Assessing Substrate Utilization and Bioconversion Efficiency of Black Soldier Fly (Hermetia illucens) Larvae: Effect of Diet Composition on Growth and Development Temperature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Colony
2.2. Diet Formulation
- Vegetable diet (D2), with by-products such as carrots, potatoes, and brewer’s spent grain. These by-products were mixed in a weight ratio of 1:1:1. The vegetable raw materials were sourced locally; the ratio used (1:1:1) was aimed to ensure an adequate supply of protein and sugars.
- Omnivorous diet (D3), obtained by mixing a 1:1 ratio of the vegetable diet and the carnivore diet.
- Carnivorous diet (D4), obtained by mixing ground beef epiglottis and cod pulp in a 1:1 ratio. For practical reasons, once the most suitable animal by-products available locally were identified, these were purchased from a Barf food trader (Tortona, AL, Italy).
2.3. Experimental Design
2.4. Larval Growth
2.5. Chemical Analysis and Utilization of Substrate Nutrients
2.6. Substrate Temperature and Accumulated Degree Hours
2.7. Statistical Analysis
3. Results
3.1. Larval Growth
3.2. Larvae Chemical Composition
3.3. Substrates Chemical Composition
3.4. Substrate Temperature
3.5. Accumulated Degree Hours
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme. Food Waste Index Report 2021; United Nations Environment Programme: Nairobi, Kenya, 2021. [Google Scholar]
- OECD; Food and Agriculture Organization of the United Nations. OECD-FAO Agricultural Outlook 2023–2032; OECD-FAO Agricultural Outlook; OECD: Paris, France, 2023; ISBN 978-92-64-61933-3. [Google Scholar]
- Awasthi, S.K.; Sarsaiya, S.; Awasthi, M.K.; Liu, T.; Zhao, J.; Kumar, S.; Zhang, Z. Changes in global trends in food waste composting: Research challenges and opportunities. Bioresour. Technol. 2020, 299, 122555. [Google Scholar] [CrossRef] [PubMed]
- Tiwary, A.; Williams, I.D.; Pant, D.C.; Kishore, V.V.N. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate. Environ. Pollut. 2015, 203, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food waste-to-energy conversion technologies: Current status and future directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. The State of Food Security and Nutriion in the World. Trasforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; FAO: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Rene, E.R.; Nizami, A.-S.; Dupont, C.; Vaccari, M.; Van Hullebusch, E.D. Beneficial role of biochar addition on the anaerobic digestion of food waste: A systematic and critical review of the operational parameters and mechanisms. J. Environ. Manag. 2021, 290, 112537. [Google Scholar] [CrossRef] [PubMed]
- Clapp, J.; Moseley, W.G.; Burlingame, B.; Termine, P. Viewpoint: The case for a six-dimensional food security framework. Food Policy 2022, 106, 102164. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental impact of food waste bioconversion by insects: Application of Life Cycle Assessment to process using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Ristow, B.; Rahayu, T.; Putra, N.S.; Widya Yuwono, N.; Nisa’, K.; Mategeko, B.; Smetana, S.; Saki, M.; Nawaz, A.; et al. Black soldier fly larvae (BSFL) and their affinity for organic waste processing. Waste Manag. 2022, 140, 1–13. [Google Scholar] [CrossRef]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of organic material by black soldier fly larvae: Establishing optimal feeding rates. Waste Manag. Res. J. Sustain. Circ. Econ. 2009, 27, 603–610. [Google Scholar] [CrossRef]
- Surendra, K.C.; Tomberlin, J.K.; Van Huis, A.; Cammack, J.A.; Heckmann, L.-H.L.; Khanal, S.K. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). Waste Manag. 2020, 117, 58–80. [Google Scholar] [CrossRef] [PubMed]
- Tomberlin, J.K.; Van Huis, A. Black soldier fly from pest to ‘crown jewel’ of the insects as feed industry: An historical perspective. J. Insects Food Feed 2020, 6, 1–4. [Google Scholar] [CrossRef]
- Lalander, C.; Ermolaev, E.; Wiklicky, V.; Vinnerås, B. Process efficiency and ventilation requirement in black soldier fly larvae composting of substrates with high water content. Sci. Total Environ. 2020, 729, 138968. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Regulation (EC) No 999/2001 of the European 608 Parliament and of the Council of 22 May 2001 Laying Down Rules for the Prevention, Control and Eradication of Certain Transmissible Spongiform Encephalopathies. 2001. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001R0999 (accessed on 14 March 2024).
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Repealing Regulation (EC) No 1774/2002 (Animal By-Products Regulation). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02009R1069-20191214&from=LV#:~:text=This%20Regulation%20lays%20down%20public,the%20food%20and%20feed%20chain (accessed on 14 March 2024).
- Commission Regulation (EU) No 142/2011 of 25 February 2011 Implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council Laying down Health Rules as Regards Animal By-Products and Derived Products Not Intended for Human Consumption and Implementing Council Directive 97/78/EC as Regards Certain Samples and Items Exempt from Veterinary Checks at the Border under that DirectiveText with EEA Relevance. Available online: https://www.legislation.gov.uk/eur/2011/142/contents (accessed on 14 March 2024).
- COMMISSION REGULATION (EU) 2021/1372 of 17 August 2021 Amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other than Fur Animals, with Protein Derived from Animals ELEX_32021R1372_EN_TXT. Available online: https://www.stradalex.eu/en/se_src_publ_leg_eur_jo/toc/leg_eur_jo_3_20210818_295/doc/ojeu_2021.295.01.0001.01 (accessed on 14 March 2024).
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Scala, A.; Cammack, J.A.; Salvia, R.; Scieuzo, C.; Franco, A.; Bufo, S.A.; Tomberlin, J.K.; Falabella, P. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 2020, 10, 19448. [Google Scholar] [CrossRef] [PubMed]
- Bellezza Oddon, S.; Biasato, I.; Resconi, A.; Gasco, L. Determination of lipid requirements in black soldier fly through semi-purified diets. Sci. Rep. 2022, 12, 10922. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, B.; Boaru, A.M.; Muntean, L.; Sima, N.; Struți, D.I.; Păpuc, T.A.; Georgescu, C. Modulating the Fatty Acid Profiles of Hermetia illucens Larvae Fats by Dietary Enrichment with Different Oilseeds: A Sustainable Way for Future Use in Feed and Food. Insects 2022, 13, 801. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Fonseca, K.Y.; Barragán-Fonseca, K.B.; Verschoor, G.; Van Loon, J.J.; Dicke, M. Insects for peace. Curr. Opin. Insect Sci. 2020, 40, 85–93. [Google Scholar] [CrossRef]
- Singh, A.; Kumari, K. An inclusive approach for organic waste treatment and valorisation using Black Soldier Fly larvae: A review. J. Environ. Manag. 2019, 251, 109569. [Google Scholar] [CrossRef]
- Lemke, N.B.; Dickerson, A.J.; Tomberlin, J.K. No neonates without adults: A review of adult black soldier fly biology, Hermetia illucens (Diptera: Stratiomyidae). BioEssays 2023, 45, 2200162. [Google Scholar] [CrossRef] [PubMed]
- Meneguz, M.; Miranda, C.D.; Cammack, J.A.; Tomberlin, J.K. Adult behaviour as the next frontier fo optimising industrial production of clack soldie fly Hermetia illucens (L.) (Diptera: Stratiomydae). J. Insects Food Feed 2022, 9, 1–16. [Google Scholar]
- Leppla, N.C. Rearing of Insects, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2009; ISBN 9780123741448. [Google Scholar]
- Palma, L.; Ceballos, S.J.; Johnson, P.C.; Niemeier, D.; Pitesky, M.; VanderGheynst, J.S. Cultivation of black soldier fly larvae on almond byproducts: Impacts of aeration and moisture on larvae growth and composition. J. Sci. Food Agric. 2018, 98, 5893–5900. [Google Scholar] [CrossRef] [PubMed]
- Harnden, L.M.; Tomberlin, J.K. Effects of temperature and diet on black soldier fly, Hermetia illucens (L.) (Diptera: Stratiomyidae), development. Forensic Sci. Int. 2016, 266, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Chia, S.Y.; Tanga, C.M.; Khamis, F.M.; Mohamed, S.A.; Salifu, D.; Sevgan, S.; Fiaboe, K.K.M.; Niassy, S.; Van Loon, J.J.A.; Dicke, M.; et al. Threshold temperatures and thermal requirements of black soldier fly Hermetia illucens: Implications for mass production. PLoS ONE 2018, 13, e0206097. [Google Scholar] [CrossRef]
- Donovan, S.E.; Hall, M.J.R.; Turner, B.D.; Moncrieff, C.B. Larval growth rates of the blowfly, Calliphora vicina, over a range of temperatures. Med. Vet. Entomol. 2006, 20, 106–114. [Google Scholar] [CrossRef]
- COMMISSION REGULATION (EU) 2017/893-of 24 May 2017-Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Processed Animal Protein. Available online: https://op.europa.eu/en/web/eu-law-in-force (accessed on 14 March 2024).
- Oonincx, D.G.A.B.; Van Broekhoven, S.; Van Huis, A.; Van Loon, J.J.A. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- Dortmans, B.; Diener, S.; Verstappen, B.; Zurbrügg, C. Black Soldier Fly Biowaste Processing. Waste Manag. 2019, 84, 173–181. [Google Scholar]
- Nguyen, T.T.X.; Tomberlin, J.K.; Vanlaerhoven, S. Influence of Resources on Hermetia illucens (Diptera: Stratiomyidae) Larval Development. J. Med. Entomol. 2013, 50, 898–906. [Google Scholar] [CrossRef]
- AOAC Official Method 981.10 Crude Protein in Meat; AOAC: Arlington, VA, USA, 1983.
- Janssen, R.H.; Vincken, J.-P.; Van Den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef]
- AOAC: Official Methods of Analysis (Volume 1), 15th ed.; AOAC: Arlington, VA, USA, 1990.
- Pigden, W.J. (Ed.) Standardization of Analytical Methodology for Feeds: Proceedings of a Workshop Held in Ottawa, Canada, 12–14 March 1979; International Development Research Centre: Ottawa, ON, Canada, 1980; ISBN 978-0-88936-217-8.
- Holmes, L. Role of Abiotic Factors on the Development and Life History of the Black Soldier Fly, Hermetia illucens (L.) (Diptera: Stratiomyidae). Available online: https://scholar.uwindsor.ca/cgi/viewcontent.cgi?article=1284&context=etd (accessed on 14 March 2024).
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
- Tschirner, M.; Simon, A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J. Insects Food Feed 2015, 1, 249–259. [Google Scholar] [CrossRef]
- Nguyen, T.T.X.; Tomberlin, J.K.; Vanlaerhoven, S. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste. Environ. Entomol. 2015, 44, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.; Egger, J.; Scheidegger, A.; Zurbrügg, C.; Bruno, D.; Bonelli, M.; Tettamanti, G.; Casartelli, M.; Schmitt, E.; Kerkaert, B.; et al. Estimating black soldier fly larvae biowaste conversion performance by simulation of midgut digestion. Waste Manag. 2020, 112, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Barragan-Fonseca, K.B.; Dicke, M.; Van Loon, J.J.A. Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae (Hermetia illucens). Entomol. Exp. Appl. 2018, 166, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H. Black Soldier Fly Larvae Manual; University of Massachusetts Amherst: Amherst, MA, USA, 2016; Available online: https://scholarworks.umass.edu/sustainableumass_studentshowcase/14 (accessed on 14 March 2024).
- Tomberlin, J.K.; Adler, P.H.; Myers, H.M. Development of the Black Soldier Fly (Diptera: Stratiomyidae) in Relation to Temperature. Environ. Entomol. 2009, 38, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Meneguz, M.; Schiavone, A.; Gai, F.; Dama, A.; Lussiana, C.; Renna, M.; Gasco, L. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric. 2018, 98, 5776–5784. [Google Scholar] [CrossRef] [PubMed]
- Shumo, M.; Khamis, F.; Tanga, C.; Fiaboe, K.; Subramanian, S.; Ekesi, S.; Van Huis, A.; Borgemeister, C. Influence of Temperature on Selected Life-History Traits of Black Soldier Fly (Hermetia illucens) Reared on Two Common Urban Organic Waste Streams in Kenya. Animals 2019, 9, 79. [Google Scholar] [CrossRef]
- Ribeiro, N.; Costa, R.; Ameixa, O.M.C.C. The Influence of Non-Optimal Rearing Conditions and Substrates on the Performance of the Black Soldier Fly (Hermetia illucens). Insects 2022, 13, 639. [Google Scholar] [CrossRef]
- McEachern, T. Determining Heat Production of Black Solderi Fly Larvae, Hermitia illucens, to Design Rearing Structures at Livestock Facilities. Master’s Thesis, University of Kentucky, Lexington, KY, USA, 2018. [Google Scholar] [CrossRef]
- Li, C.; Addeo, N.F.; Rusch, T.W.; Tarone, A.M.; Tomberlin, J.K. Black soldier fly (Diptera: Stratiomyidae) larval heat generation and management. Insect Sci. 2023, 30, 964–974. [Google Scholar] [CrossRef]
Variables | Initial Substrates | Young Larvae | |||
---|---|---|---|---|---|
D1 Control | D2 Vegetable | D3 Omnivorous | D4 Carnivorous | ||
Humidity | 722.0 | 695.9 | 744.2 | 754.8 | 697.4 |
Organic matter | 239.2 | 284.6 | 238.5 | 230.2 | - |
Crude proteins | 40.1 | 20.1 | 81.5 | 121.8 | 112.9 |
Crude Fat | 14.9 | 9.4 | 34.4 | 54.3 | 31.8 |
Ash | 38.8 | 19.5 | 17.3 | 15.0 | 50.6 |
Crude fiber | 14.0 | 36.1 | 24.7 | - | 29.8 |
Neutral detergent fiber | 48.1 | 68.8 | 85.1 | - | 43.8 |
Acid detergent fiber | 22.9 | 59.0 | 35.5 | - | 37.6 |
Acid detergent lignin | 7.60 | 18.7 | 12.5 | - | 7.2 |
N-free extractive 1 | 170.3 | 219.1 | 97.9 | 54.0 | 77.4 |
Starch | 94.1 | 135.3 | 51.9 | 6.1 | - |
Parameter | D1 Control | D2 Vegetable | D3 Omnivorous | D4 Carnivorous | p-Value |
---|---|---|---|---|---|
Larval biomass (g) 1 | 376.9 ± 34.60 A | 278.0 ± 49.56 B | 335.1 ± 19.27 AB | 305.9 ± 24.21 AB | p < 0.01 |
Dry matter larvae (%) | 37.0 ± 7.13 A | 26.8 ± 5.27 B | 35.1 ± 5.50 AB | 44.4 ± 3.95 A | p < 0.01 |
Larvae meal yield (g DM) | 138.6 ± 21.92 B | 76.3 ± 29.35 A | 117.5 ± 18.29 AB | 135.4 ± 8.24 B | p < 0.01 |
larvae weight (mg) | 198 ± 21.4 A | 145 ± 10.2 B | 176 ± 35.5 AB | 161 ± 14.6 AB | p < 0.01 |
Larvae length (cm) | 1.7 ± 0.18 Aa | 1.4 ± 0.1 Bb | 1.5 ± 0.09 ABb | 1.4 ± 0.11 Bb | p < 0.01 |
Growth rate (GR, mg d−1) | 20.1 ± 4.2 A | 13.5 ± 2.5 B | 17.3 ± 4.5 AB | 15.5 ± 3.1 AB | p < 0.01 |
Residual biomass (g) | 380.1 ± 22.53 AB | 476.8 ± 53.48 B | 313.5 ± 14.92 A | 304.7 ± 26.27 A | p < 0.01 |
Substrate reduction (%) | 82.7 ± 1.02 B | 77.4 ± 2.85 A | 84.32 ± 0.75 B | 84.7 ± 1.31 B | p < 0.01 |
Black Soldier Fly Larvae | |||||
---|---|---|---|---|---|
Parameter | D1 Control | D2 Vegetable | D3 Omnivorous | D4 Carnivorous | p-Value |
Crude protein | 281 ± 4.9 ab | 273 ± 3.5 a | 288 ± 3.5 ab | 330 ± 6.8 b | p < 0.05 |
Crude fat | 261 ± 11.8 b | 97 ± 20.1 a | 303 ± 25.3 b | 256 ± 49.8 b | p < 0.01 |
Ash | 153 ± 2.8 c | 108 ± 13.8 b | 61 ± 7.9 a | 46 ± 2.1 a | p < 0.01 |
Crude fiber | 62 ± 3.3 ab | 91 ± 3.8 c | 65 ± 1.8 b | 58 ± 3.2 a | p < 0.01 |
Neutral detergent fiber | 128 ± 44.2 | 163 ± 34.3 | 127 ± 24.4 | 115 ± 12.5 | p < 0.21 |
Acid detergent fiber | 89 ± 6.7 | 151 ± 26.4 | 129 ± 53.3 | 139 ± 51.3 | p < 0.18 |
Acid detergent lignin | 11 ± 0.8 | 23 ± 2.7 | 25 ± 10.9 | 21 ± 10.4 | p < 0.10 |
Non-free extractive 1 | 243 ± 37.0 a | 431 ± 47.9 c | 282 ± 34.9 ab | 310 ± 70.4 b | p < 0.01 |
Parameter | D1 Control | D2 Vegetable | D3 Omnivorous | D4 Carnivorous | p-Value |
---|---|---|---|---|---|
DM 2 | 45.9 ± 4.52 A | 58.4 ± 4.29 B | 60.5 ± 2.02 B | 57.7 ± 2.40 B | p < 0.01 |
OM | 50.8 ± 4.31 A | 59.0 ± 4.18 B | 61.3 ± 2.27 B | 59.2 ± 2.64 B | p < 0.01 |
CP | 54.4 ± 5.78 Aa | 63.7 ± 5.76 ABb | 71.8 ± 3.71 Bb | 59.9 ± 2.32 ABab | p < 0.01 |
CF | 96.4 ± 1.89 B | 89.9 ± 3.38 B | 91.1 ± 3.24 B | 64.0 ± 5.70 A | p < 0.01 |
Ash | 15.8 ± 9.71 A | 49.2 ± 5.82 B | 49.3 ± 4.86 B | 34.7 ± 3.82 B | p < 0.01 |
Starch | 42.5 ± 4.36 B | 34.6 ± 12.62 B | 40.4 ± 5.45 B | 98.1 ± 0.37 A | p < 0.01 |
NFE | 49.6 ± 4.55 A | 61.4 ± 4.60 B | 43.6 ± 3.79 A | 52.7 ± 3.67 Ab | p < 0.01 |
D1 Control | D2 Vegetable | D3 Omnivorous | D4 Carnivorous | p- Value | |
---|---|---|---|---|---|
ADH MAX | 3360 ± 177.7 | 3430 ± 187.6 | 3456 ± 139.4 | 3315 ± 104.7 | p = 0.27 |
ADH MIN | 2568 ± 101.9 | 2713 ± 121.0 | 2647 ± 64.1 | 2690 ± 69.5 | p = 0.10 |
ADH MEAN | 2964 ± 136.3 | 3072 ± 149.8 | 3051 ± 98.1 | 3002 ± 82.9 | p = 0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belperio, S.; Cattaneo, A.; Nannoni, E.; Sardi, L.; Martelli, G.; Dabbou, S.; Meneguz, M. Assessing Substrate Utilization and Bioconversion Efficiency of Black Soldier Fly (Hermetia illucens) Larvae: Effect of Diet Composition on Growth and Development Temperature. Animals 2024, 14, 1340. https://doi.org/10.3390/ani14091340
Belperio S, Cattaneo A, Nannoni E, Sardi L, Martelli G, Dabbou S, Meneguz M. Assessing Substrate Utilization and Bioconversion Efficiency of Black Soldier Fly (Hermetia illucens) Larvae: Effect of Diet Composition on Growth and Development Temperature. Animals. 2024; 14(9):1340. https://doi.org/10.3390/ani14091340
Chicago/Turabian StyleBelperio, Simona, Arianna Cattaneo, Eleonora Nannoni, Luca Sardi, Giovanna Martelli, Sihem Dabbou, and Marco Meneguz. 2024. "Assessing Substrate Utilization and Bioconversion Efficiency of Black Soldier Fly (Hermetia illucens) Larvae: Effect of Diet Composition on Growth and Development Temperature" Animals 14, no. 9: 1340. https://doi.org/10.3390/ani14091340