Thermographic Profiles in Livestock Systems under Full Sun and Shaded Pastures during an Extreme Climate Event in the Eastern Amazon, Brazil: El Niño of 2023
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of the Study Area and Evaluation Period
2.2. Climate Information for the Region
2.3. Animals and Production Systems
2.4. Infrared Thermography
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The full sun pasture area showed higher temperatures than the shaded area with the leafiest native species in the pasture, the Amazonian Brazil nut tree (Bertholletia excelsa), reinforcing the importance of maintaining the tree component in the region’s pastures. The leftover effect is diagnosed by the darker thermal patterns, which indicate lower temperatures, expressing the effectiveness of the shade provided by the trees in reducing heat and, consequently, increasing animal comfort.
- The analysis of average temperatures in native trees in the Amazon region, compared to the temperatures recorded in grasses and on the ground, underlines the ability of trees to create environments with higher environmental quality for cattle with light coats. The thermal difference between the native trees and their surroundings suggests a cooling effect provided by the trees, reinforcing their positive influence on thermal comfort in the area studied.
- It was possible to observe the numerous advantages of using infrared thermography to define efficient thermal patterns in the Eastern Amazon. These results corroborate the importance of the presence of trees in pasture management, not only to influence thermal conditions, but also to provide shade for animals, promote animal welfare and contribute to mitigating heat stress.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cezar, I.M.; Queiroz, H.P.D.; Thiago, L.D.S.; Garagorry, F.L.; Costa, F.P. Sistemas de produção de gado de corte no Brasil: Uma descrição com ênfase no regime alimentar e no abate. Empresa Bras. Pesqui. Agropecuária (Embrapa) 2005, 1, 40. [Google Scholar]
- Joele, M.R.; Lourenço, L.F.; Lourenço-Júnior, J.B.; Araújo, G.S.; Budel, J.C.; Garcia, A.R. Meat quality of buffaloes finished in traditional or silvopastoral system in the Brazilian Eastern Amazon. J. Sci. Food Agric. 2017, 97, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Brcko, C.C.; Silva, J.A.R.D.; Garcia, A.R.; Silva, A.G.M.E.; Martorano, L.G.; Vilela, R.A.; Nahúm, B.S.; Barbosa, A.V.C.; Silva, W.C.D.; Rodrigues, T.C.G.C.; et al. Effects of Climatic Conditions and Supplementation with Palm Cake on the Thermoregulation of Crossbred Buffaloes Raised in a Rotational Grazing System and with Natural Shade in Humid Tropical Regions. Animals 2023, 14, 53. [Google Scholar] [CrossRef]
- Santos, N.D.D.; Silva, J.A.D.; Araújo, A.A.D.; Garcia, A.R.; Beldini, T.P.; Rodrigues, L.S.; Bezerra, A.S.; Lourenço-Júnior, J.B. Silvopastoral system mitigates the thermal stress and benefits water buffaloesâ™ comfort in the Eastern Amazon, Brazil. J. Agric. Stud. 2020, 8, 193–202. [Google Scholar]
- Silva, J.A.R.D.; Pantoja, M.H.D.A.; Silva, W.C.D.; Almeida, J.C.F.D.; Noronha, R.D.P.P.; Barbosa, A.V.C.; Lourenço-Júnior, J.D.B. Thermoregulatory reactions of female buffaloes raised in the sun and in the shade, in the climatic conditions of the rainy season of the Island of Marajó, Pará, Brazil. Front. Vet. Sci. 2022, 9, 998544. [Google Scholar] [CrossRef]
- Silva, W.C.D.; Silva, É.B.R.D.; Santos, M.R.P.D.; Camargo-Júnior, R.N.C.; Barbosa, A.V.C.; Silva, J.A.R.D.; Vinhote, J.A.; Sousa, E.D.V.D.; Lourenço-Júnior, J.D.B. Behavior and thermal comfort of light and dark coat dairy cows in the Eastern Amazon. Front. Vet. Sci. 2022, 9, 1006093. [Google Scholar] [CrossRef]
- Silva, W.C.D.; Silva, J.A.R.D.; Júnior, A.G.; Alvarenga, A.B.B.D.; Barbosa, A.V.C.; Silva, É.B.R.D.; Santos, M.R.P.D.; Lourenço-Júnior, J.B.; Camargo-Júnior, R.N.C.; Silva, A.G.M.E. A new proposal for the use of the focal animal technique in buffaloes in the Eastern Amazon. Front. Vet. Sci. 2023, 10, 9. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Napolitano, F.; Braghieri, A.; Guerrero-Legarreta, I.; Bertoni, A.; Martínez-Burnes, J.; Cruz-Monterrosa, R.; Gómez, J.; Ramírez-Bribiesca, E.; Barrios-García, H.; et al. Thermal biology in river buffalo in the humid tropics: Neurophysiological and behavioral responses assessed by infrared thermography. J. Anim. Behav. Biometeorol. 2020, 9, 2103. [Google Scholar] [CrossRef]
- Gómez-Prado, J.; Pereira, A.M.; Wang, D.; Villanueva-García, D.; Domínguez-Oliva, A.; Mora-Medina, P.; Hernández-Avalos, I.; Martínez-Burnes, J.; Casas-Alvarado, A.; Olmos-Hernández, A.; et al. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: An overview. Front. Vet. Sci. 2022, 9, 1023294. [Google Scholar] [CrossRef]
- Dawkins, M.S. Farm animal welfare: Beyond “natural” behavior. Science 2023, 379, 326–328. [Google Scholar] [CrossRef]
- Hansen, B.G.; Langseth, E.; Berge, C. Animal welfare and cow-calf contact-farmers’ attitudes, experiences and adoption barriers. J. Rural Stud. 2023, 97, 34–46. [Google Scholar] [CrossRef]
- Kumar, P.; Ahmed, M.A.; Abubakar, A.A.; Hayat, M.N.; Kaka, U.; Ajat, M.; Goh, Y.M.; Sazili, A.Q. Improving animal welfare status and meat quality through assessment of stress biomarkers: A critical review. Meat Sci. 2023, 197, 109048. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Rosa, G.R.; Chay-Canul, A.; Álvarez-Macías, A.; Pereira, A.M.; Bragaglio, A.; Mora-Medina, P.; Rodríguez-González, D.; García-Herrera, R.; Hernández-Ávalos, I.; et al. The Challenge of Global Warming in Water Buffalo Farming: Physiological and Behavioral Aspects and Strategies to Face Heat Stress. Animals 2023, 13, 3103. [Google Scholar] [CrossRef]
- van Eerdenburg, F.J.; Di Giacinto, A.M.; Hulsen, J.; Snel, B.; Stegeman, J.A. A new, practical animal welfare assessment for dairy farmers. Animals 2021, 11, 881. [Google Scholar] [CrossRef] [PubMed]
- Berman, A. Estimates of heat stress relief needs for Holstein dairy cows. J. Anim. Sci. 2005, 83, 1377–1384. [Google Scholar] [CrossRef]
- Farooq, U.; Samad, H.A.; Shehzad, F.; Qayyum, A. Physiological responses of cattle to heat stress. World Appl. Sci. J. 2010, 8, 38–43. [Google Scholar]
- Rashamol, V. Adaptabilidade fisiológica da pecuária ao estresse térmico: Uma revisão atualizada. J. Anim. Behav. Biometeorol. 2018, 6, 62–71. [Google Scholar] [CrossRef]
- Collier, R.J.; Baumgard, L.H.; Zimbelman, R.B.; Xiao, Y. Heat stress: Physiology of acclimation and adaptation. Anim. Front. 2019, 9, 12–19. [Google Scholar] [CrossRef]
- Cartwright, S.L.; Schmied, J.; Karrow, N.; Mallard, B.A. Impact of heat stress on dairy cattle and selection strategies for thermotolerance: A review. Front. Vet. Sci. 2023, 10, 1198697. [Google Scholar] [CrossRef]
- Mateescu, R.G.; Davila, K.M.S.; Hernandez, A.S.; Andrade, A.N.; Zayas, G.A.; Rodriguez, E.E.; Dikmen, S.; Oltenacu, P.A. Impact of Brahman genetics on skin histology characteristics with implications for heat tolerance in cattle. Front. Genet. 2023, 14, 1107468. [Google Scholar] [CrossRef]
- Romanello, N.; Barreto, A.D.N.; Sousa, M.A.P.D.; Balieiro, J.C.C.; Brandão, F.Z.; Tonato, F.; Bernardi, A.C.D.C.; Pezzopane, J.R.M.; Portugal, J.A.B.; Garcia, A.R. Thermal comfort of Nelore (Bos indicus) and Canchim (Bos taurus × Bos indicus) bulls kept in an integrated crop-livestock-forestry system in a tropical climate. Agric. Syst. 2023, 209, 103687. [Google Scholar]
- Silva, W.C.D.; Silva, J.A.R.D.; Camargo-Júnior, R.N.C.; Silva ÉBR, D.; Santos, M.R.P.D.; Viana, R.B.; Silva, A.G.M.; Silva, C.M.G.; Lourenço-Júnior, J.D.B. Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Front. Vet. Sci. 2023, 10, 1083469. [Google Scholar] [CrossRef]
- Giro, A.; Pezzopane, J.R.M.; Junior, W.B.; Pedroso, A.D.F.; Lemes, A.P.; Botta, D.; Romanello, N.; Barreto, A.D.N.; Garcia, A.R. Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Sci. Total Environ. 2019, 684, 587–596. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Wang, D.; Titto, C.G.; Gómez-Prado, J.; Fuente, V.C.D.L.; Ghezzi, M.; Boscato-Funes, L.; Barrios-Garcia, H.; Torres-Bernal, F.; Casas-Alvarado, A.; et al. Pathophysiology of fever and application of infrared thermography (IRT) in the detection of sick domestic animals: Recent advances. Animals 2021, 11, 2316. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Pereira, A.M.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Hernández-Avalos, I.; Lendez, P.; Mora-Medina, P.; Casas, A.; Olmos-Hernández, A.; et al. Clinical applications and factors involved in validating thermal windows used in infrared thermography in cattle and river buffalo to assess health and productivity. Animals 2021, 11, 2247. [Google Scholar]
- Mota-Rojas, D.; Ogi, A.; Villanueva-García, D.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Lendez, P.; Ghezzi, M. Thermal Imaging as a Method to Indirectly Assess Peripheral Vascular Integrity and Tissue Viability in Veterinary Medicine: Animal Models and Clinical Applications. Animals 2023, 14, 142. [Google Scholar] [CrossRef]
- Whittaker, A.L.; Muns, R.; Wang, D.; Martínez-Burnes, J.; Hernández-Ávalos, I.; Casas-Alvarado, A.; Domínguez-Oliva, A.; Mota-Rojas, D. Assessment of Pain and Inflammation in Domestic Animals Using Infrared Thermography: A Narrative Review. Animals 2023, 13, 2065. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.C.D.; Printes, O.V.N.; Lima, D.O.; Silva, É.B.R.D.; Santos, M.R.P.D.; Camargo-Júnior, R.N.C.; Barbosa, A.V.C.; Silva, J.A.R.D.; Silva, A.G.M.E.; Silva, L.K.X.; et al. Evaluation of the temperature and humidity index to support the implementation of a rearing system for ruminants in the Western Amazon. Front. Vet. Sci. 2023, 10, 10. [Google Scholar] [CrossRef]
- Ghezzi, M.D.; Napolitano, F.; Casas-Alvarado, A.; Hernández-Ávalos, I.; Domínguez-Oliva, A.; Olmos-Hernández, A.; Pereira, A.M. Utilization of Infrared Thermography in Assessing Thermal Responses of Farm Animals under Heat Stress. Animals 2024, 14, 616. [Google Scholar] [CrossRef]
- Marquez, H.P.; Schaefer, A.L.; Bench, C.J. Use of fidget and drinking behaviour in combination with facial infrared thermography for diagnosis of bovine respiratory disease in a spontaneous model. Animal 2024, 18, 101096. [Google Scholar] [CrossRef]
- Zhang, C.; Xiao, D.; Yang, Q.; Wen, Z.; Lv, L. Application of Infrared Thermography in Livestock Monitoring. Trans. ASABE 2020, 63, 389–399. [Google Scholar] [CrossRef]
- Martorano, L.G.; Garcia, A.R.; Silva, L.K.X.; Amaral, J.M.D.; Fernandes, C.; Oliveira, P.P.A. Infrared Thermography to Diagnose Bioclimatic Conditions in Livestock Systems in The Amazon Biome. Minist. Agric. Livest. Food Supply (MAPA) 2021, 1, 104. [Google Scholar]
- Travain, T.; Valsecchi, P. Infrared thermography in the study of animals’ emotional responses: A critical review. Animals 2021, 11, 2510. [Google Scholar] [CrossRef]
- Wang, F.K.; Shih, J.Y.; Juan, P.H.; Su, Y.C.; Wang, Y.C. Non-invasive cattle body temperature measurement using infrared thermography and auxiliary sensors. Sensors 2021, 21, 2425. [Google Scholar] [CrossRef] [PubMed]
- Cândido, A.C.T.F.; Martorano, L.G.; Cândido, B.U.F.; Nascimento, W.; Dias, C.T.D.S.; Lisboa, L.S.S.; Fernandes, P.C.C.; Silva, A.R.; Dias-Filho, M.B.; Beldini, T.P. Infrared Thermal Profiles in Silvopastoral and Full-Sun Pastures in the Eastern Amazon, Brazil. Forests 2023, 14, 1463. [Google Scholar] [CrossRef]
- Canedo-Rosso, C.; Hochrainer-Stigler, S.; Pflug, G.; Condori, B.; Berndtsson, R. Drought impact in the Bolivian Altiplano agriculture associated with the El Niño–Southern Oscillation using satellite imagery data. Nat. Hazards Earth Syst. Sci. 2021, 21, 995–1010. [Google Scholar] [CrossRef]
- Singh, M.; Zhu, X. Analysis of how the spatial and temporal patterns of fire and their bioclimatic and anthropogenic drivers vary across the Amazon rainforest in El Niño and non-El Niño years. PeerJ 2021, 9, e12029. [Google Scholar] [CrossRef]
- Lyon, B. The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett. 2004, 3, L21204. [Google Scholar] [CrossRef]
- Goddard, L.; Dilley, M. El Niño: Catastrophe or opportunity. J. Clim. 2005, 18, 651–665. [Google Scholar] [CrossRef]
- Mera, Y.E.Z.; Vera, J.F.R.; Pérez-Martín, M.Á. Linking El Niño Southern Oscillation for early drought detection in tropical climates: The Ecuadorian coast. Sci. Total Environ. 2018, 643, 193–207. [Google Scholar] [CrossRef]
- Generoso, R.; Couharde, C.; Damette, O.; Mohaddes, K. The growth effects of El Nino and La Nina: Local weather conditions matter. Ann. Econ. Stat. 2020, 140, 83–126. [Google Scholar] [CrossRef]
- Marengo, J.A.; Espinoza, J.C. Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts. Int. J. Climatol. 2016, 36, 1033–1050. [Google Scholar] [CrossRef]
- Santos, E.B.; Freitas, E.D.; Rafee, S.A.A.; Fujita, T.; Rudke, A.P.; Martins, L.D.; Souza, R.A.F.D.; Martins, J.A. Spatio-temporal variability of wet and drought events in the Paraná River basin—Brazil and its association with the El Niño—Southern oscillation phenomenon. Int. J. Climatol. 2021, 41, 4879–4897. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.M.; Nobre, C.A.; Neto, G.G.R.; Magalhães, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.; Cuartas, L.A.; et al. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 °C. Nat. Hazards 2020, 103, 2589–2611. [Google Scholar] [CrossRef]
- Junqueira, R.; Amorim, J.D.S.; Viola, M.R.; Mello, C.R.D.; Uddameri, V.; Prado, L.F. Drought occurrences and impacts on the upper Grande river basin, Brazil. Meteorol. Atmos. Phys. 2022, 134, 45. [Google Scholar] [CrossRef]
- Martorano, L.G.; Nechet, D.; Pereira, L.C. Tipologia climática do Estado do Pará: Adaptação do método de Köppen. Bol. Geogr. Teorética 1993, 23, 45–46. Available online: https://periodicos.ufpe.br/revistas/rbgf (accessed on 29 January 2024).
- Martorano, L.G.; Vitorino, M.I.; Silva, B.P.P.C.; Lisboa, L.S.; Sotta, E.D.; Reichardt, K. Climate conditions in the eastern amazon: Rainfall variability in Belem and indicative of soil water deficit. Afr. J. Agric. Res. 2017, 12, 1801–1810. [Google Scholar] [CrossRef]
- FLIR T650sc. Manual da FLIR T650sc Systems 6.3v, FLIR Systems, Inc.: Wilsonville, OR, USA, 2015. Available online: https://www.flir.com.br/support/products/t650sc/#Overview(accessed on 1 March 2023).
- Barreto, C.D.; Alves, F.V.; Ramos, C.E.C.D.O.; Leite, M.C.D.P.; Leite, L.C.; Junior, N.K. Infrared thermography for evaluation of the environmental thermal comfort for livestock. Int. J. Biometeorol. 2020, 64, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Silva, W.C.D.; Silva, J.A.R.D.; Silva, É.B.R.D.; Barbosa, A.V.C.; Sousa, C.E.L.; Carvalho, K.C.D.; Santos, M.R.P.D.; Neves, K.A.L.; Martorano, L.G.; Júnior, R.N.C.C.; et al. Characterization of Thermal Patterns Using Infrared Thermography and Thermolytic Responses of Cattle Reared in Three Different Systems during the Transition Period in the Eastern Amazon, Brazil. Animals 2023, 13, 2735. [Google Scholar] [CrossRef]
- Rodriguez, R.N. Statistical Analysis System (SAS); WIREs Computational Statistics Institute: Cary, NC, USA, 2023. [Google Scholar]
- Baêta, F.D.C.; Souza, C.D.F. Ambiência em edificações rurais: Conforto animal. Viçosa UFV 2010, 2, 269. [Google Scholar]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Meier, F.; Scherer, D. Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theor. Appl. Climatol. 2012, 110, 373–384. [Google Scholar] [CrossRef]
- Maes, W.H.; Baert, A.; Huete, A.R.; Minchin, P.E.; Snelgar, W.P.; Steppe, K. A new wet reference target method for continuous infrared thermography of vegetations. Agric. For. Meteorol. 2016, 226, 119–131. [Google Scholar] [CrossRef]
- Junior, N.K.; Miyagi, E.S.; Oliveira, C.C.D.; Barreto, C.D.; Mastelaro, A.P.; Bungenstab, D.J.; Alves, F.V. Infrared thermography for microclimate assessment in agroforestry systems. Sci. Total Environ. 2020, 731, 139252. [Google Scholar]
- Kharel, G.; Dhakal, M.; Deb, S.K.; Slaughter, L.C.; Simpson, C.; West, C.P. Effect of Long-Term Semiarid Pasture Management on Soil Hydraulic and Thermal Properties. Plants 2023, 12, 1491. [Google Scholar] [CrossRef]
- Deniz, M.; De-Sousa, K.T.; Vieira, F.M.C.; Vale, M.M.D.; Dittrich, J.R.; Daros, R.R.; Hötzel, M.J. A systematic review of the effects of silvopastoral system on thermal environment and dairy cows’ behavioral and physiological responses. Int. J. Biometeorol. 2023, 67, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Hammerle, A.; Meier, F.; Heinl, M.; Egger, A.; Leitinger, G. Implications of atmospheric conditions for analysis of surface temperature variability derived from landscape-scale thermography. Int. J. Biometeorol. 2017, 61, 575–588. [Google Scholar] [CrossRef]
- Schöngart, J.; Junk, W.J.; Piedade, M.T.F.; Ayres, J.M.; Hüttermann, A.; Worbes, M. Teleconnection between tree growth in the Amazonian floodplains and the El Nino–Southern Oscillation effect. Glob. Chang. Biol. 2004, 10, 683–692. [Google Scholar] [CrossRef]
- Santos, V.A.H.F.D.; Ferreira, M.J.; Rodrigues, J.V.F.C.; Garcia, M.N.; Ceron, J.V.B.; Nelson, B.W.; Saleska, S.R. Causes of reduced leaf-level photosynthesis during strong El Niño drought in a Central Amazon forest. Glob. Chang. Biol. 2018, 24, 4266–4279. [Google Scholar] [CrossRef]
- Ávila-Jiménez, J.; Gutiérrez, J.D.; Altamiranda-Saavedra, M. The effect of El Niño and La Niña episodes on the existing niche and potential distribution of vector and host species of American Cutaneous Leishmaniasis. Acta Trop. 2024, 249, 107060. [Google Scholar] [CrossRef]
- Armenteras, D.; Barreto, J.S.; Tabor, K.; Molowny-Horas, R.; Retana, J. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries. Biogeosciences 2017, 14, 2755–2765. [Google Scholar] [CrossRef]
- Mota, P.H.S.; Rocha, S.J.S.S.D.; Castro, N.L.M.; Marcatti, G.E.; França, L.C.D.J.; Schettini, B.L.S.; Villanova, P.H.; Santos, H.T.; Santos, A.R.D. Forest fire hazard zoning in Mato Grosso state, Brazil. Land Use Policy 2019, 88, 104206. [Google Scholar] [CrossRef]
- Júnior, L.A.S.D.S.; Delgado, R.C.; Pereira, M.G.; Teodoro, P.E.; Junior, C.A.D.S. Fire dynamics in extreme climatic events in western amazon. Environ. Dev. 2019, 32, 100450. [Google Scholar] [CrossRef]
- Santos, I. Connection between El Niño Deep Convection and Precipitation in Northeast Brazil. J. Geogr. Geol. 2024, 16. [Google Scholar] [CrossRef]
- Montanher, O.C.; Minaki, C.; de Morais, E.S.; de Paula Silva, J.; Pereira, P. Geosystemic impacts of the extreme rainfall linked to the El Niño 2015/2016 event in Northern Paraná, Brazil. Appl. Sci. 2023, 13, 9678. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Rifai, S.W.; Li, S.; Malhi, Y. Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environ. Res. Lett. 2019, 14, 105002. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.G.; Santoso, A.; et al. Climate impacts of the El Niño–southern oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Mattar, C.; Barichivich, J.; Santamaría-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Schrier, G.V.lD. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef]
- Esquivel-Hernández, G.; Mosquera, G.M.; Sánchez-Murillo, R.; Quesada-Román, A.; Birkel, C.; Crespo, P.; Célleri, R.; Windhorst, D.; Breuer, L.; Boll, J. Moisture transport and seasonal variations in the stable isotopic composition of rainfall in Central American and Andean Páramo during El Niño conditions (2015–2016). Hydrol. Process. 2019, 33, 1802–1817. [Google Scholar] [CrossRef]
- Fontes, C.G.; Dawson, T.E.; Jardine, K.; McDowell, N.; Gimenez, B.O.; Anderegg, L.; Negrón-Juáres, R.; Higuchi, N.; Fine, P.V.A.; Araújo, A.C.; et al. Dry and hot: The hydraulic consequences of a climate change–type drought for Amazonian trees. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20180209. [Google Scholar] [CrossRef]
- Miyamoto, K.; Aiba, S.I.; Aoyagi, R.; Nilus, R. Effects of El Niño drought on tree mortality and growth across forest types at different elevations in Borneo. For. Ecol. Manag. 2021, 490, 119096. [Google Scholar] [CrossRef]
- Powers, J.; Vargas, G.G.; Brodribb, T.; Schwartz, N.; Perez-Aviles, D.; Smith-Martin, C.; Becknell, J.; Aureli, F.; Blanco, R.; Calderón-Morales, E.; et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Methods 2021, 2020, 03–17. [Google Scholar] [CrossRef]
- Hänchen, L.; Klein, C.; Maussion, F.; Gurgiser, W.; Calanca, P.; Wohlfahrt, G. Widespread greening suggests increased dry-season plant water availability in the Rio Santa valley, Peruvian Andes. Earth Syst. Dyn. 2022, 13, 595–611. [Google Scholar] [CrossRef]
- Rifai, S.W.; Girardin, C.A.; Berenguer, E.; Aguila-Pasquel, J.D.; Dahlsjö, C.A.; Doughty, C.E.; Jeffery, K.J.; Moore, S.; Oliveras, I.; Riutta, T.; et al. ENSO Drives interannual variation of forest woody growth across the tropics. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170410. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Fan, L.; Ciais, P.; Bastos, A.; Brandt, M.; Chave, J.; Saatchi, S.; Baccini, A.; Fensholt, R. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 2020, 6, eaay4603. [Google Scholar] [CrossRef]
- Abreu-Harbich, L.V.D.; Labaki, L.C.; Matzarakis, A. Effect of tree planting design and tree species on human thermal comfort in the tropics. Landsc. Urban Plan. 2015, 138, 99–109. [Google Scholar] [CrossRef]
- Lopes, L.B.; Eckstein, C.; Pina, D.S.; Carnevalli, R.A. The influence of trees on the thermal environment and behaviour of grazing heifers in Brazilian Midwest. Trop. Anim. Health Prod. 2016, 48, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.C.D.; Alves, F.V.; Almeida, R.G.D.; Gamarra, E.L.; Villela, S.D.J.; Martins, P.G.M.D.A. Thermal comfort indices assessed in integrated production systems in the Brazilian savannah. Agrofor. Syst. 2018, 92, 1659–1672. [Google Scholar] [CrossRef]
- Pereira, L.M.R.; Fischer, V.; Moreno, C.B.; Pardo, M.P.; Gomes, J.F.; Monks, P.L. Diurnal ingestive behavior of Jersey heifers fed diferente supplements. Rev. Bras. Agrociência 2005, 11, 453–459. [Google Scholar]
- Abreu, L.V.; Labaki, L.C. Conforto térmico propiciado por algumas espécies arbóreas: Avaliação do raio de influência através de diferentes índices de conforto. Ambiente Construído 2010, 10, 103–117. [Google Scholar] [CrossRef]
- Karvatte, N.; Klosowski, E.S.; Almeida, R.G.D.; Mesquita, E.E.; Oliveira, C.C.D.; Alves, F.V. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. Int. J. Biometeorol. 2016, 60, 1933–1941. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.G. Predição da configuração de sombras de árvores em pastagens para bovinos. Eng. Agrícola 2006, 26, 36–281. [Google Scholar] [CrossRef]
- Baliscei, M.A.; Barbosa, O.R.; Souza, W.D.; Costa, M.A.T.; Krutzmann, A.; Queiroz, E.D.O. Microclimate without shade and silvopastoral system during summer and winter. Acta Scientiarum. Anim. Sci. 2013, 35, 49–56. [Google Scholar] [CrossRef]
- Baliscei, M.A.; Souza, W.D.; Barbosa, O.R.; Cecato, U.; Krutzmann, A.; Queiroz, E.D.O. Behavior of beef cattle and the microclimate with and without shade. Acta Scientiarum. Anim. Sci. 2012, 34, 409–415. [Google Scholar] [CrossRef]
- Lees, A.M.; Lees, J.C.; Sejian, V.; Sullivan, M.L.; Gaughan, J.B. Influence of shade on panting score and behavioural responses of Bos taurus and Bos indicus feedlot cattle to heat load. Anim. Prod. Sci. 2019, 60, 305–315. [Google Scholar] [CrossRef]
- Souza, E.C.D.; Salman, A.K.D.; Cruz, P.G.D.; Veit, H.M.; Carvalho, G.A.D.; Silva, F.R.F.D.; Schmitt, E. Thermal comfort and grazing behavior of Girolando heifers in integrated crop-livestock (ICL) and crop-livestock-forest (ICLF) systems. Acta Scientiarum. Anim. Sci. 2019, 41, 10. [Google Scholar] [CrossRef]
- Lemaire, G.; Franzluebbers, A.; Carvalho, P.C.D.F.; Dedieu, B. Integrated crop–livestock systems: Strategies to achieve synergy between agricultural production and environmental quality. Agric. Ecosyst. Environ. 2014, 190, 4–8. [Google Scholar] [CrossRef]
- Garcia, A.R. Thermal comfort on reproductive processes of water buffaloes raised under tropical conditions. Rev. Bras. Reprod. Anim. 2013, 37, 121–130. [Google Scholar]
- Figueiredo, E.B.D.; Jayasundara, S.; Bordonal, R.D.O.; Berchielli, T.T.; Reis, R.A.; Wagner-Riddle, C.; Junior, N.L.S. Greenhouse gas balance and carbon footprint of beef cattle in three contrasting pasture-management systems in Brazil. J. Clean. Prod. 2017, 142, 420–431. [Google Scholar] [CrossRef]
- Dube, F.; Couto, L.; Silva, M.D.; Leite, H.G.; Garcia, R.; Araujo, G.A.A. A simulation model for evaluating technical and economic aspects of an industrial eucalyptus-based agroforestry system in Minas Gerais, Brazil. Agrofor. Syst. 2002, 55, 73–80. [Google Scholar] [CrossRef]
- Garcia, A.R.; Silva, L.K.X.; Barros, D.V.; Lourenço-Junior, J.D.B.; Martorano, L.G.; Lisboa, L.S.S.; Silva, J.A.R.D.; Sousa, J.S.D.; Silva, A.O.A.D. Key points for the thermal comfort of water buffaloes in Eastern Amazon. Ciência Rural 2022, 53, e20210544. [Google Scholar] [CrossRef]
Variables | Systems | |||||||
---|---|---|---|---|---|---|---|---|
SH | SN | |||||||
T1 | T2 | T3 | T4 | T1 | T2 | T3 | T4 | |
Sample size | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Minimum | 36.1 | 36.2 | 34.8 | 32.7 | 38.9 | 36.2 | 34.3 | 32.7 |
Maximum | 40.9 | 37.3 | 34.6 | 33.7 | 40.9 | 37.3 | 34.6 | 33.9 |
Total Amplitude | 4.8 | 1.0 | 0.3 | 0.9 | 2.0 | 1.09 | 0.3 | 0.9 |
Median | 39.29 | 36.4 | 34.5 | 33.3 | 39.5 | 36.4 | 34.5 | 33.3 |
First Quartile (25%) | 39.1 | 36.2 | 34.4 | 33.1 | 39.1 | 36.2 | 34.4 | 33.1 |
Third Quartile (75%) | 40.5 | 36.8 | 34.6 | 33.5 | 40.5 | 36.8 | 34.6 | 33.5 |
Interquartile deviation | 1.4 | 0.5 | 0.1 | 0.3 | 1.3 | 0.5 | 0.1 | 0.3 |
Arithmetic average | 39.4 | 36.5 | 34.5 | 33.2 | 39.7 | 36.5 | 34.5 | 33.2 |
Variance | 1.9 | 0.1 | 0.01 | 0.8 | 0.6 | 0.1 | 0.01 | 0.08 |
Standard deviation | 1.39 | 0.7 | 0.3 | 0.1 | 0.2 | 0.36 | 0.1 | 0.29 |
Standard Error | 0.4 | 0.2 | 0.1 | 0.03 | 0.09 | 0.1 | 0.03 | 0.09 |
Coefficient of variation | 3.55 | 2.0 | 0.9 | 0.2 | 0.8 | 0.9 | 0.2 | 0.8 |
Asymmetry | −1.32 | 0.6 | 0.9 | 0.1 | −0.4 | 0.9 | 0.1 | −0.4 |
Kurtosis | 2.9 | −1.4 | 0.1 | −1.1 | −0.4 | 0.1 | −1.1 | −0.4 |
SH | SN | Total | ||||
---|---|---|---|---|---|---|
Average | SD | Average | SD | Average | SD | |
T1 | 36.472 a | 0.255 | 39.796 a | 0.798 | 38.134 | 1.800 |
T2 | 35.592 b | 0.141 | 36.572 b | 0.360 | 36.082 | 0.569 |
T3 | 35.005 c | 0.040 | 34.534 c | 0.101 | 34.769 | 0.253 |
T4 | 34.782 c | 0.050 | 33.296 d | 0.297 | 34.039 | 0.79 |
Total | 35.463 | 0.677 | 36.049 | 2.530 | 35.756 | 1.863 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, W.C.d.; Silva, J.A.R.d.; Martorano, L.G.; Silva, É.B.R.d.; Sousa, C.E.L.; Neves, K.A.L.; Araújo, C.V.d.; Joaquim, L.A.; Rodrigues, T.C.G.d.C.; Belo, T.S.; et al. Thermographic Profiles in Livestock Systems under Full Sun and Shaded Pastures during an Extreme Climate Event in the Eastern Amazon, Brazil: El Niño of 2023. Animals 2024, 14, 855. https://doi.org/10.3390/ani14060855
Silva WCd, Silva JARd, Martorano LG, Silva ÉBRd, Sousa CEL, Neves KAL, Araújo CVd, Joaquim LA, Rodrigues TCGdC, Belo TS, et al. Thermographic Profiles in Livestock Systems under Full Sun and Shaded Pastures during an Extreme Climate Event in the Eastern Amazon, Brazil: El Niño of 2023. Animals. 2024; 14(6):855. https://doi.org/10.3390/ani14060855
Chicago/Turabian StyleSilva, Welligton Conceição da, Jamile Andréa Rodrigues da Silva, Lucieta Guerreiro Martorano, Éder Bruno Rebelo da Silva, Carlos Eduardo Lima Sousa, Kedson Alessandri Lobo Neves, Cláudio Vieira de Araújo, Leonel António Joaquim, Thomaz Cyro Guimarães de Carvalho Rodrigues, Tatiane Silva Belo, and et al. 2024. "Thermographic Profiles in Livestock Systems under Full Sun and Shaded Pastures during an Extreme Climate Event in the Eastern Amazon, Brazil: El Niño of 2023" Animals 14, no. 6: 855. https://doi.org/10.3390/ani14060855
APA StyleSilva, W. C. d., Silva, J. A. R. d., Martorano, L. G., Silva, É. B. R. d., Sousa, C. E. L., Neves, K. A. L., Araújo, C. V. d., Joaquim, L. A., Rodrigues, T. C. G. d. C., Belo, T. S., Camargo-Júnior, R. N. C., & Lourenço-Júnior, J. d. B. (2024). Thermographic Profiles in Livestock Systems under Full Sun and Shaded Pastures during an Extreme Climate Event in the Eastern Amazon, Brazil: El Niño of 2023. Animals, 14(6), 855. https://doi.org/10.3390/ani14060855