An Evaluation of the Arginine Requirements of Broiler Chickens and the Potential Arginine and Energy-Saving Effects of Guanidinoacetic Acid †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.1.1. Study Design
2.1.2. Test Diets
2.2. Evaluation Parameters
2.3. Statistical Analysis
3. Results
3.1. Experiment 1: Optimizing Response of Broilers with Gradual Increase in Arg and GAA
3.2. Experiment 2: Energy-Sparing Effect of GAA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawrence, J.D.; Mintert, J.; Anderson, J.D.; Anderson, D.P. Feed Grains and Livestock: Impacts on Meat Supplies and Prices. Choices 2008, 23, 11–15. [Google Scholar]
- Fouad, A.M.; El-Senousey, H.K.; Yang, X.J.; Yao, J.H. Dietary L-arginine Supplementation Reduces Abdominal Fat. Content by Modulating Lipid Metabolism in Broiler Chickens. Animal 2013, 7, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Westreicher-Kristen, E.; Davin, R.; Agostini, P.; Saremi, B. Effect of different arginine-to-lysine ratios and guanidinoacetic acid supplementation on the growth performance, carcass characteristics and breast myopathies in broiler chickens. Livest. Sci. 2024, 291, 105624. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Renal arginine metabolism. J. Nutr. 2004, 134, 2791s–2795s. [Google Scholar] [CrossRef]
- DeGroot, A.A.; Braun, U.; Dilger, R.N. Efficacy of guanidinoacetic acid on growth and muscle energy metabolism in broiler chicks receiving arginine-deficient diets. Poult. Sci. 2018, 97, 890–900. [Google Scholar] [CrossRef] [PubMed]
- Edison, E.E.; Brosnan, M.E.; Meyer, C.; Brosnan, J.T. Creatine synthesis: Production of guanidinoacetate by the rat and human kidney in vivo. Am. J. Physiol. Renal Physiol. 2007, 293, F1799–F1804. [Google Scholar] [CrossRef] [PubMed]
- McGuire, D.M.; Gross, M.D.; Van Pilsum, J.F.; Towle, H.C. Repression of rat kidney L-arginine:glycine amidinotransferase synthesis by creatine at a pretranslational level. J. Biol. Chem. 1984, 259, 12034–12038. [Google Scholar] [CrossRef]
- Van Pilsum, J.F. Evidence for a dual role of creatine in the regulation of kidney transamidinase activities in the rat. J. Nutr. 1971, 101, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Dao, H.T.; Swick, R.A. New insights into arginine and arginine-sparing effects of guanidinoacetic acid and citrulline in broiler diets. World’s Poult. Sci. J. 2021, 77, 753–773. [Google Scholar]
- Wu, G. Functional Amino Acids in Growth, Reproduction, and Health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Portocarero, N.; Braun, U. The physiological role of guanidinoacetic acid and its relationship with arginine in broiler chickens. Poult. Sci. 2021, 100, 101203. [Google Scholar] [CrossRef]
- Barbul, A. Arginine: Biochemistry, Physiology, and Therapeutic Implications. J. Parent. Enter. Nutr. 1986, 10, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Kwak, H.; Austic, R.E.; Dietert, R.R. Influence of dietary arginine concentration on lymphoid organ growth in chickens. Poult. Sci. 1999, 78, 1536–1541. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Austic, R.E.; Naqi, S.A.; Golemboski, K.A.; Dietert, R.R. Dietary arginine intake alters avian leukocyte population distribution during infectious bronchitis challenge. Poult. Sci. 2002, 81, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Abdukalykova, S.T.; Zhao, X.; Ruiz-Feria, C.A. Arginine and vitamin E modulate the subpopulations of T-lymphocytes in broiler chickens. Poult. Sci. 2008, 87, 50–55. [Google Scholar] [CrossRef]
- Corzo, A.; Lee, J.; Vargas, J.I.; Silva, M.; Pacheco, W.J. Determination of the optimal digestible arginine to lysine ratio in Ross 708 male broilers. J. Appl. Poult. Res. 2021, 30, 100136. [Google Scholar] [CrossRef]
- Corzo, A.; Moran, E.T.; Hoehler, D. Arginine need of heavy broiler males: Applying the ideal protein concept. Poult. Sci. 2003, 82, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Mack, S.; Bercovici, D.; de Groote, G.; Leclercq, B.; Lippens, M.; Pack, M.; Schutte, J.B.; van Cauwenberghe, S. Ideal amino acid profile and dietary lysine specification for broiler chickens of 20 to 40 days of age. Br. Poult. Sci. 1999, 40, 257–265. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Safety and efficacy of guanidinoacetic acid for chickens for fattening, breeder hens and roosters, and pigs. EFSA J. 2016, 14, 4394. [Google Scholar]
- Tossenberger, J.; Rademacher, M.; N’emeth, K.; Halas, V.; Lemme, A. Digestibility and metabolism of dietary guanidino acetic acid fed to broilers. Poult. Sci. 2016, 95, 2058–2067. [Google Scholar] [CrossRef]
- Kazak, L.; Cohen, P. Creatine metabolism: Energy homeostasis, immunity and cancer biology. Nat. Rev. Endocrinol. 2020, 16, 421–436. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Keenan, M.M.; Wu, J.; Lin, C.A.; Dubois, L.; Thompson, J.W.; Freedland, S.J.; Murphy, S.K.; Chi, J.T. Comprehensive profiling of amino acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis. PLoS Genet. 2015, 11, e1005158. [Google Scholar] [CrossRef]
- Michiels, J.; Maertens, L.; Buyse, J.; Lemme, A.; Rademacher, M.; Dierick, N.A.; De Smet, S. Supplementation of guanidinoacetic acid to broiler diets: Effects on performance, carcass characteristics, meat quality, and energy metabolism. Poult. Sci. 2012, 91, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Khajali, F.; Lemme, A.; Rademacher-Heilshorn, M. Guanidinoacetic acid as a feed supplement for poultry. J. World’s Poult. Sci. 2020, 76, 270–291. [Google Scholar] [CrossRef]
- Mousavi, S.; Afsar, A.; Lotfollahian, H. Effects of guanidinoacetic acid supplementation to broiler diets with varying energy contents. J. Appl. Poult. Res. 2013, 22, 47–54. [Google Scholar] [CrossRef]
- Heger, J.; Zelenka, J.; Machander, V.; de la Cruz, C.; Lešták, M.; Hampel, D. Effects of Guanidinoacetic Acid Supplementation to Broiler Diets With Varying Energy Content. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 62, 477–485. [Google Scholar] [CrossRef]
- Federation of Animal Sciences Societies. Guide for the Care and Use of Agricultural Animals in Research and Teaching, 3rd ed.; Federation of Animal Sciences Societies: Champaign, IL, USA, 2010; ISBN 978-1-884706-11-0. [Google Scholar]
- Aviagen. Ross 308 Broiler Nutrient Specifications Handbook; In-house Publication: Global; Aviagen Ltd.: Newbridge, UK, 2019. [Google Scholar]
- Fernandes, J.I.M.; Murakami, A.E. Arginine metabolism in uricotelic species. Acta Sci. Anim. Sci. 2010, 32, 357–366. [Google Scholar] [CrossRef]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, A.; Abreu, M.L.T.; Rodrigues, P.B.; Oliveira, R.T.; et al. Brazilian tables for poultry and swine. In Composition of Feedstuffs and Nutritional Requirements, 4th ed.; UFV: Viçosa, Brazil, 2017. [Google Scholar]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar] [CrossRef]
- Aviagen. Ross 308 Broiler Nutrient Specifications Handbook; In-house Publication: Global; Aviagen Ltd.: Newbridge, UK, 2022. [Google Scholar]
- Kidd, M.; Peebles, E.D.; Whitmarsh, S.K.; Yeatman, J.B.; Wideman, R.F. Growth and Immunity of Broiler Chicks as Affected by Dietary Arginine. Poult. Sci. 2001, 80, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Labadan, M.C.; Hsu, K.N.; Austic, R.E. Lysine and Arginine Requirements of Broiler Chickens at Two- to Three-Week Intervals to Eight Weeks of Age. Poult. Sci. 2001, 80, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Murakami, A.E.; Fernandes, J.I.M.; Hernandes, L.; Santos, T.C. Effects of starter diet supplementation with arginine on broiler production performance and on small intestine morphometry. Pesqui. Veterinária Bras. 2012, 32, 259–266. [Google Scholar] [CrossRef]
- Khajali, F.; Basoo, H.; Faraji, M. Estimation of Arginine Requirements for Male Broilers Grown at High Altitude from One to Twenty-one Days of Age. J. Agric. Sci. Technol. 2013, 15, 911–917. [Google Scholar]
- Xu, Y.Q.; Guo, Y.W.; Shi, B.L.; Yan, S.M.; Guo, X.Y. Dietary arginine supplementation enhances the growth performance and immune status of broiler chickens. Livest. Sci. 2018, 209, 8–13. [Google Scholar] [CrossRef]
- Zampiga, M.; Soglia, F.; Petracci, M.; Meluzzi, A.; Sirri, F. Effect of different arginine-to-lysine ratios in broiler chicken diets on the occurrence of breast myopathies and meat quality attributes. Poult. Sci. 2019, 98, 2691–2697. [Google Scholar] [CrossRef] [PubMed]
- Jahanian, R.; Khalifeh-Gholi, M. Marginal deficiencies of dietary arginine and methionine could suppress growth performance and immunological responses in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, e11–e12. [Google Scholar] [CrossRef]
- Nogueira, B.R.; Sakomura, N.; Leme, B.; Reis, M.; Fernandes, J.; Viana, G. Lysine and arginine requirements of male and female broiler in the starter, grower, and finisher phase. Anim. Feed. Sci. Technol. 2022, 283, 115174. [Google Scholar] [CrossRef]
- Ospina-Rojas, I.C.; Rodrigueiro, R.J.B.; Otani, L. Optimal Dietary Arginine Levels in Modern Broiler Chickens. 2019. Available online: https://en.engormix.com/poultry-industry/articles/optimal-dietary-arginine-levels-t43741 (accessed on 26 February 2021).
- Jiao, P.; Guo, Y.; Yang, X.; Long, F. Effects of dietary arginine and methionine levels on broiler carcass traits and meat quality. J. Anim. Vet. Adv. 2010, 9, 1546–1551. [Google Scholar] [CrossRef]
- Tayade, C.; Koti, M.; Mishra, S.C. L-Arginine stimulates intestinal intraepithelial lymphocyte functions and immune response in chickens orally immunized with live intermediate plus strain of infectious bursal disease vaccine. Vaccine 2006, 24, 5473–5480. [Google Scholar] [CrossRef]
- Jahanian, R. Immunological responses as affected by dietary protein and arginine concentrations in starting broiler chicks. Poult. Sci. 2009, 88, 1818–1824. [Google Scholar] [CrossRef]
- Dilger, R.N.; Bryant-Angeoni, K.; Payne, R.L.; Lemme, A.; Parsons, C.M. Dietary guanidino acetic acid is an efficacious replacement for arginine for young chicks. Poult. Sci. 2013, 92, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Ringel, J.; Rademacher, M.; Elwert, C. Arginine sparing effect of guanidinoacetic acid in broilers. In Proceedings of the 19th European Symposium on Poultry Nutrition, Potsdam, Germany, 26–29 August 2013. [Google Scholar]
- Scharch, C.; Rademacher, M.; Braun, U.; Thomson, J. The effect of guanidinoacetic acid supplementation on the chemical composition of breast meat in broilers. Poult. Sci. 2019, 98, 158. [Google Scholar]
- Abudabos, A.M.; Saleh, F.; Lemme, A.; Zakaria, H.A.H. The relationship between guanidino acetic acid and metabolisable energy level of diets on performance of broiler chickens. Ital. J. Anim. Sci. 2014, 13, 548–556. [Google Scholar] [CrossRef]
- Dozier, W.A.; Gehring, C.K. Growth performance of Hubbard × Cobb 500 and Ross × Ross 708 male broilers fed diets varying in apparent metabolizable energy from 14 to 28 days of age. J. Appl. Poult. Res. 2014, 23, 494–500. [Google Scholar] [CrossRef]
- Ale Saheb Fosoul, S.; Azarfar, A.; Gheisari, A.; Khosravinia, H. Energy utilisation of broiler chickens in response to guanidinoacetic acid supplementation in diets with various energy contents. Br. J. Nutr. 2018, 120, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, N.; Koca, S.; Golzar Adabi, S.; Kahraman, N.; Bhaya, M.N.; Bozkurt, M.F. Effects of dietary energy level and guanidinoacetic acid supplementation on growth performance, carcass quality and intestinal architecture of broilers. Czech J. Anim. Sci. 2021, 66, 281–291. [Google Scholar] [CrossRef]
- Melare, M.C.; Sakomura, N.K.; Reis, M.D.P.; Peruzzi, N.J.; Gonçalves, C.A. Factorial models to estimate isoleucine requirements for broilers. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority [EFSA]. Safety and efficiency of guanidinoacetic acid as feed additive for chickens for fattening. EFSA J. 2009, 7, 988. [Google Scholar]
Treatment Group | Diet | Replicates | Birds/Replicate | Starter Dose% | Starter Total% | Grower Dose% | Grower Total% | Finisher Dose% | Finisher Total% |
---|---|---|---|---|---|---|---|---|---|
T01 | A basal diet deficient in Arg (BD) | 12 | 15 | 0 | 1.02 | 0 | 0.88 | 0 | 0.75 |
T02 | 0.06% SID Arg (below ROSS 308) | 9 | 15 | 0.06 | 1.08 | 0.06 | 0.94 | 0.06 | 0.81 |
T03 | 0.12% SID Arg (below ROSS 308) | 9 | 15 | 0.12 | 1.14 | 0.12 | 1 | 0.12 | 0.87 |
T04 | 0.18% SID Arg (below ROSS 308) | 9 | 15 | 0.18 | 1.20 | 0.18 | 1.06 | 0.18 | 0.93 |
T05 | 0.30% SID Arg (around ROSS 308) | 9 | 15 | 0.30 | 1.32 | 0.30 | 1.18 | 0.30 | 1.05 |
T06 | 0.45% SID Arg (above ROSS 308) | 9 | 15 | 0.45 | 1.47 | 0.45 | 1.25 | 0.45 | 1.20 |
T07 | 0.61% SID Arg (above ROSS 308) | 9 | 15 | 0.61 | 1.63 | 0.61 | 1.49 | 0.61 | 1.36 |
T08 | 0.06% GAA | 9 | 15 | 0.06 | 0.06 | 0.06 | |||
T09 | 0.12% GAA | 9 | 15 | 0.12 | 0.12 | 0.12 | |||
T10 | 0.18% GAA | 9 | 15 | 0.18 | 0.18 | 0.18 | |||
T11 | 0.30% GAA | 9 | 15 | 0.30 | 0.30 | 0.30 | |||
T12 | 0.45% GAA | 9 | 15 | 0.45 | 0.45 | 0.45 | |||
T13 | 0.61% GAA | 9 | 15 | 0.61 | 0.61 | 0.61 | |||
T14 | Control diet (normal energy and AAs) | 16 | 15 | 2960 kcal | 1.37 | 3050 kcal | 1.23 | 3150 kcal | 1.10 |
T15 | T14 minus 50 kcal energy | 16 | 15 | 2910 kcal | 1.37 | 3000 kcal | 1.23 | 3100 kcal | 1.10 |
T16 | T14 minus 100 kcal energy | 16 | 15 | 2860 kcal | 1.37 | 2950 kcal | 1.23 | 3050 kcal | 1.10 |
T17 | T15 + 600 g GAA | 16 | 15 | ||||||
T18 | T16 + 1200 g GAA | 16 | 15 |
Diet | L-Arg Inclusion Rate, % | ||||||
0 | 0.06 | 0.12 | 0.18 | 0.30 | 0.45 | 0.61 | |
Starter | 1.02 | 1.08 | 1.14 | 1.20 | 1.32 | 1.47 | 1.63 |
Grower | 0.88 | 0.94 | 1.00 | 1.06 | 1.18 | 1.25 | 1.49 |
Finisher | 0.75 | 0.81 | 0.87 | 0.93 | 1.05 | 1.20 | 1.36 |
GAA Inclusion Rate, % | |||||||
0.06 | 0.12 | 0.18 | 0.30 | 0.45 | 0.61 | ||
Starter | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | |
Grower | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | |
Finisher | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
Diet | AMEn, kcal/kg | % CP | % Arg | ||
---|---|---|---|---|---|
Control | −50 AMEn | −100 AMEn | |||
Starter | 2960 | 2910 | 2860 | 22.80 | 1.37 |
Grower | 3050 | 3000 | 2950 | 21.18 | 1.23 |
Finisher | 3150 | 3100 | 3050 | 18.60 | 1.10 |
Ingredient Name | Starter (0–10 Days) | Grower (10–24 Days) | Finisher (24–35 Days) |
---|---|---|---|
Corn | 50.00 | 55.00 | 69.87 |
Soybean Meal | 20.36 | 14.38 | 8.86 |
Rape Seed Meal | 8.00 | 10.00 | 5.18 |
Corn Starch | 6.00 | ||
Corn Gluten Meal | 5.55 | 5.10 | 10.00 |
Corn Gluten Feed | 2.78 | 6.76 | |
Soy Oil | 1.98 | 4.27 | 1.34 |
DCP | 1.60 | 0.95 | 1.14 |
Limestone | 1.06 | 0.92 | 0.96 |
L-Lysine HCL (99%, CJ BIO) | 0.61 | 0.59 | 0.62 |
Broiler Premix | 0.50 | 0.50 | 0.50 |
Salt | 0.37 | 0.37 | 0.39 |
L-Methionine (99%, CJ BIO) | 0.37 | 0.32 | 0.24 |
L-Threonine (80%, CJ BIO) | 0.29 | 0.26 | 0.21 |
L-Glycine (99%, CJ BIO) | 0.27 | 0.33 | 0.51 |
L-Isoleucine (90%, CJ BIO) | 0.15 | 0.16 | 0.11 |
L-Valine (96.5%, CJ BIO) | 0.11 | 0.08 | 0.06 |
L-Tryptophan (98%, CJ BIO) | 0.02 | 0.02 | 0.04 |
Calculated Nutrient Composition % | |||
AMEn Broiler (kcal/kg) | 2960 | 3050 | 3150 |
Crude Protein | 21.43 | 20.12 | 18.11 |
Crude Fat | 5.49 | 8.12 | 5.56 |
Crude Fiber | 3.32 | 3.70 | 2.89 |
Ash | 6.15 | 5.41 | 4.95 |
Calcium | 0.90 | 0.70 | 0.70 |
Available Phosphorous | 0.42 | 0.32 | 0.32 |
SID Lysine | 1.28 | 1.15 | 1.03 |
SID Methionine | 0.65 | 0.59 | 0.52 |
SID Met+Cys | 0.95 | 0.87 | 0.80 |
SID Arginine | 1.02 | 0.88 | 0.75 |
SID Threonine | 0.86 | 0.77 | 0.69 |
SID Leucine | 1.63 | 1.48 | 1.70 |
SID Isoleucine | 0.86 | 0.78 | 0.71 |
SID Valine | 0.96 | 0.87 | 0.78 |
SID Tryptophan | 0.20 | 0.18 | 0.16 |
SID Phenylalanine | 0.86 | 0.78 | 0.75 |
SID Histidine | 0.47 | 0.44 | 0.39 |
Choline | 1439 | 1492 | 1030 |
Starch | 34.63 | 38.07 | 46.94 |
Ingredient Name | Starter (0–10 Days) | Grower (10–24 Days) | Finisher (24–35 Days) | ||||||
---|---|---|---|---|---|---|---|---|---|
PC | NC1 | NC2 | PC | NC1 | NC2 | PC | NC1 | NC2 | |
Corn | 39.70 | 41.00 | 42.30 | 38.40 | 39.70 | 40.99 | 40.21 | 41.51 | 42.81 |
Soybean Meal | 33.24 | 33.00 | 32.77 | 29.16 | 28.93 | 28.69 | 21.70 | 21.46 | 21.23 |
Wheat | 20.00 | 20.00 | 20.00 | 25.00 | 25.00 | 25.00 | 30.00 | 30.00 | 30.00 |
Soy oil | 2.32 | 1.25 | 0.18 | 3.36 | 2.29 | 1.22 | 3.99 | 2.91 | 1.84 |
DCP | 1.63 | 1.63 | 1.62 | 1.08 | 1.08 | 1.07 | 1.15 | 1.14 | 1.14 |
Limestone | 1.08 | 1.08 | 1.08 | 0.91 | 0.92 | 0.92 | 0.92 | 0.93 | 0.93 |
Broiler Oremix | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Salt | 0.38 | 0.38 | 0.38 | 0.39 | 0.39 | 0.39 | 0.39 | 0.40 | 0.40 |
L-Met (99%, CJ BIO) | 0.37 | 0.37 | 0.37 | 0.32 | 0.32 | 0.31 | 0.30 | 0.30 | 0.30 |
L-Lys HCL (99%, CJ BIO) | 0.37 | 0.37 | 0.38 | 0.32 | 0.32 | 0.33 | 0.38 | 0.39 | 0.39 |
L-Thr (80%, CJ BIO) | 0.23 | 0.23 | 0.23 | 0.18 | 0.18 | 0.18 | 0.20 | 0.20 | 0.20 |
L-Arg (98.5%, CJ BIO) | 0.12 | 0.13 | 0.13 | 0.09 | 0.09 | 0.09 | 0.16 | 0.16 | 0.16 |
L-Val (96.5%, CJ BIO) | 0.04 | 0.04 | 0.04 | 0.01 | 0.01 | 0.01 | 0.04 | 0.04 | 0.04 |
L-Ile (90%, CJ BIO) | 0.03 | 0.03 | 0.03 | 0.01 | 0.01 | 0.01 | 0.06 | 0.06 | 0.07 |
L-Gly (99%, CJ BIO) | 0.00 | 0.00 | 0.00 | 0.28 | 0.28 | 0.28 | 0.00 | 0.00 | 0.00 |
Nutrient composition % | |||||||||
AMEn Broiler (kcal/kg) | 2960 | 2910 | 2860 | 3050 | 3000 | 2950 | 3150 | 3100 | 3050 |
Crude Protein | 22.80 | 22.80 | 22.80 | 21.18 | 21.18 | 21.18 | 18.59 | 18.59 | 18.59 |
Crude Fat | 5.27 | 4.25 | 3.24 | 6.29 | 5.28 | 4.26 | 6.97 | 5.96 | 4.94 |
Crude Fiber | 2.67 | 2.69 | 2.71 | 2.62 | 2.64 | 2.67 | 2.53 | 2.55 | 2.57 |
Ash | 6.40 | 6.40 | 6.39 | 5.53 | 5.53 | 5.52 | 5.25 | 5.25 | 5.24 |
Calcium | 0.90 | 0.90 | 0.90 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
Available Phosphorous | 0.42 | 0.42 | 0.42 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 |
SID Lysine | 1.28 | 1.28 | 1.28 | 1.15 | 1.15 | 1.15 | 1.03 | 1.03 | 1.03 |
SID Methionine | 0.64 | 0.63 | 0.63 | 0.57 | 0.57 | 0.57 | 0.53 | 0.53 | 0.52 |
SID Met+Cys | 0.95 | 0.95 | 0.95 | 0.87 | 0.87 | 0.87 | 0.80 | 0.80 | 0.80 |
SID Arginine | 1.37 | 1.37 | 1.37 | 1.23 | 1.23 | 1.23 | 1.10 | 1.10 | 1.10 |
SID Threonine | 0.86 | 0.86 | 0.86 | 0.77 | 0.77 | 0.77 | 0.69 | 0.69 | 0.69 |
SID Leucine | 1.54 | 1.54 | 1.54 | 1.43 | 1.44 | 1.44 | 1.25 | 1.25 | 1.25 |
SID Isoleucine | 0.86 | 0.86 | 0.86 | 0.78 | 0.78 | 0.78 | 0.71 | 0.71 | 0.71 |
SID Valine | 0.96 | 0.96 | 0.96 | 0.87 | 0.87 | 0.87 | 0.78 | 0.78 | 0.78 |
SID Tryptophan | 0.23 | 0.23 | 0.23 | 0.21 | 0.21 | 0.21 | 0.18 | 0.18 | 0.17 |
SID Phenylalanine | 0.93 | 0.93 | 0.93 | 0.86 | 0.86 | 0.86 | 0.73 | 0.73 | 0.73 |
SID Histidine | 0.50 | 0.50 | 0.50 | 0.47 | 0.47 | 0.47 | 0.40 | 0.40 | 0.40 |
Choline | 1313 | 1314 | 1315 | 1233 | 1234 | 1235 | 1077 | 1079 | 1080 |
Starch | 39.78 | 40.60 | 41.42 | 41.84 | 42.65 | 43.47 | 45.70 | 46.52 | 47.34 |
Parameter | % Supplemental Arginine | |||||||
0 | 0.06 | 0.12 | 0.18 | 0.30 | 0.45 | 0.61 | ||
Day 0–10 | SE | |||||||
Initial wt., g | 41.6 b | 41.8 ab | 41.5 b | 41.6 ab | 41.8 ab | 42.2 a | 41.7 ab | 0.2 |
Final wt., g | 265.0 d | 273.1 cd | 282.6 bc | 287.0 ab | 287.0 ab | 296.0 da | 291.3 ab | 28 |
DWG, g | 22.3 c | 23.0 c | 24.1 b | 24.5 ab | 24.5 ab | 25.3 a | 25.0 ab | 0.4 |
ADFI, g | 25.9 | 25.6 | 26.3 | 26.6 | 26.0 | 26.2 | 25.9 | 0.4 |
FCR | 1.16 a | 1.11 b | 1.09 bc | 1.08 cd | 1.06 de | 1.04 e | 1.04 e | 0.01 |
Day 10–24 | ||||||||
BW, g | 1042 d | 1149 c | 1225 b | 1273 ab | 1305 a | 1320 a | 1293 a | 3.7 |
DWG, g | 54.3 d | 62.6 c | 67.0 b | 70.4 a | 72.3 a | 72.6 a | 71.6 a | 1.1 |
ADFI, g | 88.3 b | 89.0 b | 93.1 ab | 94.4 a | 95.5 a | 94.4 a | 92.3 ab | 1.8 |
FCR | 1.63 a | 1.43 b | 1.39 bc | 1.34 cd | 1.32 d | 1.30 d | 1.29 d | 0.02 |
Day 24–35 | ||||||||
BW, g | 1644 d | 1949 c | 2143 b | 2187 ab | 2237 ab | 2236 a | 2184 a | 17 |
DWG, g | 51.5 c | 71.6 b | 82.9 a | 83.0 a | 84.8 a | 83.2 a | 80.0 a | 2.1 |
ADFI, g | 136.2 d | 158.4 c | 171.9 a | 170.4 ab | 170.9 ab | 169.1 ab | 164.4 bc | 2.5 |
FCR | 2.72 a | 2.22 b | 2.08 b | 2.05 b | 2.02 b | 2.04 b | 2.06 b | 0.07 |
Day 0–35 | ||||||||
DWG, g | 44.2 d | 54.1 c | 59.6 b | 61.1 ab | 62.5 a | 62.2 a | 60.7 ab | 0.9 |
ADFI, g | 84.8 c | 92.6 b | 98.4 a | 98.6 a | 99.2 a | 97.8 a | 95.5 ab | 1.4 |
FCR | 1.93 a | 1.71 b | 1.65 c | 1.61 cd | 1.59 d | 1.57 d | 1.57 d | 0.02 |
Mortality, % | 7.2 a | 1.5 b | 1.5 b | 2.2 ab | 0.7 b | 3.7 ab | 3.3 ab | 0.11 |
Carcass Yield | ||||||||
LSW, g | 1652 d | 1970 c | 2138 b | 2167 b | 2235 a | 2241 a | 2199 ab | 22 |
CW, g | 1210 e | 1468 d | 1593 c | 1641 bc | 1704 a | 1690 ab | 1675 ab | 19 |
BW, g | 264 e | 332 d | 385 c | 412 b | 436 a | 438 a | 423 ab | 8 |
LW, g | 476 d | 568 c | 613 b | 616 ab | 628 ab | 637 a | 632 ab | 8 |
SY, % | 73.1 c | 74.5 b | 74.5 b | 75.8 a | 76.3 a | 75.5 ab | 76.2 a | 0.5 |
BYL, % | 15.9 d | 16.8 c | 18.0 b | 19.0 a | 19.5 a | 19.6 a | 19.2 a | 0.3 |
BYC, % | 21.8 c | 22.7 c | 24.2 b | 25.0 ab | 25.5 a | 25.9 a | 25.3 ab | 0.4 |
LYL, % | 28.8 a | 28.8 ab | 28.7 bc | 28.5 de | 28.1 e | 28.5 cd | 28.8 cd | 0.3 |
LYC, % | 39.4 a | 38.7 ab | 38.5 bc | 37.6 de | 36.8 e | 37.8 cd | 37.8 cd | 0.3 |
Parameter | % GAA | |||||||
0 | 0.06 | 0.12 | 0.18 | 0.30 | 0.45 | 0.61 | ||
Day 0–10 | SE | |||||||
Initial wt., g | 41.6 bc | 42.3 a | 41.4 c | 42.1 ab | 41.5 bc | 41.7 ac | 41.4 c | 0.2 |
Final wt., g | 265.0 c | 278.9 ab | 273.3 ac | 281.5 a | 268.8 bc | 252.6 d | 237.8 e | 28 |
DWG, g | 22.3 c | 23.7 ab | 23.2 ac | 23.9 a | 22.6 bc | 21.1 d | 19.6 e | 0.4 |
ADFI, g | 25.9 a | 26.4 a | 26.2 a | 26.3 a | 24.3 b | 23.1 bc | 22.1 c | 0.5 |
FCR | 1.16 a | 1.12 ac | 1.13 ab | 1.10 bc | 1.08 c | 1.10 bc | 1.13 ac | 0.02 |
Day 10–24 | ||||||||
BW, g | 1042 d | 1189 bc | 1225 ab | 1256 a | 1235 ab | 1164 c | 913 e | 3.9 |
DWG, g | 54.3 d | 64.1 c | 67.9 ab | 69.3 a | 69.0 a | 64.8 bc | 47.4 e | 1.1 |
ADFI, g | 88.3 a | 91.5 a | 91.3 a | 92.4 a | 91.2 a | 87.0 a | 71.7 b | 2.0 |
FCR | 1.63 a | 1.43 c | 1.35 d | 1.33 d | 1.32 d | 1.34 d | 1.52 b | 0.03 |
Day 24–35 | ||||||||
BW, g | 1644 d | 1934 c | 2000 bc | 2092 a | 2055 ab | 1937 c | 1568 e | 17 |
DWG, g | 51.5 d | 66.5 b | 70.3 ab | 75.9 a | 74.5 a | 70.2 ab | 59.6 c | 2.0 |
ADFI, g | 136.2 d | 154.0 bc | 154.7 ac | 161.9 a | 157.6 ab | 149.2 c | 134.9 d | 2.6 |
FCR | 2.72 a | 2.33 b | 2.20 bc | 2.13 bc | 2.12 c | 2.13 bc | 2.27 bc | 0.07 |
Day 0–35 | ||||||||
DWG, g | 44.2 d | 53.0 c | 55.7 ab | 58.2 a | 57.4 a | 53.9 bc | 43.0 d | 0.9 |
ADFI, g | 84.8 c | 91.6 ab | 92.2 ab | 94.9 a | 92.8 a | 88.0 bc | 76.6 d | 1.5 |
FCR | 1.93 a | 1.73 b | 1.65 c | 1.63 c | 1.62 c | 1.63 c | 1.78 b | 0.02 |
Mortality, % | 7.2 a | 5.9 ab | 2.2 ab | 2.2 ab | 1.5 b | 1.5 b | 4.4 ab | 0.12 |
Carcass Yield | ||||||||
LSW, g | 1652 d | 1926 c | 2017 ab | 2070 a | 2063 a | 1966 bc | 1616 d | 22 |
CW, g | 1210 d | 1418 c | 1489 ab | 1542 a | 1534 a | 1452 bc | 1151 e | 20 |
BW, g | 264 d | 314 c | 350 b | 377 a | 382 a | 353 b | 275 d | 8 |
LW, g | 476 c | 566 ab | 579 a | 586 a | 576 ab | 555 b | 444 d | 8 |
Parameter | L-Arginine Supplementation at Which the Maximum Performance Was Attained | |||
Starter (D0–10) | Grower (D10–24) | Finisher (D24–35) | Overall (D0–35) | |
Body weight | 0.45% | 0.19% | 0.13% | - |
Daily weight gain | 0.33% | 0.31% | 0.09% | 0.22% |
Daily feed intake | 0.14% | 0.31% | 0.09% | 0.10% |
Feed conversion ratio (lowest FCR) | 0.43% | 0.24% | 0.08% | 0.22% |
Live slaughter weight | - | - | - | 0.23% |
Carcass weight | - | - | - | 0.26% |
Breast weight | - | - | - | 0.37% |
Leg weight | - | - | - | 0.21% |
Slaughter yield | - | - | - | 0.20% |
Breast yield live | - | - | - | 0.21% |
Breast yield carcass | - | - | - | 0.21% |
Leg yield live | - | - | - | 0% |
Leg yield carcass | - | - | - | 0% |
Parameter | GAA Supplementation at Which the Maximum Performance Was Attained | |||
Starter (D0–10) | Grower (D10–24) | Finisher (D24–35) | Overall (D0–35) | |
Body weight | 0.16% | 0.26% | 0.28% | - |
Daily weight gain | 0.16% | 0.27% | 0.32% | 0.29% |
Daily feed intake | 0% | 0.2% | 0.28% | 0.25% |
Feed conversion ratio (lowest FCR) | 0.34% | 0.32% | 0.08% | 0.33% |
Live slaughter weight | - | - | - | 0.29% |
Carcass weight | - | - | - | 0.28% |
Breast weight | - | - | - | 0.30% |
Leg weight | - | - | - | 0.27% |
Slaughter yield | - | - | - | 0.26% |
Breast yield live | - | - | - | 0.35% |
Breast yield carcass | - | - | - | 0.38% |
Leg yield live | - | - | - | 0% |
Leg yield carcass | - | - | - | 0% |
Parameter | Arginine Concentration at Which the Maximum Is Reached | |||
---|---|---|---|---|
Starter (D0–10) | Grower (D10–24) | Finisher (D24–35) | Overall (D0–35) | |
Body weight | 0.18% | 0.18% | 0.06% | - |
Daily weight gain | 0.18% | 0.18% | BD | 0.06% |
Daily feed intake | 0.18% | 0.30% | 0.06% | 0.06% |
Feed conversion ratio (lowest FCR) | 0.06% | 0.45% | 0.45% | 0.30% |
Live slaughter weight | - | - | - | 0.06% |
Carcass weight | - | - | - | 0.06% |
Breast weight | - | - | - | 0.06% |
Leg weight | - | - | - | 0.06% |
Slaughter yield | - | - | - | 0.18% |
Breast yield live | - | - | - | 0.18% |
Breast yield carcass | - | - | - | 0.30% |
Leg yield live | - | - | - | 0.45% |
Leg yield carcass | - | - | - | 0.45% |
Parameter | % Arg vs. GAA | |||
---|---|---|---|---|
Starter (D0–10) | Grower (D10–24) | Finisher (D24–35) | Overall (D0–35) | |
Body weight | 46% | 77% | 55% | - |
Daily weight gain | 46% | 84% | 44% | 57% |
Daily feed intake | Inf. | 73% | 39% | 44% |
Feed conversion ratio (lowest FCR) | 50% | 102% | 61% | 78% |
Live slaughter weight | - | - | - | 56% |
Carcass weight | - | - | - | 53% |
Breast weight | - | - | - | 51% |
Leg weight | - | - | - | 56% |
Slaughter yield | - | - | - | 36% |
Breast yield live | - | - | - | 48% |
Breast yield carcass | - | - | - | 51% |
Parameter | Control | −50 kcal/kg | −100 kcal/kg | −50 kcal/kg +0.06% GAA | −100 kcal/kg +0.12% GAA | |
---|---|---|---|---|---|---|
Day 0–10 | SE | |||||
Initial wt., g | 41.7 | 41.7 | 41.7 | 41.8 | 41.7 | 0.2 |
Final wt., g | 302.2 | 303.3 | 302.1 | 304.2 | 301.2 | 29 |
DWG, g | 25.9 | 26.1 | 25.8 | 26 | 25.6 | 0.3 |
ADFI, g | 27.7 ab | 28.2 ab | 28.7 a | 27.8 ab | 27.7 b | 0.3 |
FCR | 1.07 b | 1.08 b | 1.11 a | 1.07 b | 1.08 b | 0.01 |
Day 10–24 | ||||||
BW, g | 1355 | 1374 | 1358 | 1359 | 1358 | 2.9 |
DWG, g | 74.8 | 76.0 | 75.4 | 75.2 | 75.5 | 0.7 |
ADFI, g | 98.5 | 100.5 | 100.4 | 98.9 | 99.7 | 0.9 |
FCR | 1.32 | 1.32 | 1.33 | 1.32 | 1.32 | 0.01 |
Day 24–35 | ||||||
BW, g | 2396 ab | 2460 a | 2412 ab | 2369 b | 2384 ab | 10 |
DWG, g | 94.5 ab | 98.4 a | 95.8 ab | 91.4 b | 93.0 ab | 2.2 |
ADFI, g | 164.4 ab | 168.8 a | 167.8 a | 159.7 b | 164.4 ab | 2.4 |
FCR | 1.75 | 1.72 | 1.76 | 1.77 | 1.77 | 0.03 |
Day 0–35 | ||||||
DWG, g | 66.8 ab | 68.4 a | 67.4 ab | 65.9 b | 66.5 ab | 0.8 |
ADFI, g | 98.6 ab | 100.7 a | 100.7 a | 97.0 b | 99.0 ab | 1.0 |
FCR | 1.48 | 1.47 | 1.49 | 1.48 | 1.49 | 0.01 |
Mortality, % | 2.1 | 4.6 | 3.3 | 4.6 | 4.2 | 0.14 |
Carcass Yield | ||||||
LSW, g | 2438 ab | 2476 a | 2439 ab | 2366 c | 2408 bc | 18 |
CW, g | 1848 a | 1882 a | 1848 a | 1800 b | 1842 ab | 16 |
BW, g | 521 | 523 | 527 | 512 | 533 | 8 |
LW, g | 671 bc | 692 a | 677 ab | 654 c | 671 bc | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verhelle, A.; Saremi, B. An Evaluation of the Arginine Requirements of Broiler Chickens and the Potential Arginine and Energy-Saving Effects of Guanidinoacetic Acid. Animals 2025, 15, 4. https://doi.org/10.3390/ani15010004
Verhelle A, Saremi B. An Evaluation of the Arginine Requirements of Broiler Chickens and the Potential Arginine and Energy-Saving Effects of Guanidinoacetic Acid. Animals. 2025; 15(1):4. https://doi.org/10.3390/ani15010004
Chicago/Turabian StyleVerhelle, Adriaan, and Behnam Saremi. 2025. "An Evaluation of the Arginine Requirements of Broiler Chickens and the Potential Arginine and Energy-Saving Effects of Guanidinoacetic Acid" Animals 15, no. 1: 4. https://doi.org/10.3390/ani15010004
APA StyleVerhelle, A., & Saremi, B. (2025). An Evaluation of the Arginine Requirements of Broiler Chickens and the Potential Arginine and Energy-Saving Effects of Guanidinoacetic Acid. Animals, 15(1), 4. https://doi.org/10.3390/ani15010004