Enhancing Genomic Prediction Accuracy for Body Conformation Traits in Korean Holstein Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phenotype and Genotype Data
2.2. Model Definition
2.2.1. Deregressed Estimated Breeding Values (DEBVs) of the Response Variable in Genomic Analysis
2.2.2. Statistical Method for GS Model
2.2.3. Genomic Prediction Accuracy under Fivefold Cross-Validation
3. Results and Discussion
3.1. GWAS of Each Trait
3.2. Estimation of Genomic Prediction Accuracy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, X.; Fang, M.; Liu, L.; Wang, S.; Liu, J.; Ding, X.; Zhang, S.; Zhang, Q.; Zhang, Y.; Qiao, L. Genome Wide Association Studies for Body Conformation Traits in the Chinese Holstein Cattle Population. BMC Genom. 2013, 14, 897. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.; ME1461589 Goddard. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Daetwyler, H.; Schenkel, F.; Sargolzaei, M.; Robinson, J. Andrew B Robinson. A Genome Scan to Detect Quantitative Trait Loci for Economically Important Traits in Holstein Cattle Using Two Methods and a Dense Single Nucleotide Polymorphism Map. J. Dairy Sci. 2008, 91, 3225–3236. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M. Genomic Selection: Prediction of Accuracy and Maximisation of Long Term Response. Genetica 2009, 136, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Brøndum, R.; Ma, P.; Guldbrandtsen, B.; Aamand, G.; Lund, M. Comparison of Genomic Predictions Using Medium-Density (∼54,000) and High-Density (∼777,000) Single Nucleotide Polymorphism Marker Panels in Nordic Holstein and Red Dairy Cattle Populations. J. Dairy Sci. 2012, 95, 4657–4665. [Google Scholar] [CrossRef] [PubMed]
- Habier, D.; Fernando, R.L.; Garrick, D.J. Genomic Blup Decoded: A Look into the Black Box of Genomic Prediction. Genetics 2013, 194, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Habier, D.; Fernando, R.L.; Dekkers, J.C.M.; JCM2219482 Dekkers. The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values. Genetics 2007, 177, 2389–2397. [Google Scholar] [CrossRef] [PubMed]
- Saatchi, M.; McClure, M.C.; McKay, S.D.; Rolf, M.M.; Kim, J.; Decker, J.E.; Taxis, T.M.; Chapple, R.H.; Ramey, H.R.; Northcutt, S.L.; et al. Accuracies of Genomic Breeding Values in American Angus Beef Cattle Using K-Means Clustering for Cross-Validation. Genet. Sel. Evol. 2011, 43, 40. [Google Scholar] [CrossRef]
- Habier, D.; Tetens, J.; Seefried, F.-R.; Lichtner, P.; Thaller, G. The Impact of Genetic Relationship Information on Genomic Breeding Values in German Holstein Cattle. Genet. Sel. Evol. 2010, 42, 5. [Google Scholar] [CrossRef]
- Calus, M.; Veerkamp, R. Accuracy of Breeding Values When Using and Ignoring the Polygenic Effect in Genomic Breeding Value Estimation with a Marker Density of One Snp Per Cm. J. Anim. Breed. Genet. 2007, 124, 362–368. [Google Scholar] [CrossRef]
- Garrick, D.J.; Taylor, J.F.; Fernando, R.L. Deregressing Estimated Breeding Values and Weighting Information for Genomic Regression Analyses. Genet. Sel. Evol. 2009, 41, 55. [Google Scholar] [CrossRef]
- Hayes, B.J.; Pryce, J.; Chamberlain, A.J.; Bowman, P.J.; Goddard, M.E. Genetic Architecture of Complex Traits and Accuracy of Genomic Prediction: Coat Colour, Milk-Fat Percentage, and Type in Holstein Cattle as Contrasting Model Traits. PLoS Genet. 2010, 6, e1001139. [Google Scholar] [CrossRef] [PubMed]
- Gunia, M.; Saintilan, R.; Venot, E.; Hozé, C.; Fouilloux, M.N.; Phocas, F. Genomic Prediction in French Charolais Beef Cattle Using High-Density Single Nucleotide Polymorphism Markers. J. Anim. Sci. 2014, 92, 3258–3269. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Lund, M.S.; Zhang, Y.; Su, G. Accuracy of Genomic Prediction Using Different Models and Response Variables in the N Ordic R Ed Cattle Population. J. Anim. Breed. Genet. 2013, 130, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Goddard, M.E.; Hayes, B.J. Mapping Genes for Complex Traits in Domestic Animals and Their Use in Breeding Programmes. Nat. Rev. Genet. 2009, 10, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Abo-Ismail, M.K.; Brito, L.F.; Miller, S.P.; Sargolzaei, M.; Grossi, D.A.; Moore, S.S.; Plastow, G.; Stothard, P.; Nayeri, S. Genome-Wide Association Studies and Genomic Prediction of Breeding Values for Calving Performance and Body Conformation Traits in Holstein Cattle. Genet. Sel. Evol. 2017, 49, 82. [Google Scholar] [CrossRef] [PubMed]
- Dematawena, C.; Berger, P. Effect of Dystocia on Yield, Fertility, and Cow Losses and an Economic Evaluation of Dystocia Scores for Holsteins. J. Dairy Sci. 1997, 80, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Ali, T.; Burnside, E.; Schaeffer, L. Relationship between External Body Measurements and Calving Difficulties in Canadian Holstein-Friesian Cattle. J. Dairy Sci. 1984, 67, 3034–3044. [Google Scholar] [CrossRef] [PubMed]
- Sawa, A.; Bogucki, M.; Krężel-Czopek, S.; Neja, W. Association between Rump Score and Course of Parturition in Cows. Arch. Anim. Breed. 2013, 56, 816–822. [Google Scholar] [CrossRef]
- Schmidtmann, C.; Segelke, D.; Bennewitz, J.; Tetens, J.; Thaller, G. Genetic Analysis of Production Traits and Body Size Measurements and Their Relationships with Metabolic Diseases in German Holstein Cattle. J. Dairy Sci. 2023, 106, 421–438. [Google Scholar] [CrossRef]
- Sargolzaei, M.; Chesnais, J.P.; Schenkel, F.S. A New Approach for Efficient Genotype Imputation Using Information from Relatives. BMC Genom. 2014, 15, 478. [Google Scholar] [CrossRef] [PubMed]
- Saatchi, M.; Schnabel, R.D.; Rolf, M.M.; Taylor, J.F.; Garrick, D.J. Accuracy of Direct Genomic Breeding Values for Nationally Evaluated Traits in Us Limousin and Simmental Beef Cattle. Genet. Sel. Evol. 2012, 44, 38. [Google Scholar] [CrossRef] [PubMed]
- Kizilkaya, K.; Fernando, R.L.; Garrick, D.J. Genomic Prediction of Simulated Multibreed and Purebred Performance Using Observed Fifty Thousand Single Nucleotide Polymorphism Genotypes. J. Anim. Sci. 2010, 88, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Garrick, D.J.; Fernando, R.L. Implementing a Qtl Detection Study (Gwas) Using Genomic Prediction Methodology. Genome-Wide Assoc. Stud. Genom. Predict. 2013, 1019, 275–298. [Google Scholar]
- Xue, X.; Hu, H.; Zhang, J.; Ma, Y.; Han, L.; Hao, F.; Jiang, Y.; Ma, Y. Estimation of Genetic Parameters for Conformation Traits and Milk Production Traits in Chinese Holsteins. Animals 2022, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Battagin, M.; Sartori, C.; Biffani, S.; Penasa, M.; Cassandro, M. Genetic Parameters for Body Condition Score, Locomotion, Angularity, and Production Traits in Italian Holstein Cattle. J. Dairy Sci. 2013, 96, 5344–5351. [Google Scholar] [CrossRef] [PubMed]
- Wall, E.; White, I.; Coffey, M.; Brotherstone, S. The Relationship between Fertility, Rump Angle, and Selected Type Information in Holstein-Friesian Cows. J. Dairy Sci. 2005, 88, 1521–1528. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Luo, H.; Zhang, X.; Lu, H.; Zhang, M.; Ge, J.; Zhang, T.; Yan, M.; Tan, X.; Huang, X.; et al. Factor Analysis of Genetic Parameters for Body Conformation Traits in Dual-Purpose Simmental Cattle. Animals 2022, 12, 2433. [Google Scholar] [CrossRef]
- Olsen, H.G.; Knutsen, T.M.; Lewandowska-Sabat, A.M.; Grove, H.; Nome, T.; Svendsen, M.; Arnyasi, M.; Sodeland, M.; Sundsaasen, K.K.; Dahl, S.R.; et al. Fine Mapping of a Qtl on Bovine Chromosome 6 Using Imputed Full Sequence Data Suggests a Key Role for the Group-Specific Component (Gc) Gene in Clinical Mastitis and Milk Production. Genet. Sel. Evol. 2016, 48, 79. [Google Scholar] [CrossRef]
- Cai, Z.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Prioritizing Candidate Genes Post-Gwas Using Multiple Sources of Data for Mastitis Resistance in Dairy Cattle. BMC Genom. 2018, 19, 656. [Google Scholar] [CrossRef]
- Poindexter, M.B.; Kweh, M.F.; Zimpel, R.; Zuniga, J.; Lopera, C.; Zenobi, M.G.; Jiang, Y.; Engstrom, M.; Celi, P.; Santos, J.E.P.; et al. Feeding Supplemental 25-Hydroxyvitamin D3 Increases Serum Mineral Concentrations and Alters Mammary Immunity of Lactating Dairy Cows. J. Dairy Sci. 2020, 103, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Merriman, K.E.; Powell, J.L.; Santos, J.E.; Nelson, C.D. Intramammary 25-Hydroxyvitamin D3 Treatment Modulates Innate Immune Responses to Endotoxin-Induced Mastitis. J. Dairy Sci. 2018, 101, 7593–7607. [Google Scholar] [CrossRef] [PubMed]
- Lippolis, J.D.; Reinhardt, T.A.; Sacco, R.A.; Nonnecke, B.J.; Nelson, C.D. Treatment of an Intramammary Bacterial Infection with 25-Hydroxyvitamin D3. PLoS ONE 2011, 6, e25479. [Google Scholar] [CrossRef] [PubMed]
- Purfield, D.C.; Bradley, D.G.; Evans, R.D.; Kearney, F.J.; Berry, D.P. Genome-Wide Association Study for Calving Performance Using High-Density Genotypes in Dairy and Beef Cattle. Genet. Sel. Evol. 2015, 47, 47. [Google Scholar] [CrossRef] [PubMed]
- Atashi, H.; Wilmot, H.; Vanderick, S.; Hubin, X.; Gengler, N. Genome-Wide Association Study for Milk Production Traits in Dual-Purpose Belgian Blue Cows. Livest. Sci. 2022, 256, 104831. [Google Scholar] [CrossRef]
- Costa, A.; Schwarzenbacher, H.; Mészáros, G.; Fuerst-Waltl, B.; Fuerst, C.; Sölkner, J.; Penasa, M. On the Genomic Regions Associated with Milk Lactose in Fleckvieh Cattle. J. Dairy Sci. 2019, 102, 10088–10099. [Google Scholar] [CrossRef]
- Kambadur, R.; Sharma, M.; Smith, T.P.; Bass, J.J. Mutations in Myostatin (Gdf8) in Double-Muscled Belgian Blue and Piedmontese Cattle. Genome Res. 1997, 7, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Mosher, D.S.; Quignon, P.; Bustamante, C.D.; Sutter, N.B.; Mellersh, C.S.; Parker, H.G.; Ostrander, E.A. A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs. PLoS Genet. 2007, 3, e79. [Google Scholar] [CrossRef]
- Vogel, P.; Ding, Z.M.; Read, R.; DaCosta, C.M.; Hansard, M.; Small, D.L.; Gui-lan, Y.; Hansen, G.; Brommage, R.; Powell, D.R. Progressive Degenerative Myopathy and Myosteatosis in Asnsd1-Deficient Mice. Vet. Pathol. 2020, 57, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.D.; Cheng, M.; Rizwan, A.; Jiang, L.; Krishnamachary, B.; Bhujwalla, Z.M.; Bhujwalla, Z.M.; Bathen, T.F.; Glund, K. Targeting Choline Phospholipid Metabolism: Gdpd5 and Gdpd6 Silencing Decrease Breast Cancer Cell Proliferation, Migration, and Invasion. NMR Biomed. 2016, 29, 1098–1107. [Google Scholar] [CrossRef]
- Deng, T.; Liang, A.; Liang, S.; Ma, X.; Lu, X.; Duan, A.; Pang, C.; Hua, G.; Liu, S.; Campanile, G.; et al. Integrative Analysis of Transcriptome and Gwas Data to Identify the Hub Genes Associated with Milk Yield Trait in Buffalo. Front. Genet. 2019, 10, 36. [Google Scholar] [CrossRef]
- Raza, S.H.A.; Khan, S.; Amjadi, M.; Abdelnour, S.A.; Ohran, H.; Alanazi, K.M.; El-Hack, M.E.A.; Taha, A.E.; Khan, R.; Gong, C.; et al. Genome-Wide Association Studies Reveal Novel Loci Associated with Carcass and Body Measures in Beef Cattle. Arch. Biochem. Biophys. 2020, 694, 108543. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Oliveira, H.R.; Schenkel, F.S.; Pedrosa, V.B.; Melka, M.G.; Brito, L.F. Using Imputed Whole-Genome Sequence Variants to Uncover Candidate Mutations and Genes Affecting Milking Speed and Temperament in Holstein Cattle. J. Dairy Sci. 2020, 103, 10383–10398. [Google Scholar] [CrossRef]
- Halli, K.; Vanvanhossou, S.F.; Bohlouli, M.; König, S.; Yin, T. Identification of Candidate Genes on the Basis of Snp by Time-Lagged Heat Stress Interactions for Milk Production Traits in German Holstein Cattle. PLoS ONE 2021, 16, e0258216. [Google Scholar] [CrossRef]
- Marete, A.; Sahana, G.; Fritz, S.; Lefebvre, R.; Barbat, A.; Lund, M.S.; Guldbrandtsen, B.; Boichard, D. Genome-Wide Association Study for Milking Speed in French Holstein Cows. J. Dairy Sci. 2018, 101, 6205–6219. [Google Scholar] [CrossRef]
- Gonzalez, M.; Villa, R.; Villa, C.; Gonzalez, V.; Montano, M.; Medina, G.; Mahadevan, P. Inspection of Real and Imputed Genotypes Reveled 76 Snps Associated to Rear Udder Height in Holstein Cattle. J. Adv. Vet. Anim. Res. 2020, 7, 234. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, L.; Lan, X.; Asif, N.; Guan, F.; Fu, D.; Li, B.; Yan, C.; Zhang, H.; Zhang, X.; et al. Genome-Wide Definition of Selective Sweeps Reveals Molecular Evidence of Trait-Driven Domestication among Elite Goat (Capra Species) Breeds for the Production of Dairy, Cashmere, and Meat. GigaScience 2018, 7, giy105. [Google Scholar] [CrossRef]
- Sanna, S.; Jackson, A.U.; Nagaraja, R.; Willer, C.J.; Chen, W.M.; Bonnycastle, L.L.; Shen, H.; Timpson, N.; Lettre, G.; Usala, G.; et al. Common Variants in the Gdf5-Uqcc Region Are Associated with Variation in Human Height. Nat. Genet. 2008, 40, 198–203. [Google Scholar] [CrossRef]
- Cobb, J.; Dierich, A.; Huss-Garcia, Y.; Duboule, D. A Mouse Model for Human Short-Stature Syndromes Identifies Shox2 as an Upstream Regulator of Runx2 During Long-Bone Development. Proc. Natl. Acad. Sci. USA 2006, 103, 4511–4515. [Google Scholar] [CrossRef]
- Kumar, J.P.; Kulkarni, R.; Kulkarni, R.N. A Study on the Anomalies Associated with the Human Sterna in South Indian Population. J. Anat. Soc. India. 2015, 64, S34. [Google Scholar] [CrossRef]
- Sanchez, M.P.; Rocha, D.; Charles, M.; Boussaha, M.; Hozé, C.; Brochard, M.; Grosperrin, P. Sequence-Based Gwas and Post-Gwas Analyses Reveal a Key Role of Slc37a1, Ankh, and Regulatory Regions on Bovine Milk Mineral Content. Sci. Rep. 2021, 11, 7537. [Google Scholar] [CrossRef]
- Dobbs, K.; Domínguez Conde, C.; Zhang, S.Y.; Parolini, S.; Audry, M.; Chou, J.; Haapaniemi, E.; Keles, S.; Bilic, I.; Okada, S.; et al. Inherited Dock2 Deficiency in Patients with Early-Onset Invasive Infections. N. Engl. J. Med. 2015, 372, 2409–2422. [Google Scholar] [CrossRef]
- Yuan, S.; Yu, Z.; Liu, Q.; Zhang, M.; Xiang, Y.; Wu, N.; Wu, L.; Hu, Z.; Xu, B.; Cai, T.; et al. Gpc5, a Novel Epigenetically Silenced Tumor Suppressor, Inhibits Tumor Growth by Suppressing Wnt/Β-Catenin Signaling in Lung Adenocarcinoma. Oncogene 2016, 35, 6120–6131. [Google Scholar] [CrossRef]
- Hasgall, P.A.; Hoogewijs, D.; Faza, M.B.; Panse, V.G.; Wenger, R.H.; Camenisch, G. The Putative Rna Helicase Helz Promotes Cell Proliferation, Translation Initiation and Ribosomal Protein S6 Phosphorylation. PLoS ONE 2011, 6, e22107. [Google Scholar] [CrossRef]
- Schuh-Huerta, S.M.; Johnson, N.A.; Rosen, M.P.; Sternfeld, B.; Cedars, M.I.; Reijo Pera, R.A. Genetic Markers of Ovarian Follicle Number and Menopause in Women of Multiple Ethnicities. Hum. Genet. 2012, 131, 1709–1724. [Google Scholar] [CrossRef]
- Shabalina, T.; Yin, T.; König, S. Survival Analyses in Holstein Cows Considering Direct Disease Diagnoses and Specific Snp Marker Effects. J. Dairy Sci. 2020, 103, 8257–8273. [Google Scholar] [CrossRef]
- González-Ruiz, S.; Strillacci, M.G.; Durán-Aguilar, M.; Cantó-Alarcón, G.J.; Herrera-Rodríguez, S.E.; Bagnato, A.; Guzmán, L.F.; Milián-Suazo, F.; Román-Ponce, S.I. Genome-Wide Association Study in Mexican Holstein Cattle Reveals Novel Quantitative Trait Loci Regions and Confirms Mapped Loci for Resistance to Bovine Tuberculosis. Animals 2019, 9, 636. [Google Scholar] [CrossRef]
- Mohseni, M.; Cidado, J.; Croessmann, S.; Cravero, K.; Cimino-Mathews, A.; Wong, H.Y.; Scharpf, R.; Zabransky, D.J.; Abukhdeir, A.M.; Garay, J.P.; et al. Macrod2 Overexpression Mediates Estrogen Independent Growth and Tamoxifen Resistance in Breast Cancers. Proc. Natl. Acad. Sci. USA 2014, 111, 17606–17611. [Google Scholar] [CrossRef]
- Fernando, R.L.; Garrick, D. Bayesian Methods Applied to Gwas. Methods Mol Biol. 2013, 1019, 237–274. [Google Scholar]
- Guo, G.; Lund, M.; Zhang, Y.; Su, G. Comparison between Genomic Predictions Using Daughter Yield Deviation and Conventional Estimated Breeding Value as Response Variables. J. Anim. Breed. Genet. 2010, 127, 423–432. [Google Scholar] [CrossRef]
- Lee, J.; Su, H.; Fernando, R.L.; Garrick, D.J.; Taylor, J. Characterization of the F94l Double Muscling Mutation in Pure-and Crossbred Limousin Animals. Anim. Ind. Rep. 2015, 661, 19. [Google Scholar]
Trait | Abbreviation | * | * | * |
---|---|---|---|---|
Body Trait | ||||
Angularity | ANG | 0.106 | 0.777 | 0.120 |
Body condition score | BCS | 0.109 | 0.474 | 0.187 |
Body depth | BDE | 0.218 | 0.605 | 0.265 |
Chest width | CWI | 0.124 | 0.671 | 0.156 |
Height at front end | HHE | 0.027 | 0.302 | 0.082 |
Locomotion | LOC | 0.027 | 0.844 | 0.031 |
Overall conformation score | OCS | 1.027 | 5.599 | 0.155 |
Stature | STA | 0.411 | 0.873 | 0.320 |
Rump Trait | ||||
Loin strength | LST | 0.075 | 0.683 | 0.099 |
Rump angle | RAN | 0.527 | 1.190 | 0.307 |
Rump width | RWI | 0.164 | 0.806 | 0.169 |
Feet and leg traits | ||||
Bone quality | BQL | 0.064 | 0.529 | 0.108 |
Foot angle | FAN | 0.073 | 1.017 | 0.067 |
Heel depth/foot height | HDE | 0.031 | 0.513 | 0.057 |
Rear leg rear view | RLR | 0.092 | 1.073 | 0.079 |
Rear leg set | RLS | 0.108 | 0.823 | 0.116 |
Udder traits | ||||
Front teat length | FTL | 0.328 | 1.219 | 0.212 |
Front teat placement | FTP | 0.194 | 0.934 | 0.172 |
Fore udder attachment | FUA | 0.178 | 1.170 | 0.132 |
Rear teat placement | RTP | 0.077 | 0.769 | 0.091 |
Rear udder height | RUH | 0.252 | 1.239 | 0.169 |
Rear udder width | RUW | 0.114 | 0.932 | 0.109 |
Udder depth | UDE | 0.418 | 0.833 | 0.334 |
Udder support | USU | 0.115 | 0.960 | 0.107 |
Udder texture | UTX | 0.077 | 0.769 | 0.091 |
Cluster | No. of Animals | inBreC 1 | amax_within 2 | amax_between 3 | aij_within 4 | aij_between 5 |
---|---|---|---|---|---|---|
1 | 1585 | 0.049 | 0.504 | 0.401 | 0.182 | 0.095 |
2 | 1715 | 0.018 | 0.362 | 0.381 | 0.045 | 0.064 |
3 | 1840 | 0.041 | 0.449 | 0.456 | 0.098 | 0.092 |
4 | 2039 | 0.052 | 0.516 | 0.426 | 0.165 | 0.100 |
5 | 3916 | 0.049 | 0.538 | 0.430 | 0.159 | 0.092 |
Avg. | 0.042 | 0.474 | 0.419 | 0.130 | 0.089 |
Trait 1 | BTA _MB 2 | nSNPs | GV (%) 3 | Informative SNP | Model _Freq 4 | Variant | Gene Annotation 5 |
---|---|---|---|---|---|---|---|
ANG | 6_88 | 18 | 1.52 | AX-106731967 | 0.026 | intergenic | GC (152,138) |
BCS | 2_6 | 174 | 1.39 | AX-427902438 | 0.024 | intron | ANKAR |
AX-419793308 | 0.018 | downstream gene | MSTN (4600) | ||||
AX-419783071 | 0.074 | 5_prime_UTR | ASNSD1 | ||||
AX-372108927 | 0.021 | splice region | OSGEPL1 | ||||
AX-320887755 | 0.055 | missense | ASNSD1 | ||||
AX-320881517 | 0.019 | downstream gene | MSTN (471) | ||||
AX-310503226 | 0.050 | missense | ASNSD1 | ||||
AX-117090049 | 0.031 | intergenic | ASNSD1 (29,106) | ||||
BQL | 6_88 | 18 | 1.72 | AX-106731967 | 0.022 | intergenic | GC (152,138) |
15_55 | 28 | 1.31 | AX-115108455 | 0.011 | intergenic | ENSBTAG00000046149 (6310) | |
AX-106751411 | 0.602 | intron | GDPD5 | ||||
AX-106734828 | 0.026 | intergenic | ENSBTAG00000000628 (18,676) | ||||
10_33 | 73 | 1.16 | AX-429460221 | 0.150 | intergenic | MEIS2 (276,619) | |
AX-428872678 | 0.016 | intergenic | MEIS2 (236,727) | ||||
AX-428146406 | 0.039 | intergenic | TMCO5A (34,691) | ||||
CWI | 14_76 | 53 | 1.85 | AX-169515619 | 0.015 | synonymous | DECR1 |
AX-115107389 | 0.020 | missense | DECR1 | ||||
4_115 | 66 | 1.16 | AX-429698651 | 0.323 | intergenic | CCT8L2 (65,651) | |
AX-429411702 | 0.012 | intergenic | XRCC2 (35,174) | ||||
AX-429252290 | 0.024 | intron | KMT2C | ||||
AX-429200877 | 0.397 | intron | KMT2C | ||||
AX-428377847 | 0.021 | intron | GALNTL5 | ||||
11_52 | 41 | 1.00 | AX-429187627 | 0.612 | intergenic | CTNNA2 (1,899,780) | |
AX-428077681 | 0.012 | intergenic | CTNNA2 (1,912,867) | ||||
AX-181635443 | 0.036 | intergenic | CTNNA2 (2,016,344) | ||||
FTL | 11_82 | 44 | 1.60 | AX-429750872 | 0.890 | intergenic | FAM49A (120,784) |
FTP | 1_110 | 42 | 1.43 | AX-185114427 | 0.107 | intergenic | SHOX2 (136,580) |
AX-106726281 | 0.017 | intergenic | SHOX2 (13,662) | ||||
7_30 | 82 | 1.13 | AX-429548887 | 0.017 | intergenic | ENSBTAG00000047546 (303,880) | |
AX-428051278 | 0.272 | intergenic | ZNF608 (329,604) | ||||
AX-428025513 | 0.017 | intron | ZNF608 | ||||
AX-185121878 | 0.015 | intergenic | ENSBTAG00000047546 (270,407) | ||||
AX-181636085 | 0.024 | intergenic | ENSBTAG00000047546 (194,374) | ||||
AX-124375841 | 0.168 | intergenic | ZNF608 (53,173) | ||||
AX-124374944 | 0.019 | intergenic | ENSBTAG00000047546 (174,952) | ||||
AX-115107130 | 0.034 | intergenic | ZNF608 (85,253) | ||||
AX-106758093 | 0.020 | intergenic | ENSBTAG00000047546 (208,718) | ||||
AX-106731571 | 0.037 | intergenic | ZNF608 (13,676) | ||||
HHE | 20_58 | 85 | 2.25 | AX-429574557 | 0.017 | intergenic | ANKH (89,616) |
AX-106750002 | 0.733 | intron | TRIO | ||||
RAN | 7_54 | 41 | 1.04 | AX-429464352 | 0.642 | intron | FCHSD1 |
RTP | 6_88 | 77 | 1.53 | AX-428094398 | 0.691 | intron | DOCK2 |
19_1 | 53 | 1.42 | AX-429832035 | 0.030 | intron | CA10 | |
AX-428891026 | 0.018 | intron | CA10 | ||||
AX-320910317 | 0.547 | intron | CA10 | ||||
AX-310532733 | 0.062 | intron | CA10 | ||||
RUW | 6_88 | 18 | 2.41 | AX-106731967 | 0.140 | intergenic | GC (152,138) |
AX-185111344 | 0.021 | intron | GPC5 | ||||
AX-106721808 | 0.152 | intron | GPC5 | ||||
RWI | 27_36 | 40 | 1.17 | AX-429028592 | 0.726 | intron | IKBKB |
19_63 | 46 | 1.12 | AX-428805994 | 0.047 | intron | HELZ | |
AX-320913575 | 0.047 | intron | CEP112 | ||||
AX-115116940 | 0.068 | intergenic | CACNG5 (19,442) | ||||
AX-106744348 | 0.021 | intergenic | HELZ (25,925) | ||||
AX-106720992 | 0.045 | intron | HELZ | ||||
STA | 13_9 | 93 | 1.07 | AX-428976408 | 0.841 | Intergenic | MACROD2 (340,366) |
AX-428713125 | 0.028 | Intergenic | MACROD2 (299,032) | ||||
AX-310551137 | 0.019 | intergenic | MACROD2 (546,675) |
Traits 1 | resVars 2 | BayesB (with π) | |||
---|---|---|---|---|---|
0.75 | 0.9 | 0.99 | 0.995 | ||
ANG | DEBVexcPA | 0.038 (0.032) | 0.040 (0.032) | 0.052 (0.031) | 0.057 (0.032) |
DEBVincPA | 0.126 (0.031) | 0.128 (0.031) | 0.139 (0.031) | 0.144 (0.031) | |
BCS | DEBVexcPA | 0.135 (0.033) | 0.136 (0.033) | 0.145 (0.033) | 0.152 (0.033) |
DEBVincPA | 0.218 (0.032) | 0.220 (0.032) | 0.232 (0.032) | 0.237 (0.032) | |
BQL | DEBVexcPA | 0.104 (0.034) | 0.105 (0.034) | 0.113 (0.034) | 0.118 (0.034) |
DEBVincPA | 0.177 (0.033) | 0.180 (0.033) | 0.193 (0.033) | 0.195 (0.033) | |
CWI | DEBVexcPA | 0.077 (0.032) | 0.077 (0.032) | 0.091 (0.032) | 0.100 (0.032) |
DEBVincPA | 0.156 (0.032) | 0.154 (0.032) | 0.159 (0.031) | 0.159 (0.032) | |
FTL | DEBVexcPA | 0.241 (0.031) | 0.245 (0.031) | 0.269 (0.030) | 0.276 (0.030) |
DEBVincPA | 0.328 (0.029) | 0.333 (0.029) | 0.353 (0.029) | 0.356 (0.029) | |
FTP | DEBVexcPA | 0.210 (0.031) | 0.214 (0.031) | 0.236 (0.031) | 0.243 (0.030) |
DEBVincPA | 0.293 (0.030) | 0.297 (0.029) | 0.309 (0.029) | 0.309 (0.029) | |
HHE | DEBVexcPA | 0.112 (0.035) | 0.113 (0.035) | 0.120 (0.035) | 0.124 (0.035) |
DEBVincPA | 0.186 (0.034) | 0.186 (0.034) | 0.186 (0.034) | 0.184 (0.034) | |
RAN | DEBVexcPA | 0.362 (0.031) | 0.366 (0.031) | 0.377 (0.030) | 0.373 (0.030) |
DEBVincPA | 0.445 (0.029) | 0.447 (0.029) | 0.447 (0.029) | 0.441 (0.029) | |
RTP | DEBVexcPA | 0.247 (0.031) | 0.248 (0.031) | 0.254 (0.031) | 0.254 (0.031) |
DEBVincPA | 0.281 (0.030) | 0.283 (0.030) | 0.290 (0.030) | 0.288 (0.030) | |
RUW | DEBVexcPA | 0.109 (0.032) | 0.108 (0.032) | 0.097 (0.032) | 0.090 (0.032) |
DEBVincPA | 0.182 (0.031) | 0.181 (0.031) | 0.174 (0.031) | 0.170 (0.031) | |
RWI | DEBVexcPA | 0.277 (0.031) | 0.278 (0.031) | 0.285 (0.030) | 0.287 (0.030) |
DEBVincPA | 0.339 (0.030) | 0.341 (0.030) | 0.343 (0.030) | 0.340 (0.030) | |
STA | DEBVexcPA | 0.312 (0.036) | 0.267 (0.031) | 0.260 (0.031) | 0.246 (0.031) |
DEBVincPA | 0.350 (0.030) | 0.350 (0.030) | 0.340 (0.030) | 0.330 (0.030) |
Traits 1 | resVars 2 | BayesC (with π) | |||
---|---|---|---|---|---|
0.75 | 0.9 | 0.99 | 0.995 | ||
ANG | DEBVexcPA | 0.102 (0.031) | 0.101 (0.031) | 0.099 (0.031) | 0.098 (0.031) |
DEBVincPA | 0.158 (0.031) | 0.158 (0.031) | 0.157 (0.031) | 0.158 (0.031) | |
BCS | DEBVexcPA | 0.137 (0.033) | 0.138 (0.033) | 0.140 (0.033) | 0.144 (0.033) |
DEBVincPA | 0.218 (0.032) | 0.218 (0.032) | 0.224 (0.032) | 0.230 (0.032) | |
BQL | DEBVexcPA | 0.137 (0.033) | 0.137 (0.033) | 0.138 (0.033) | 0.141 (0.033) |
DEBVincPA | 0.176 (0.033) | 0.177 (0.033) | 0.188 (0.033) | 0.196 (0.033) | |
CWI | DEBVexcPA | 0.093 (0.032) | 0.093 (0.032) | 0.101 (0.032) | 0.107 (0.032) |
DEBVincPA | 0.170 (0.031) | 0.172 (0.031) | 0.173 (0.031) | 0.171 (0.031) | |
FTL | DEBVexcPA | 0.237 (0.031) | 0.239 (0.031) | 0.262 (0.030) | 0.272 (0.030) |
DEBVincPA | 0.325 (0.029) | 0.328 (0.029) | 0.350 (0.029) | 0.356 (0.029) | |
FTP | DEBVexcPA | 0.249 (0.030) | 0.249 (0.030) | 0.254 (0.030) | 0.260 (0.030) |
DEBVincPA | 0.301 (0.029) | 0.301 (0.029) | 0.310 (0.029) | 0.313 (0.029) | |
HHE | DEBVexcPA | 0.123 (0.035) | 0.123 (0.035) | 0.125 (0.035) | 0.127 (0.035) |
DEBVincPA | 0.170 (0.035) | 0.170 (0.035) | 0.169 (0.035) | 0.170 (0.035) | |
RAN | DEBVexcPA | 0.372 (0.030) | 0.372 (0.030) | 0.376 (0.030) | 0.374 (0.030) |
DEBVincPA | 0.448 (0.029) | 0.448 (0.029) | 0.451 (0.029) | 0.445 (0.029) | |
RTP | DEBVexcPA | 0.232 (0.031) | 0.232 (0.031) | 0.240 (0.031) | 0.245 (0.031) |
DEBVincPA | 0.280 (0.030) | 0.280 (0.030) | 0.288 (0.030) | 0.290 (0.030) | |
RUW | DEBVexcPA | 0.109 (0.032) | 0.108 (0.032) | 0.103 (0.032) | 0.097 (0.032) |
DEBVincPA | 0.182 (0.031) | 0.182 (0.031) | 0.178 (0.031) | 0.176 (0.031) | |
RWI | DEBVexcPA | 0.275 (0.031) | 0.276 (0.031) | 0.282 (0.030) | 0.285 (0.030) |
DEBVincPA | 0.338 (0.030) | 0.339 (0.030) | 0.346 (0.030) | 0.346 (0.030) | |
STA | DEBVexcPA | 0.248 (0.031) | 0.247 (0.031) | 0.241 (0.031) | 0.235 (0.031) |
DEBVincPA | 0.342 (0.030) | 0.342 (0.030) | 0.336 (0.030) | 0.329 (0.030) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Mun, H.; Koo, Y.; Park, S.; Kim, J.; Yu, S.; Shin, J.; Lee, J.; Son, J.; Park, C.; et al. Enhancing Genomic Prediction Accuracy for Body Conformation Traits in Korean Holstein Cattle. Animals 2024, 14, 1052. https://doi.org/10.3390/ani14071052
Lee J, Mun H, Koo Y, Park S, Kim J, Yu S, Shin J, Lee J, Son J, Park C, et al. Enhancing Genomic Prediction Accuracy for Body Conformation Traits in Korean Holstein Cattle. Animals. 2024; 14(7):1052. https://doi.org/10.3390/ani14071052
Chicago/Turabian StyleLee, Jungjae, Hyosik Mun, Yangmo Koo, Sangchul Park, Junsoo Kim, Seongpil Yu, Jiseob Shin, Jaegu Lee, Jihyun Son, Chanhyuk Park, and et al. 2024. "Enhancing Genomic Prediction Accuracy for Body Conformation Traits in Korean Holstein Cattle" Animals 14, no. 7: 1052. https://doi.org/10.3390/ani14071052
APA StyleLee, J., Mun, H., Koo, Y., Park, S., Kim, J., Yu, S., Shin, J., Lee, J., Son, J., Park, C., Lee, S., Song, H., Kim, S., Dang, C., & Park, J. (2024). Enhancing Genomic Prediction Accuracy for Body Conformation Traits in Korean Holstein Cattle. Animals, 14(7), 1052. https://doi.org/10.3390/ani14071052