Addition of Butyric Acid and Lauric Acid Glycerides in Nursery Pig Feed to Replace Conventional Growth Promoters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Additives
2.2. Animals and Experimental Design
2.3. Performance
2.4. Sample Collection
2.5. Serum Biochemistries
2.6. Proteinogram
2.7. Antioxidant Status
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Serum Biochemistries, Proteinogram, and Antioxidant Status
3.3. Drug Interventions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quesnel, H.; Farmer, C.; Devillers, N. Colostrum intake: Influence on piglet performance and factors of variation. Livest. Sci. 2012, 146, 105–114. [Google Scholar] [CrossRef]
- Zhao, Y.; Su, J.Q.; An, X.L.; Huang, F.Y.; Rensing, C.; Brandt, K.K.; Zhu, Y.G. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. Sci. Total Environ. 2018, 621, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- European Commission 2005. Ban on Antibiotics as Growth Promoters in Animal Feed Enters into Effect. Available online: http://europa.eu/rapid/press-release_IP-05-1687_en.htm (accessed on 20 June 2023).
- Diário Oficial da União Edição: 243|Seção: 1|Página: 23, Portaria Número 171. 2018. Available online: http://www.in.gov.br/materia//asset_publisher/Kujrw0TZC2Mb/content/id/55878469/do1-2018-12-19-portaria-n-171-de-13-de-dezembro-de-2018-55878239 (accessed on 20 June 2023).
- Diário Oficial da União Edição: 16|Seção: 1|Página: 6 Instrução Normativa Nº 1, De 13 De Janeiro De 2020. Available online: http://www.in.gov.br/en/web/dou/-/instrucao-normativa-n-1-de-13-de-janeiro-de-2020-239402385 (accessed on 20 June 2023).
- Antongiovanni, M.; Buccioni, A.; Petacchi, F.; Leeson, S.; Minieri, S.; Martini, A.; Cecchi, R. Butyric acid glycerides in the diet of broiler chickens: Effects on gut histology and carcass composition. Ital. J. Anim. Sci. 2007, 6, 19–25. [Google Scholar] [CrossRef]
- Li, J.; Hou, Y.; Yi, D.; Zhang, J.; Wang, L. Effects of tributyrin on intestinal energy status, antioxidative capacity and immune response to lipopolysaccharide challenge in broilers. Asian-Australas. J. Anim. Sci. 2015, 28, 1784–1793. [Google Scholar] [CrossRef] [PubMed]
- Bedford, A.; Gong, J. Implications of butyrate and its derivatives for gut health and animal production. Anim. Nutr. 2018, 4, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Sotira, S.; Dell’Anno, M.; Caprarulo, V.; Hejna, M.; Pirrone, F.; Callegari, M.L.; Tucci, T.V.; Rossi, L. Effects of Tributyrin Supplementation on Growth Performance, Insulin, Blood Metabolites and Gut Microbiota in Weaned Piglets. Animals 2020, 10, 726. [Google Scholar] [CrossRef]
- De Gussem, M.; Dedeurwaerder, A.; Christiaens, I.; Damen, E.P.C.W.; Dansen, O. Alpha-monolaurin stimulates the antibody response elicited upon infectious bronchitis vaccination of broilers. J. Appl. Poult. Res. 2021, 30, 100153. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, H.; Alhamoud, Y.; Chen, Y.; Zhuang, J.; Liu, T.; Feng, F. Integrated metabolomic and gene expression analyses to study the effects of glycerol monolaurate on flesh quality in large yellow croaker (Larimichthys crocea). Food Chem. 2022, 367, 130749. [Google Scholar] [CrossRef]
- Ullah, S.; Zhang, J.; Xu, B.; Tegomo, A.F.; Sagada, G.; Zheng, L.; Wang, L.; Shao, O. Effect of dietary supplementation of lauric acid on growth performance, antioxidative capacity, intestinal development and gut microbiota on black sea bream (Acanthopagrus schlegelii). PLoS ONE 2022, 13, e0262427. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Q.; Liu, J.; Liu, Y.; Xu, Y.; Zhang, R.; Yu, R.Y.; Wang, Y.; Yang, C.B. Integrating Serum Metabolome and Gut Microbiome to Evaluate the Benefits of Lauric Acid on Lipopolysaccharide-Challenged Broilers. Front. Immunol. 2021, 12, 759323. [Google Scholar] [CrossRef]
- Li, L.; Huakai, W.; Zhang, N.; Zhang, T.; Ma, Y. Effects of α-glycerol monolaurate on intestinal morphology, nutrient digestibility, serum profiles, and gut microbiota in weaned piglets. J. Anim. Sci. 2022, 100, 3. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, H.S.; Albino, L.F.T.; Hannas, M.I.; Donzele, J.L.; Sakomura, N.K.; Perazzo, F.G.; Saraiva, U.M.A.; Teixeira, M.L.; Rodrigues, P.B.; Oliveira, R.F.; et al. Tabelas Brasileiras Para Aves E Suínos: Composição de Alimentos e Exigências Nutricionais, 4th ed.; UFV DZO MG: Viçosa, Brazil, 2017. [Google Scholar]
- Costa, M.M.; da Silva, A.S.; Wolkmer, P.; Zanette, R.A.; França, R.T.; Monteiro, S.G.; Lopes, S.T.; Dos, A. Serum proteinogram of cats experimentally infected by Trypanosoma evansi. Prev. Vet. Med. 2010, 95, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Jentzsch, A.M.; Bachmann, H.; Fürst, P.; Biesalski, H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996, 20, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Tugnoli, B.; Giovagnoni, G.; Piva, A.; Grilli, E. From Acidifiers to Intestinal Health Enhancers: How Organic Acids Can Improve Growth Efficiency of Pigs. Animals 2020, 10, 134. [Google Scholar] [CrossRef]
- Dong, L.; Zhong, X.; He, J.; Zhang, L.; Bai, K.; Xu, W.; Wang, T.; Huang, X. Supplementation of tributyrin improves the growth and intestinal digestive and barrier functions in intrauterine growth-restricted piglets. Clin. Nutr. 2016, 35, 399–407. [Google Scholar] [CrossRef]
- Taherpour, K.; Moravej, H.; Taheri, H.R.; Shivazad, M. Effect of dietary inclusion of probiotic, prebiotic and butyric acid glycerides on resistance against coccidiosis in broiler chickens. Poult. Sci. 2012, 49, 57–61. [Google Scholar] [CrossRef]
- Wang, C.; Shen, Z.; Cao, S.; Zhang, Q.; Peng, Y.; Hong, Q.; Feng, J.; Hu, C. Effects of tributyrin on growth performance, intestinal microflora and barrier function of weaned pigs. Anim. Feed Sci. Technol. 2019, 258, 114311. [Google Scholar] [CrossRef]
- Liu, T.; Tang, J.; Feng, F. Glycerol monolaurate improves performance, intestinal development, and muscle amino acids in yellow-feathered broilers via manipulating gut microbiota. Appl. Microbiol. Biotechnol. 2020, 104, 10279–10291. [Google Scholar] [CrossRef]
- Saeidi, E.; Shokrollahi, B.; Karimi, K.; Amiri-Andi, M. Effects of medium-chain fatty acids on performance, carcass characteristics, blood biochemical parameters and immune response in Japanese quail. Br. Poul. Sci. 2016, 57, 358–363. [Google Scholar] [CrossRef]
- Yang, X.; Yin, F.; Yang, Y.; Lepp, D.; Yu, H.; Ruan, Z.; Yang, C.; Yin, Y.; Hou, Y.; Leeson, S.; et al. Dietary butyrate glycerides modulate intestinal microbiota composition and serum metabolites in broilers. Sci. Rep. 2018, 8, 4940. [Google Scholar] [CrossRef] [PubMed]
- Ahmat, M.; Cheng, J.; Abbas, Z.; Cheng, Q.; Fan, Z.; Ahmad, B.; Hou, M.; Osman, G.; Guo, H.; Wang, J.; et al. Effects of Bacillus amyloliquefaciens LFB112 on Growth Performance, Carcass Traits, Immune, and Serum Biochemical Response in Broiler Chickens. Antibiotics 2021, 10, 1427. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, X.W.; Huang, X.; Song, B.L.; Wang, Y.; Wang, Y. Regulation of glucose and lipid metabolism in health and disease. China Life Sci. 2019, 62, 1420–1458. [Google Scholar] [CrossRef] [PubMed]
- Raafat, N.; Ismail, K.; Hawsawi, N.M.; Saber, T.; Elsawy, W.H.; Abdulmutaleb, T.; Raafat, A.; Gharib, A.F. Glutathione S transferase T1 gene polymorphism and its promoter methylation are associated with breast cancer susceptibility in Egyptian women. Biotechnol. Appl. Biochem. 2021, 69, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Szeligowska, N.; Cholewińska, P.; Smoliński, J.; Wojnarowski, K.; Pokorny, P.; Czyż, K.; Pogoda Sewerniak, K. Glutathione S-transferase (GST) and cortisol levels vs. microbiology of the digestive system of sheep during lambing. BMC Vet. Res. 2022, 18, 107. [Google Scholar] [CrossRef] [PubMed]
- Lan, R.; Zhao, Z.; Li, S.; An, L. Sodium butyrate as an effective feed additive to improve performance, liver function, and meat quality in broilers under hot climatic condition. Poult. Sci. 2020, 99, 5491–5500. [Google Scholar] [CrossRef]
- Čobanović, N.; Stanković, S.D.; Dimitrijević, M.; Suvajdžić, B.; Grković, N.; Vasilev, D.; Karabasil, N. Identifying Physiological Stress Biomarkers for Prediction of Pork Quality Variation. Animals 2020, 10, 614. [Google Scholar] [CrossRef]
- Huntley, N.F.; Gould, S.A.; Patience, J. Evaluation of the effect of β-mannanase supplementation and mannans on nursery pig growth performance and serum acute phase protein concentrations. Can. J. Anim. Sci. 2020, 100, 111–118. [Google Scholar] [CrossRef]
- Musharraf, M.; Khan, M.A. Estimation of dietary copper requirement of fingerling Indian major carp, Labeo rohita (Hamilton). Aquaculture 2022, 549, 737742. [Google Scholar] [CrossRef]
- Jain, S.; Gautam, V.; Naseem, S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied. Sci. 2011, 3, 118. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Pre-Nursery I | Pre-Nursery II | Initial |
---|---|---|---|
Corn Grain 7.8% CB | 228 | 323 | 407 |
Alpha Extruded Corn | 200 | 200 | 200 |
Soy Meal 45% CB | 210 | 255 | 260 |
Deactivated Whole Soybean | 80 | 60 | 50 |
Prot. Conc. Soy X-Soy 200 | 40 | 10 | - |
Dehydrated Egg Flour | 20 | 5.0 | - |
Whey—Relat | 140 | 70 | - |
Crystal Sugar | 30 | 20 | 10 |
Limestone 38% Ca | 8.7 | 7.5 | 8.4 |
Dicalcium phosphate—Phosbic | 10 | 9.9 | 11 |
Sodium Bicarbonate | - | - | 5.62 |
Refined Salt | 5.4 | 5.5 | 3.1 |
L-Lysine 98.5%/78 | 4.64 | 4.86 | 6.44 |
DL-Methionine 99% | 2.29 | 2.05 | 2.42 |
L-Threonine 98.5% | 4.16 | 4.03 | 4.82 |
L-Tryptophan 98% | 0.41 | 0.45 | 0.7 |
L-Isoleucine | - | - | 0.38 |
L-Valine | 1.22 | 1.20 | 1.93 |
Bewi-Spray 99L | 4.82 | 12.3 | 20 |
PX VITAMIN | 3.0 | 3.0 | 3.0 |
PX MINERAL | 3.0 | 3.0 | 3.0 |
Vit. E 50% | 0.1 | 0.1 | 0.1 |
Zinc Oxide 75% Zn | 3.5 | 2.5 | 1.0 |
Sugarcap | 0.2 | 0.2 | 0.15 |
Banox | 0.4 | 0.4 | 0.4 |
Total weight | 1000 | 1000 | 1000 |
Nutritional Levels | |||
Moisture % | 8.91 | 9.84 | 10.5 |
Crude Protein % | 21.4 | 20.1 | 19.3 |
Milk Protein % | 1.68 | 0.84 | - |
Total Lactose % | 10.5 | 5.25 | - |
Amide % | 28.5 | 34.6 | 40.0 |
Ethereal Extract % | 5.11 | 5.22 | 5.80 |
Crude Fiber % | 2.44 | 2.60 | 2.69 |
Lysine Dig Sui % | 1.45 | 1.34 | 1.36 |
Methionine Dig Sui % | 0.52 | 0.47 | 0.49 |
Treatment 1 | p-Values 2 | |||||||
---|---|---|---|---|---|---|---|---|
PC | NC | TRI-BUT | MDT-BUT | MDT-LAU | SEM | Treat | Treat × Day | |
Body weight (kg) | 0.12 | <0.01 | ||||||
d 1 | 8.15 | 8.15 | 8.16 | 8.16 | 8.15 | 0.21 | ||
d 7 | 9.3 | 9.41 | 9.34 | 9.3 | 9.25 | 0.18 | ||
d 14 | 11.9 | 11.9 | 12.2 | 12.1 | 12.3 | 0.19 | ||
d 39 | 24.8 a | 23.3 b | 24.3 a | 24.0 ab | 24.6 a | 0.16 | ||
Daily weight gain (kg) | ||||||||
d 1–7 | 0.17 | 0.18 | 0.17 | 0.16 | 0.16 | 0.02 | 0.80 | - |
d 8–14 | 0.38 | 0.36 | 0.36 | 0.36 | 0.4 | 0.01 | 0.21 | - |
d 15–39 | 0.51 | 0.46 | 0.46 | 0.47 | 0.49 | 0.02 | 0.14 | - |
d 1–14 | 0.27 | 0.27 | 0.28 | 0.28 | 0.29 | 0.01 | 0.16 | - |
d 1–39 | 0.42 A | 0.38 B | 0.41 A | 0.40 AB | 0.42 A | 0.01 | <0.01 | - |
Feed intake (kg/day) | ||||||||
d 1–7 | 0.26 | 0.27 | 0.25 | 0.26 | 0.27 | 0.02 | 0.95 | - |
d 8–14 | 0.51 | 0.51 | 0.49 | 0.48 | 0.57 | 0.03 | 0.30 | - |
d 15–39 | 0.92 A | 0.86 B | 0.88 B | 0.87 B | 0.86 B | 0.02 | 0.10 | - |
d 1–14 | 0.39 | 0.39 | 0.37 | 0.37 | 0.42 | 0.02 | 0.57 | - |
d 1–39 | 0.73 | 0.7 | 0.7 | 0.69 | 0.7 | 0.02 | 0.51 | - |
Feed:gain (kg/kg) | ||||||||
d 1–7 | 1.66 | 1.53 | 1.49 | 1.7 | 1.9 | 0.17 | 0.40 | - |
d 8–14 | 1.35 | 1.42 | 1.37 | 1.34 | 1.4 | 0.04 | 0.32 | - |
d 15–39 | 1.79 | 1.9 | 1.93 | 1.85 | 1.74 | 0.07 | 0.17 | - |
d 1–14 | 1.44 B | 1.49 A | 1.35 C | 1.35 C | 1.47 AB | 0.04 | 0.05 | - |
d 1–39 | 1.73 BC | 1.85 A | 1.79 AB | 1.72 BC | 1.65 C | 0.05 | 0.03 | - |
Items 1 | Treatment 1 | SEM | p-Values 2 | ||||
---|---|---|---|---|---|---|---|
PC | NC | TRI-BUT | MDT-BUT | MDT-LAU | |||
Serum biochemistry | |||||||
Glucose (mg//dL) | 116 ab | 106 b | 133 a | 101 b | 102 b | 3.98 | 0.05 |
Cholesterol (mg/dL) | 120 | 111 | 132 | 114 | 122 | 4.74 | 0.53 |
Total protein (g/dL) | 8.02 | 7.61 | 6.94 | 6.68 | 7.55 | 0.69 | 0.25 |
Albumin (g/dL) | 3.04 | 3.18 | 3.2 | 3.12 | 3.08 | 0.09 | 0.84 |
Triglycerides (mg/dL) | 48.8 ab | 57.1 a | 43.8 b | 34.2 c | 35.6 c | 2.85 | 0.02 |
Urea (mg/dL) | 32.0 a | 18.0 b | 24.8 ab | 25.0 ab | 32.1 a | 2.36 | 0.01 |
Globulin (g/dL) | 4.97 a | 4.43 ab | 3.74 b | 3.56 b | 4.46 ab | 0.15 | 0.08 |
Proteinogram | |||||||
Gamma globulin (g/dL) | 0.95 a | 0.64 b | 0.97 a | 0.85 a | 0.95 a | 0.2 | 0.01 |
Ceruloplasmin (g/dL) | 0.39 b | 0.78 a | 0.34 b | 0.31 b | 0.36 b | 0.07 | 0.02 |
Haptoglobin (g/dL) | 0.45 b | 0.64 a | 0.46 b | 0.42 b | 0.45 b | 0.06 | 0.01 |
C-reactive protein (g/dL) | 0.25 b | 0.41 a | 0.24 b | 0.22 b | 0.27 b | 0.03 | 0.04 |
Oxidative status | |||||||
TBARS (nmol MDA/mg protein) | 5.62 | 4.98 | 4.53 | 6.04 | 6.41 | 1.03 | 0.39 |
GST (µmol CDNB/min/mg protein) | 454 b | 477 b | 573 a | 557 a | 488 ab | 6.52 | 0.04 |
Protein thiols (nmol SH/mg protein) | 14.7 | 15 | 17.1 | 17.2 | 14.5 | 1.69 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficagna, C.A.; Galli, G.M.; Zatti, E.; Zago, I.; Amaral, M.A.F.D.d.; de Vitt, M.G.; Paiano, D.; da Silva, A.S. Addition of Butyric Acid and Lauric Acid Glycerides in Nursery Pig Feed to Replace Conventional Growth Promoters. Animals 2024, 14, 1174. https://doi.org/10.3390/ani14081174
Ficagna CA, Galli GM, Zatti E, Zago I, Amaral MAFDd, de Vitt MG, Paiano D, da Silva AS. Addition of Butyric Acid and Lauric Acid Glycerides in Nursery Pig Feed to Replace Conventional Growth Promoters. Animals. 2024; 14(8):1174. https://doi.org/10.3390/ani14081174
Chicago/Turabian StyleFicagna, Cássio Antônio, Gabriela Miotto Galli, Emerson Zatti, Isadora Zago, Marco Aurélio Fritzen Dias do Amaral, Maksuel Gatto de Vitt, Diovani Paiano, and Aleksandro Schafer da Silva. 2024. "Addition of Butyric Acid and Lauric Acid Glycerides in Nursery Pig Feed to Replace Conventional Growth Promoters" Animals 14, no. 8: 1174. https://doi.org/10.3390/ani14081174
APA StyleFicagna, C. A., Galli, G. M., Zatti, E., Zago, I., Amaral, M. A. F. D. d., de Vitt, M. G., Paiano, D., & da Silva, A. S. (2024). Addition of Butyric Acid and Lauric Acid Glycerides in Nursery Pig Feed to Replace Conventional Growth Promoters. Animals, 14(8), 1174. https://doi.org/10.3390/ani14081174