give insights into the crossover landscapes in birds. PLoS ONE 2020, 15, e0240245. [Google Scholar] [CrossRef] [PubMed]
- Vignal, A.; Boitard, S.; Thébault, N.; Dayo, G.-K.; Yapi-Gnaore, V.; Youssao Abdou Karim, I.; Berthouly-Salazar, C.; Pálinkás-Bodzsár, N.; Guémené, D.; Thibaud-Nissen, F.; et al. A guinea fowl genome assembly provides new evidence on evolution following domestication and selection in galliformes. Mol. Ecol. Resour. 2019, 19, 997–1014. [Google Scholar] [CrossRef] [PubMed]
- Haenel, Q.; Laurentino, T.G.; Roesti, M.; Berner, D. Meta-analysis of chromosome-scale crossover rate variation in eukaryotes and its significance to evolutionary genomics. Mol. Ecol. 2018, 27, 2477–2497. [Google Scholar] [CrossRef] [PubMed]
- Mezard, C.; Jahns, M.T.; Grelon, M. Where to cross? New insights into the location of meiotic crossovers. Trends Genet. 2015, 31, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Dumont, B.L.; White, M.A.; Steffy, B.; Wiltshire, T.; Payseur, B.A. Extensive recombination rate variation in the house mouse species complex inferred from genetic linkage maps. Genome Res. 2011, 21, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Elferink, M.G.; van As, P.; Veenendaal, T.; Crooijmans, R.P.; Groenen, M.A. Regional differences in recombination hotspots between two chicken populations. BMC Genet. 2010, 11, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Groenen, M.A.; Wahlberg, P.; Foglio, M.; Cheng, H.H.; Megens, H.J.; Crooijmans, R.P.; Besnier, F.; Lathrop, M.; Muir, W.M.; Wong, G.K.; et al. A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res. 2009, 19, 510–519. [Google Scholar] [CrossRef]
- Meunier, J.; Duret, L. Recombination drives the evolution of GC-content in the human genome. Mol. Biol. Evol. 2004, 21, 984–990. [Google Scholar] [CrossRef]
- Shibusawa, M.; Nishida-Umehara, C.; Masabanda, J.; Griffin, D.K.; Isobe, T.; Matsuda, Y. Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cytogenet. Res. 2002, 98, 225–230. [Google Scholar] [CrossRef]
- del Priore, L.; Pigozzi, M.I. DNA Organization along Pachytene Chromosome Axes and Its Relationship with Crossover Frequencies. Int. J. Mol. Sci. 2021, 22, 2414. [Google Scholar] [CrossRef]
- Pigozzi, M.I. Relationship between physical and genetic distances along the zebra finch Z chromosome. Chromosome Res. 2008, 16, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Kleckner, N. Chiasma formation: Chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma 2006, 115, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Alfieri, J.M.; Anthony, N.; Arensburger, P.; Athrey, G.N.; Balacco, J.; Balic, A.; Bardou, P.; Barela, P.; Bigot, Y.; et al. Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenet. Genome Res. 2022, 162, 405–528. [Google Scholar] [CrossRef] [PubMed]
- Warren, W.C.; Hillier, L.W.; Tomlinson, C.; Minx, P.; Kremitzki, M.; Graves, T.; Markovic, C.; Bouk, N.; Pruitt, K.D.; Thibaud-Nissen, F.; et al. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3 2017, 7, 109–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gardiner-Garden, M.; Frommer, M. CpG islands in vertebrate genomes. J. Mol. Biol. 1987, 196, 261–282. [Google Scholar] [CrossRef] [PubMed]
- Rousselle, M.; Laverré, A.; Figuet, E.; Nabholz, B.; Galtier, N. Influence of Recombination and GC-biased Gene Conversion on the Adaptive and Nonadaptive Substitution Rate in Mammals versus Birds. Mol. Biol. Evol. 2019, 36, 458–471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marsolier-Kergoat, M.C.; Yeramian, E. GC content and recombination: Reassessing the causal effects for the Saccharomyces cerevisiae genome. Genetics 2009, 183, 31–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bascón-Cardozo, K.; Bours, A.; Manthey, G.; Durieux, G.; Dutheil, J.Y.; Pruisscher, P.; Odenthal-Hesse, L.; Liedvogel, M. Fine-Scale Map Reveals Highly Variable Recombination Rates Associated with Genomic Features in the Eurasian Blackcap. Genome Biol. Evol. 2024, 16, evad233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Illingworth, R.S.; Bird, A.P. CpG islands—‘A rough guide’. FEBS Lett. 2009, 583, 1713–1720. [Google Scholar] [CrossRef]
- Pigozzi, M.I. The Chromosomes of Birds during Meiosis. Cytogenet. Genome Res. 2016, 150, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Lisachov, A.P.; Malinovskaya, L.P.; Druzyaka, A.V.; Borodin, P.M.; Torgasheva, A.A. Synapsis and recombination of autosomes and sex chromosomes in two terns (Sternidae, Charadriiformes, Aves). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J. Genet. Breed. 2017, 21, 259–268. [Google Scholar] [CrossRef]
- Kawakami, T.; Mugal, C.F.; Suh, A.; Nater, A.; Burri, R.; Smeds, L.; Ellegren, H. Whole-genome patterns of linkage disequilibrium across flycatcher populations clarify the causes and consequences of fine-scale recombination rate variation in birds. Mol. Ecol. 2017, 26, 4158–4172. [Google Scholar] [CrossRef] [PubMed]
- Loidl, J. Conservation and Variability of Meiosis Across the Eukaryotes. Annu. Rev. Genet. 2016, 50, 293–316. [Google Scholar] [CrossRef]
- Zickler, D.; Kleckner, N. Meiosis: Dances Between Homologs. Annu. Rev. Genet. 2023, 57, 1–63. [Google Scholar] [CrossRef] [PubMed]
- Pratto, F.; Brick, K.; Cheng, G.; Lam, K.-W.G.; Cloutier, J.M.; Dahiya, D.; Wellard, S.R.; Jordan, P.W.; Camerini-Otero, R.D. Meiotic recombination mirrors patterns of germline replication in mice and humans. Cell 2021, 184, 4251–4267.e20. [Google Scholar] [CrossRef]
- Solari, A.J. Ultrastructure of the synaptic autosomes and the ZW bivalent in chicken oocytes. Chromosoma 1977, 64, 155–165. [Google Scholar] [CrossRef]
- del Priore, L.; Pigozzi, M.I. Chromosomal axis formation and meiotic progression in chicken oocytes: A quantitative analysis. Cytogenet. Genome Res. 2012, 137, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Tan, T.; Fan, C.; Nie, H.; Wang, Y.; Yang, X.; Zhai, B.; Wang, S.; Zhang, L. Meiotic chromosome organization and crossover patterns. Biol. Reprod. 2022, 107, 275–288. [Google Scholar] [CrossRef]
- Wang, S.; Zickler, D.; Kleckner, N.; Zhang, L. Meiotic crossover patterns: Obligatory crossover, interference and homeostasis in a single process. Cell Cycle 2015, 14, 305–314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, L.F.; Pigozzi, M.I. The Density of Recombination-Associated Genomic Features Does Not Generally Explain the Broad-Scale Crossover Patterns in Chicken and Guinea Fowl. Animals 2025, 15, 1759. https://doi.org/10.3390/ani15121759
Rossi LF, Pigozzi MI. The Density of Recombination-Associated Genomic Features Does Not Generally Explain the Broad-Scale Crossover Patterns in Chicken and Guinea Fowl. Animals. 2025; 15(12):1759. https://doi.org/10.3390/ani15121759
Chicago/Turabian StyleRossi, Luis F., and María Inés Pigozzi. 2025. "The Density of Recombination-Associated Genomic Features Does Not Generally Explain the Broad-Scale Crossover Patterns in Chicken and Guinea Fowl" Animals 15, no. 12: 1759. https://doi.org/10.3390/ani15121759
APA StyleRossi, L. F., & Pigozzi, M. I. (2025). The Density of Recombination-Associated Genomic Features Does Not Generally Explain the Broad-Scale Crossover Patterns in Chicken and Guinea Fowl. Animals, 15(12), 1759. https://doi.org/10.3390/ani15121759