Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Management, and Experimental Diets
2.2. Total RNA Extraction and Reverse Transcription
2.3. Quantitative Real-Time PCR
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. mRNA Abundance of Gut Integrity, Nutrient Transporters, and Immune Response-Related Genes in the Ileum on d 7 and d 21
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cervantes, H.M. Antibiotic-free poultry production: Is it sustainable? J. Appl. Poult. Res. 2015, 24, 91–97. [Google Scholar] [CrossRef]
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion concerning the welfare of animals during transport. EFSA J. 2011, 9, 1966. [Google Scholar] [CrossRef]
- Willemsen, H.; Debonne, M.; Swennen, Q.; Everaert, N.; Careghi, C.; Han, H.; Bruggeman, V.; Tona, K.; Decuypere, E. Delay in feed access and spread of hatch: Importance of early nutrition. World’s Poult. Sci. J. 2010, 66, 177–188. [Google Scholar] [CrossRef]
- Ozlu, S.; Ucar, A.; Romanini, C.E.B.; Banwell, R.; Elibol, O. Effect of posthatch feed and water access time on residual yolk and broiler live performance. Poult. Sci. 2020, 99, 6737–6744. [Google Scholar] [CrossRef]
- Cheled-Shoval, S.L.; Amit-Romach, E.; Barbakov, M.; Uni, Z. The effect of in ovo administration of mannan oligosaccharide on small intestine development during the pre- and posthatch periods in chickens. Poult. Sci. 2011, 90, 2301–2310. [Google Scholar] [CrossRef]
- Proszkowiec-Weglarz, M.; Schreier, L.L.; Kahl, S.; Miska, K.B.; Russell, B.; Elsasser, T.H. Effect of delayed feeding post-hatch on expression of tight junction- and gut barrier-related genes in the small intestine of broiler chickens during neonatal development. Poult. Sci. 2020, 99, 4714–4729. [Google Scholar] [CrossRef]
- Rubio, L.A. Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult. Sci. 2019, 98, 695–706. [Google Scholar] [CrossRef]
- Lan, Y.; Verstegen, M.W.A.; Tamminga, S.; Williams, B.A. The role of the commensal gut microbial community in broiler chickens. World’s Poult. Sci. J. 2013, 61, 95–104. [Google Scholar] [CrossRef]
- Calik, A.; Ceylan, A.; Ekim, B.; Adabi, S.G.; Dilber, F.; Bayraktaroglu, A.G.; Tekinay, T.; Ozen, D.; Sacakli, P. The effect of intra-amniotic and posthatch dietary synbiotic administration on the performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poult. Sci. 2017, 96, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Uni, Z.; Ferket, R. Methods for early nutrition and their potential. World’s Poult. Sci. J. 2004, 60, 101–111. [Google Scholar] [CrossRef]
- Jha, R.; Singh, A.K.; Yadav, S.; Berrocoso, J.F.D.; Mishra, B. Early nutrition programming (in ovo and post-hatch feeding) as a strategy to modulate gut health of poultry. Front. Vet. Sci. 2019, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Iji, P.; Choct, M. Dietary modulation of gut microflora in broiler chickens: A review of the role of six kinds of alternatives to in-feed antibiotics. World’s Poult. Sci. J. 2009, 65, 97–114. [Google Scholar] [CrossRef]
- Teng, P.-Y.; Kim, W.K. Roles of prebiotics in intestinal ecosystem of broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.M.E.; Alagawany, M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef] [PubMed]
- Bogusławska-Tryk, M.; Ziółkowska, E.; Sławińska, A.; Siwek, M.; Bogucka, J. Modulation of intestinal histology by probiotics, prebiotics and synbiotics delivered in ovo in distinct chicken genotypes. Animals 2021, 11, 3293. [Google Scholar] [CrossRef] [PubMed]
- Stefaniak, T.; Madej, J.P.; Graczyk, S.; Siwek, M.; Łukaszewicz, E.; Kowalczyk, A.; Sieńczyk, M.; Bednarczyk, M. Selected prebiotics and synbiotics administered in ovo can modify innate immunity in chicken broilers. BMC Vet. Res. 2019, 15, 105. [Google Scholar] [CrossRef]
- Stefaniak, T.; Madej, J.P.; Graczyk, S.; Siwek, M.; Łukaszewicz, E.; Kowalczyk, A.; Sieńczyk, M.; Maiorano, G.; Bednarczyk, M. Impact of prebiotics and synbiotics administered in ovo on the immune response against experimental antigens in chicken broilers. Animals 2020, 10, 643. [Google Scholar] [CrossRef]
- Dunislawska, A.; Slawinska, A.; Stadnicka, K.; Bednarczyk, M.; Gulewicz, P.; Jozefiak, D.; Siwek, M. Synbiotics for broiler chickens—In vitro design and evaluation of the influence on host and selected microbiota populations following in ovo delivery. PLoS ONE 2017, 12, e0168587. [Google Scholar] [CrossRef]
- Duan, A.-Y.; Ju, A.-Q.; Zhang, Y.-N.; Qin, Y.-J.; Xue, L.-G.; Ma, X.; Luan, W.-M.; Yang, S.-B. The effects of in ovo injection of synbiotics on the early growth performance and intestinal health of chicks. Front. Vet. Sci. 2021, 8, 658301. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Mishra, P.; Jha, R. In ovo feeding as a tool for improving performance and gut health of poultry: A review. Front. Vet. Sci. 2021, 8, 754246. [Google Scholar] [CrossRef]
- Dunislawska, A.; Gryzinska, M.; Siwek, M. Changes in the gene expression and methylation in chicken cecal tonsils after in ovo administration of bioactive substances. Sci. Rep. 2023, 13, 19840. [Google Scholar] [CrossRef] [PubMed]
- Tavaniello, S.; De Marzo, D.; Bednarczyk, M.; Palazzo, M.; Zejnelhoxha, S.; Wu, M.; Peng, M.; Stadnicka, K.; Maiorano, G. Influence of a commercial synbiotic administered in ovo and in-water on broiler chicken performance and meat quality. Foods 2023, 12, 2470. [Google Scholar] [CrossRef] [PubMed]
- Maiorano, G.; Sobolewska, A.; Cianciullo, D.; Walasik, K.; Elminowska-Wenda, G.; Slawinska, A.; Tavaniello, S.; Zylinska, J.; Bardowski, J.; Bednarczyk, M. Influence of in ovo prebiotic and synbiotic administration on meat quality of broiler chickens. Poult. Sci. 2012, 91, 2963–2969. [Google Scholar] [CrossRef] [PubMed]
- Arreguin-Nava, M.A.; Graham, B.D.; Adhikari, B.; Agnello, M.; Selby, C.M.; Hernandez-Velasco, X.; Vuong, C.N.; Solis-Cruz, B.; Hernandez-Patlan, D.; Latorre, J.D. In ovo administration of defined lactic acid bacteria previously isolated from adult hens induced variations in the cecae microbiota structure and enterobacteriaceae colonization on a virulent Escherichia coli horizontal infection model in broiler chickens. Front. Vet. Sci. 2020, 7, 489. [Google Scholar] [CrossRef] [PubMed]
- Pender, C.M.; Kim, S.; Potter, T.D.; Ritzi, M.M.; Young, M.; Dalloul, R.A. Effects of in ovo supplementation of probiotics on performance and immunocompetence of broiler chicks to an Eimeria challenge. Benef. Microbes 2016, 7, 699–705. [Google Scholar] [CrossRef]
- Dibner, J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef]
- Timmerman, H.; Veldman, A.; Van den Elsen, E.; Rombouts, F.; Beynen, A. Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poult. Sci. 2006, 85, 1383–1388. [Google Scholar] [CrossRef]
- Emami, N.K.; Calik, A.; White, M.B.; Young, M.; Dalloul, R.A. Necrotic enteritis in broiler chickens: The role of tight junctions and mucosal immune responses in alleviating the effect of the disease. Microorganisms 2019, 7, 231. [Google Scholar] [CrossRef] [PubMed]
- Calik, A.; Omara, I.I.; White, M.B.; Li, W.T.; Dalloul, R.A. Effects of dietary direct fed microbial supplementation on performance, intestinal morphology and immune response of broiler chickens challenged with coccidiosis. Front. Vet. Sci. 2019, 6, 463. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, M.B.; Dhawan, P.; Baumert, T.F. Tight junction proteins in gastrointestinal and liver disease. Gut 2019, 68, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Hollemans, M.S.; van Baal, J.; de Vries Reilingh, G.; Kemp, B.; Lammers, A.; de Vries, S. Intestinal epithelium integrity after delayed onset of nutrition in broiler chickens. Poult. Sci. 2020, 99, 6818–6827. [Google Scholar] [CrossRef]
- Cason, E.; Al Hakeem, W.; Adams, D.; Shanmugasundaram, R.; Selvaraj, R. Effects of synbiotic supplementation as an antibiotic growth promoter replacement on cecal Campylobacter jejuni load in broilers challenged with C. jejuni. J. Appl. Poult. Res. 2023, 32, 100315. [Google Scholar] [CrossRef]
- Du, M.; Cheng, Y.; Chen, Y.; Wang, S.; Zhao, H.; Wen, C.; Zhou, Y. Dietary supplementation with synbiotics improves growth performance, antioxidant status, immune function, and intestinal barrier function in broilers subjected to cyclic heat stress. Environ. Sci. Pollut. Res. 2023, 30, 18026–18038. [Google Scholar] [CrossRef] [PubMed]
- Broom, L.J.; Kogut, M.H. The role of the gut microbiome in shaping the immune system of chickens. Vet. Immunol. Immunopathol. 2018, 204, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Kamdar, K.; Nguyen, V.; DePaolo, R.W. Toll-like receptor signaling and regulation of intestinal immunity. Virulence 2013, 4, 207–212. [Google Scholar] [CrossRef]
- De Kivit, S.; Tobin, M.C.; Forsyth, C.B.; Keshavarzian, A.; Landay, A.L. Regulation of intestinal immune responses through TLR activation: Implications for pro-and prebiotics. Front. Immun. 2014, 5, 60. [Google Scholar] [CrossRef]
- MacKinnon, K.M.; He, H.; Nerren, J.R.; Swaggerty, C.L.; Genovese, K.J.; Kogut, M.H. Expression profile of toll-like receptors within the gastrointestinal tract of 2-day-old Salmonella enteriditis-infected broiler chickens. Vet. Microbiol. 2009, 137, 313–319. [Google Scholar] [CrossRef]
- Toor, D.; Wsson, M.K.; Kumar, P.; Karthikeyan, G.; Kaushik, N.K.; Goel, C.; Singh, S.; Kumar, A.; Prakash, H. Dysbiosis disrupts gut Immune homeostasis and promotes gastric diseases. Int. J. Mol. Sci. 2019, 20, 2432. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Ncho, C.M.; Choi, Y.H. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 2021, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Calik, A.; Emami, N.K.; Schyns, G.; White, M.B.; Walsh, M.C.; Romero, L.F.; Dalloul, R.A. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part II: Oxidative stress, immune response, gut integrity, and intestinal microbiota. Poult. Sci. 2022, 101, 101858. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, J.; Poniedzialek, B.; Adamski, Z.; Rzymski, P. The effects of the microbiota on the host immune system. Autoimmunity 2014, 47, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Pender, C.M.; Kim, S.; Potter, T.D.; Ritzi, M.M.; Young, M.; Dalloul, R.A. In ovo supplementation of probiotics and its effects on performance and immune-related gene expression in broiler chicks. Poult. Sci. 2017, 96, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Dibaji, S.M.; Seidavi, A.; Asadpour, L.; da Silva, F.M. Effect of a synbiotic on the intestinal microflora of chickens. J. Appl. Poult. Res. 2014, 23, 1–6. [Google Scholar] [CrossRef]
- Gilbert, E.R.; Li, H.; Emmerson, D.A.; Webb, K.E., Jr.; Wong, E.A. Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks. J. Nutr. 2008, 138, 262–271. [Google Scholar] [CrossRef]
- Calik, A.; Emami, N.K.; White, M.B.; Walsh, M.C.; Romero, L.F.; Dalloul, R.A. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part I: Growth performance, body composition and intestinal nutrient transporters. Poult. Sci. 2022, 101, 101857. [Google Scholar] [CrossRef]
- Madsen, S.L.; Wong, E.A. Expression of the chicken peptide transporter 1 and the peroxisome proliferator-activated receptor alpha following feed restriction and subsequent refeeding. Poult. Sci. 2011, 90, 2295–2300. [Google Scholar] [CrossRef]
- Moran, A.W.; Al-Rammahi, M.A.; Arora, D.K.; Batchelor, D.J.; Coulter, E.A.; Ionescu, C.; Bravo, D.; Shirazi-Beechey, S.P. Expression of Na+/glucose co-transporter 1 (SGLT1) in the intestine of piglets weaned to different concentrations of dietary carbohydrate. Br. J. Nutr. 2010, 104, 647–655. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, Y.; Xiao, K.; Jiang, F.; Wang, H.; Tang, D.; Liu, D.; Liu, B.; Liu, Y.; He, X.; et al. The chicken gut metagenome and the modulatory effects of plant-derived benzylisoquinoline alkaloids. Microbiome 2018, 6, 211. [Google Scholar] [CrossRef] [PubMed]
Ingredient, % | 0–21 d |
---|---|
Corn | 59.73 |
Soybean meal, CP 48% | 33.20 |
Vegetable oil | 3.00 |
Limestone | 0.68 |
Dicalcium phosphate | 2.20 |
DL-Methionine | 0.20 |
L-Lysine HCl | 0.24 |
L-Threonine | 0.09 |
Salt | 0.30 |
Vitamin–Mineral Premix (NB3000) 1 | 0.36 |
Total | 100.0 |
Chemical composition (Calculated) | |
Dry Matter, % | 87.75 |
Crude Protein, % | 21.00 |
AMEn, kcal/kg | 3060 |
Lysine, % | 1.32 |
Dig. Lysine, % | 1.18 |
Methionine + cysteine, % | 0.88 |
Dig. Methionine + cysteine, % | 0.78 |
Threonine, % | 0.90 |
Dig. Threonine, % | 0.77 |
Calcium, % | 0.90 |
Available phosphorus, % | 0.45 |
Gene 2 | Primer Sequence (5′–3′) | Size (bp) | Acc (Reference) |
---|---|---|---|
GAPDH | CCTAGGATACACAGAGGACCAGGTT | 64 | NM_204305 |
GGTGGAGGAATGGCTGTCA | |||
ZO-1 | GGAGTACGAGCAGTCAACATAC | 101 | XM_413773 |
GAGGCGCACGATCTTCATAA | |||
ZO-2 | GCGTCCCATCCTGAGAAATAC | 89 | NM_205149.1 |
CTTGTTCACTCCCTTCCTCTTC | |||
CLDN-1 | GTGTTCAGAGGCATCAGGTATC | 107 | NM_001013611.2 |
GTCAGGTCAAACAGAGGTACAA | |||
PepT1 | CCCCTGAGGAGGATCACTGTT | 66 | NM_204365 |
CAAAAGAGCAGCAGCAACGA | |||
SGLT1 | GCCATGGCCAGGGCTTA | 71 | XM_415247 |
CAATAACCTGATCTGTGCACCAGTA | |||
TLR2 | GCGAGCCCCCACGAA | 61 | NM_204278 |
GGAGTCGTTCTCACTGTAGGAGACA | |||
TLR4 | CCACACACCTGCCTACATGAA | 63 | NM_001030693 |
GGATGGCAAGAGGACATATCAAA | |||
IL-10 | CGCTGTCACCGCTTCTTCA | 63 | NM_001004414 |
CGTCTCCTTGATCTGCTTGATG |
Treatments 2 | Diet 3 | Hatchery 3 | Statistics | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Basal Diet | Synbiotic Diet | p-Value | ||||||||||
Item | Gel- (CTRL) | Gel+ (HS) | Gel- (DS) | Gel+ (HSDS) | Basal | Synbiotic | Gel- | Gel+ | RMSE 4 | Diet | Gel | D × G |
0 to 7 d | ||||||||||||
BW d 0 (g) | 43.11 | 42.70 | 42.81 | 42.64 | 42.91 | 42.73 | 42.96 | 42.67 | 0.72 | 0.486 | 0.262 | 0.631 |
BWG (g) | 118.9 | 110.5 | 110.1 | 107.7 | 114.7 | 109.3 | 114.9 | 109.1 | 6.55 | 0.031 | 0.020 | 0.286 |
FI (g) | 161.5 | 160.4 | 154.1 | 151.8 | 160.9 | 153.0 | 157.8 | 156.0 | 8.35 | 0.019 | 0.609 | 0.857 |
FCR | 1.36 | 1.43 | 1.39 | 1.41 | 1.39 | 1.40 | 1.37 | 1.42 | 0.08 | 0.557 | 0.058 | 0.333 |
7 to 14 d | ||||||||||||
BWG (g) | 307.8 | 276.9 | 287.5 | 288.1 | 292.4 | 287.8 | 297.7 | 282.5 | 24.58 | 0.608 | 0.097 | 0.087 |
FI (g) | 399.8 | 369.7 | 376.5 | 376.3 | 384.8 | 376.4 | 388.1 | 373.0 | 22.03 | 0.300 | 0.067 | 0.070 |
FCR | 1.30 | 1.34 | 1.31 | 1.31 | 1.32 | 1.31 | 1.31 | 1.33 | 0.08 | 0.837 | 0.488 | 0.530 |
0 to 14 d | ||||||||||||
BWG (g) | 426.7 | 387.5 | 398.5 | 395.8 | 407.1 | 397.2 | 412.6 | 391.6 | 29.81 | 0.362 | 0.061 | 0.100 |
FI (g) | 561.2 | 538.3 | 530.6 | 528.2 | 549.8 | 529.4 | 545.9 | 533.2 | 28.82 | 0.059 | 0.233 | 0.331 |
FCR | 1.32 | 1.39 | 1.33 | 1.34 | 1.36 | 1.34 | 1.33 | 1.37 | 0.08 | 0.529 | 0.144 | 0.218 |
14 to 21 d | ||||||||||||
BWG (g) | 505.9 | 484.7 | 487.2 | 504.0 | 495.3 | 495.6 | 496.5 | 494.3 | 31.49 | 0.980 | 0.849 | 0.105 |
FI (g) | 732.3 a | 647.2 b | 664.0 b | 694.9 ab | 689.8 | 679.4 | 698.1 | 671.0 | 49.53 | 0.567 | 0.140 | 0.003 |
FCR | 1.45 a | 1.34 b | 1.37 b | 1.38b | 1.39 | 1.37 | 1.41 | 1.36 | 0.06 | 0.406 | 0.042 | 0.013 |
0 to 21 d | ||||||||||||
BWG (g) | 932.6 | 872.2 | 885.7 | 899.8 | 902.4 | 892.7 | 909.2 | 886.0 | 58.44 | 0.650 | 0.280 | 0.087 |
FI (g) | 1293.6 a | 1185.5 b | 1194.5 b | 1205.5 ab | 1239.5 | 1208.8 | 1244.0 | 1204.3 | 72.08 | 0.246 | 0.137 | 0.014 |
FCR | 1.39 | 1.36 | 1.35 | 1.36 | 1.37 | 1.36 | 1.37 | 1.36 | 0.05 | 0.344 | 0.654 | 0.350 |
Mortality, % | 4.17 | 1.67 | 2.50 | 1.67 | 2.92 | 2.08 | 3.33 | 1.67 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, M.B.; Calik, A.; Dalloul, R.A. Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers. Animals 2024, 14, 970. https://doi.org/10.3390/ani14060970
White MB, Calik A, Dalloul RA. Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers. Animals. 2024; 14(6):970. https://doi.org/10.3390/ani14060970
Chicago/Turabian StyleWhite, Mallory B., Ali Calik, and Rami A. Dalloul. 2024. "Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers" Animals 14, no. 6: 970. https://doi.org/10.3390/ani14060970
APA StyleWhite, M. B., Calik, A., & Dalloul, R. A. (2024). Hatchery and Dietary Application of Synbiotics in Broilers: Performance and mRNA Abundance of Ileum Tight Junction Proteins, Nutrient Transporters, and Immune Response Markers. Animals, 14(6), 970. https://doi.org/10.3390/ani14060970