Immunomodulation Evidence of Nanostructured Recombinant Proteins in Salmonid Cells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Nanostructured Recombinant Protein Design
2.2. Production of Nanostructured Recombinant Proteins
2.3. In Vitro Analysis of the Modulation of the Immune Response
2.4. Scale-Up in a Bioreactor
2.5. Gene Expression Analysis
2.6. Statistical Analysis
3. Results
3.1. Production of Inclusion Bodies
3.2. In Vitro Analysis of the Modulation of the Immune Response by IBs
3.3. Scale-Up in a Bioreactor
3.3.1. Analysis of the Growth Parameters in Shake Flasks and Bioreactors
3.3.2. IL1IB Production in Shake Flasks and Bioreactors
3.3.3. Characterization of IL1βIB by FESEM and Immunostimulation of RTS11 Cell Line
3.3.4. Strategy for IL1βIB Production in a Bioreactor with Late Induction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Statistical Collections—Global Production. Available online: https://www.fao.org/fishery/en/fishstat/collections (accessed on 12 December 2023).
- FAO. The State of World Fisheries and Aquaculture, Towards Blue Transformation; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Evensen, Ø. Development of Fish Vaccines: Focusing on Methods. Fish Vaccines; Springer: Basel, Switzerland, 2016; Volume 53–74. [Google Scholar]
- Elumalai, P.; Soltani, M.; Lakshmi, S. Immunomodulators in Aquaculture and Fish Health, 1st ed.; Elumalai, P., Soltani, M., Lakshmi, S., Eds.; Taylor & Francis Group, LLC: Miami, FL, USA, 2024. [Google Scholar]
- Sarkar, B.; Mahanty, A.; Gupta, S.K.; Choudhury, A.R.; Daware, A.; Bhattacharjee, S. Nanotechnology: A next-generation tool for sustainable aquaculture. Aquaculture 2022, 546, 737330. [Google Scholar] [CrossRef]
- D’Agaro, E.; Favaro, A.; Matiussi, S.; Gibertoni, P.P.; Esposito, S. Genomic selection in salmonids: New discoveries and future perspectives. Aquac. Int. 2021, 29, 2259–2289. [Google Scholar] [CrossRef]
- Sumon, M.A.A.; Sumon, T.A.; Hussain, M.A.; Lee, S.J.; Jang, W.J.; Sharifuzzaman, S.M.; Brown, C.L.; Lee, E.W.; Hasan, M.T. Single and Multi-Strain Probiotics Supplementation in Commercially Prominent Finfish Aquaculture: Review of the Current Knowledge. J. Microbiol. Biotechnol. 2022, 32, 681–698. [Google Scholar] [CrossRef] [PubMed]
- Firmino, J.P.; Galindo-Villegas, J.; Reyes-Lopez, F.E.; Gisbert, E. Phytogenic Bioactive Compounds Shape Fish Mucosal Immunity. Front. Immunol. 2021, 12, 695973. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela-Munoz, V.; Benavente, B.P.; Casuso, A.; Leal, Y.; Gallardo-Escarate, C. Chimeric Protein IPath((R)) with Chelating Activity Improves Atlantic Salmon’s Immunity against Infectious Diseases. Vaccines 2021, 9, 361. [Google Scholar] [CrossRef]
- Lhorente, J.P.; Araneda, M.; Neira, R.; Yáñez, J.M. Advances in genetic improvement for salmon and trout aquaculture: The Chilean situation and prospects. Rev. Aquac. 2019, 11, 340–353. [Google Scholar] [CrossRef]
- Pontigo, J.P.; Espinoza, C.; Hernandez, M.; Nourdin, G.; Oliver, C.; Avendano-Herrera, R.; Figueroa, J.; Rauch, C.; Troncoso, J.M.; Vargas-Chacoff, L.; et al. Protein-Based Vaccine Protect Against Piscirickettsia salmonis in Atlantic Salmon (Salmo salar). Front. Immunol. 2021, 12, 602689. [Google Scholar] [CrossRef]
- Rocha, S.D.C.; Lei, P.; Morales-Lange, B.; Mydland, L.T.; Overland, M. From a cell model to a fish trial: Immunomodulatory effects of heat-killed Lactiplantibacillus plantarum as a functional ingredient in aquafeeds for salmonids. Front. Immunol. 2023, 14, 1125702. [Google Scholar] [CrossRef]
- Mitra, S.; Paul, S.; Roy, S.; Sutradhar, H.; Bin Emran, T.; Nainu, F.; Khandaker, M.U.; Almalki, M.; Wilairatana, P.; Mubarak, M.S. Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. Molecules 2022, 27, 555. [Google Scholar] [CrossRef]
- Subramani, P.A.; Michael, R.D. Prophylactic and Prevention Methods Against Diseases in Aquaculture; Academic Press: Cambridge, MA, USA, 2017; pp. 81–117. [Google Scholar] [CrossRef]
- Ji, J.; Torrealba, D.; Thwaite, R.; Gomez, A.-C.; Parra, D.; Roher, N. Nanostructured TNFα protein targets the zebrafish (Danio rerio) immune system through mucosal surfaces and improves the survival after Mycobacterium marinum lethal infection. Aquaculture 2019, 510, 138–149. [Google Scholar] [CrossRef]
- Torrealba, D.; Parra, D.; Seras-Franzoso, J.; Vallejos-Vidal, E.; Yero, D.; Gibert, I.; Villaverde, A.; Garcia-Fruitos, E.; Roher, N. Nanostructured recombinant cytokines: A highly stable alternative to short-lived prophylactics. Biomaterials 2016, 107, 102–114. [Google Scholar] [CrossRef]
- Lopez-Cano, A.; Martinez-Miguel, M.; Guasch, J.; Ratera, I.; Aris, A.; Garcia-Fruitos, E. Exploring the impact of the recombinant Escherichia coli strain on defensins antimicrobial activity: BL21 versus Origami strain. Microb. Cell Factories 2022, 21, 77. [Google Scholar] [CrossRef]
- Shabir, U.; Ali, S.; Magray, A.R.; Ganai, B.A.; Firdous, P.; Hassan, T.; Nazir, R. Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review. Microb. Pathog. 2018, 114, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Roca-Pinilla, R.; Lisowski, L.; Aris, A.; Garcia-Fruitos, E. The future of recombinant host defense peptides. Microb. Cell Factories 2022, 21, 267. [Google Scholar] [CrossRef] [PubMed]
- Roca-Pinilla, R.; Lopez-Cano, A.; Saubi, C.; Garcia-Fruitos, E.; Aris, A. A new generation of recombinant polypeptides combines multiple protein domains for effective antimicrobial activity. Microb. Cell Factories 2020, 19, 122. [Google Scholar] [CrossRef]
- Brunner, S.R.; Varga, J.F.A.; Dixon, B. Antimicrobial Peptides of Salmonid Fish: From Form to Function. Biology 2020, 9, 233. [Google Scholar] [CrossRef]
- Chang, C.I.; Zhang, Y.A.; Zou, J.; Nie, P.; Secombes, C.J. Two cathelicidin genes are present in both rainbow trout (Oncorhynchus mykiss) and atlantic salmon (Salmo salar). Antimicrob. Agents Chemother. 2006, 50, 185–195. [Google Scholar] [CrossRef]
- Zhang, X.J.; Zhang, X.Y.; Zhang, N.; Guo, X.; Peng, K.S.; Wu, H.; Lu, L.F.; Wu, N.; Chen, D.D.; Li, S.; et al. Distinctive structural hallmarks and biological activities of the multiple cathelicidin antimicrobial peptides in a primitive teleost fish. J. Immunol. 2015, 194, 4974–4987. [Google Scholar] [CrossRef]
- Bridle, A.; Nosworthy, E.; Poliski, M.; Nowak, B. Evidence of an Antimicrobial-Immunomodulatory Role of Atlantic Salmon Cathelicidins during Infection with Yersinia ruckeri. PLoS ONE 2011, 6, e23417. [Google Scholar] [CrossRef] [PubMed]
- Shirdel, I.; Kalbassi, M.R.; Hosseinkhani, S.; Paknejad, H.; Wink, M. Cloning, characterization and tissue-specific expression of the antimicrobial peptide hepcidin from caspian trout (Salmo caspius) and the antibacterial activity of the synthetic peptide. Fish Shellfish. Immunol. 2019, 90, 288–296. [Google Scholar] [CrossRef]
- Huang, T.; Gu, W.; Wang, B.; Zhang, Y.; Cui, L.; Yao, Z.; Zhao, C.; Xu, G. Identification and expression of the hepcidin gene from brown trout (Salmo trutta) and functional analysis of its synthetic peptide. Fish Shellfish. Immunol. 2019, 87, 243–253. [Google Scholar] [CrossRef]
- Alvarez, C.A.; Gomez, F.A.; Mercado, L.; Ramirez, R.; Marshall, S.H. Piscirickettsia salmonis Imbalances the Innate Immune Response to Succeed in a Productive Infection in a Salmonid Cell Line Model. PLoS ONE 2016, 11, e0163943. [Google Scholar] [CrossRef] [PubMed]
- Falco, F.; Banaee, M.; Mauro, M.; Faggio, C.; Arathi, K.; Preetham, E. Immunomodulators: An Introduction. In Immunomodulators in Aquaculture and Fish Health; Elumalai, P., Soltani, M., Lakshmi, S., Eds.; Talor & Francis Group: Miami, FL, USA, 2024. [Google Scholar]
- Secombes, C. Cytokines and Immunity. In Principles of Fish Immunology. From Cells and Molecules to Host Protection; Buchmann, K., Secombes, C.J., Eds.; Springer Nature: Cham, Switzerland, 2022. [Google Scholar]
- Zou, J.; Secombes, C.J. The Function of Fish Cytokines. Biology 2016, 5, 23. [Google Scholar] [CrossRef]
- Lopez-Cano, A.; Bach, A.; Lopez-Serrano, S.; Aragon, V.; Blanch, M.; Pastor, J.J.; Tedo, G.; Morais, S.; Garcia-Fruitos, E.; Aris, A. Potential of Oral Nanoparticles Containing Cytokines as Intestinal Mucosal Immunostimulants in Pigs: A Pilot Study. Animals 2022, 12, 1075. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, K.; Kida, Y.; Zhang, Y.; Shimizu, T.; Kuwano, K. Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol. Immunol. 2002, 46, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, L. Cytokines and cytokine measurements in a clinical laboratory. Clin. Diagn. Lab. Immunol. 1994, 1, 257. [Google Scholar] [CrossRef] [PubMed]
- Slouka, C.; Kopp, J.; Spadiut, O.; Herwig, C. Perspectives of inclusion bodies for bio-based products: Curse or blessing? Appl. Microbiol. Biotechnol. 2019, 103, 1143–1153. [Google Scholar] [CrossRef]
- Gifre-Renom, L.; Seras-Franzoso, J.; Rafael, D.; Andrade, F.; Cano-Garrido, O.; Martinez-Trucharte, F.; Ugarte-Berzal, E.; Martens, E.; Boon, L.; Villaverde, A.; et al. The Biological Potential Hidden in Inclusion Bodies. Pharmaceutics 2020, 12, 157. [Google Scholar] [CrossRef]
- Lopez-Cano, A.; Sicilia, P.; Gaja, C.; Aris, A.; Garcia-Fruitos, E. Quality comparison of recombinant soluble proteins and proteins solubilized from bacterial inclusion bodies. New Biotechnol. 2022, 72, 58–63. [Google Scholar] [CrossRef]
- Gifre-Renom, L.; Cano-Garrido, O.; Fabregas, F.; Roca-Pinilla, R.; Seras-Franzoso, J.; Ferrer-Miralles, N.; Villaverde, A.; Bach, A.; Devant, M.; Aris, A.; et al. A new approach to obtain pure and active proteins from Lactococcus lactis protein aggregates. Sci. Rep. 2018, 8, 13917. [Google Scholar] [CrossRef]
- Restrepo-Pineda, S.; Rosiles-Becerril, D.; Vargas-Castillo, A.B.; Ávila-Barrientos, L.P.; Luviano, A.; Sánchez-Puig, N.; García-Hernández, E.; Pérez, N.O.; Trujillo-Roldán, M.A.; Valdez-Cruz, N.A. Induction temperature impacts the structure of recombinant HuGM-CSF inclusion bodies in thermoinducible E. coli. Electron. J. Biotechnol. 2022, 59, 94–106. [Google Scholar] [CrossRef]
- Calcines-Cruz, C.; Olvera, A.; Castro-Acosta, R.M.; Zavala, G.; Alagon, A.; Trujillo-Roldan, M.A.; Valdez-Cruz, N.A. Recombinant-phospholipase A2 production and architecture of inclusion bodies are affected by pH in Escherichia coli. Int. J. Biol. Macromol. 2018, 108, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Mendoza, A.; Castro-Acosta, R.M.; Olvera, A.; Zabala, G.; Mendoza-Vera, M.; García-Hemriquez, E.; Alagón, A.; Trujillo-Roldán, M.; Valdez-Cruz, N.A. Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli. Microb. Cell Factories 2014, 13. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.A.; Ramirez-Cepeda, F.; Santana, P.; Torres, E.; Cortes, J.; Guzman, F.; Schmitt, P.; Mercado, L. Insights into the diversity of NOD-like receptors: Identification and expression analysis of NLRC3, NLRC5 and NLRX1 in rainbow trout. Mol. Immunol. 2017, 87, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Torrealba, D.; Seras-Franzoso, J.; Mamat, U.; Wilke, K.; Villaverde, A.; Roher, N.; Garcia-Fruitos, E. Complex Particulate Biomaterials as Immunostimulant-Delivery Platforms. PLoS ONE 2016, 11, e0164073. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.Y.; Mookherjee, N. Multiple immune-modulatory functions of cathelicidin host defense peptides. Front. Immunol. 2012, 3, 149. [Google Scholar] [CrossRef]
- Veldhuizen, E.; Schneider, V.; Agustiandari, H.; Van Dijk, A.D.; Tjeerdsma, J.; JBikker, F.; Haagsman, H. Antimicrobial and Immunomodulatory Activities of PR-39 Derived Peptides. PLoS ONE 2014, 9, e95939. [Google Scholar] [CrossRef]
- Schmitt, P.; Wacyk, J.; Morales-Lange, B.; Rojas, V.; Guzman, F.; Dixon, B.; Mercado, L. Immunomodulatory effect of cathelicidins in response to a beta-glucan in intestinal epithelial cells from rainbow trout. Dev. Comp. Immunol. 2015, 51, 160–169. [Google Scholar] [CrossRef]
- Acosta, J.; Roa, F.; Gonzalez-Chavarria, I.; Astuya, A.; Maura, R.; Montesino, R.; Munoz, C.; Camacho, F.; Saavedra, P.; Valenzuela, A.; et al. In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in fish cells. Fish Shellfish. Immunol. 2019, 88, 587–594. [Google Scholar] [CrossRef]
- Katzenback, B.A. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. Biology 2015, 4, 607–639. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.A.; Santana, P.A.; Salinas-Parra, N.; Beltran, D.; Guzman, F.; Vega, B.; Acosta, F.; Mercado, L. Immune Modulation Ability of Hepcidin from Teleost Fish. Animals 2022, 12, 1586. [Google Scholar] [CrossRef] [PubMed]
- Ghodsi, Z.; Kalbassi, M.R.; Farzaneh, P.; Mobarez, A.M.; Beemelmanns, C.; Amiri Moghaddam, J. Immunomodulatory function of antimicrobial peptide EC-Hepcidin1 modulates the induction of inflammatory gene expression in primary cells of Caspian Trout (Salmo trutta caspius Kessler, 1877). Fish Shellfish. Immunol. 2020, 104, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.A.; Guzman, F.; Cardenas, C.; Marshall, S.H.; Mercado, L. Antimicrobial activity of trout hepcidin. Fish Shellfish. Immunol. 2014, 41, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, Y.; Murakami, M.; Sugiyama, M.; Hashimoto, O.; Matsui, T.; Funaba, M. Hepcidin and IL-1beta. Vitam. Horm. 2019, 110, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) Pathway. Sci. Signal. 2010, 3, cm1. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Li, R.; Xu, Q.; Secombes, C.J.; Wang, T. Two types of TNF-alpha exist in teleost fish: Phylogeny, expression, and bioactivity analysis of type-II TNF-alpha3 in rainbow trout Oncorhynchus mykiss. J. Immunol. 2013, 191, 5959–5972. [Google Scholar] [CrossRef] [PubMed]
- Peddie, S.; Zou, J.; Cunningham, C.; Secombes, C.J. Rainbow trout (Oncorhynchus mykiss) recombinant IL-1beta and derived peptides induce migration of head-kidney leucocytes in vitro. Fish Shellfish. Immunol. 2001, 11, 697–709. [Google Scholar] [CrossRef]
- Castro, R.; Zou, J.; Secombes, C.J.; Martin, S.A. Cortisol modulates the induction of inflammatory gene expression in a rainbow trout macrophage cell line. Fish Shellfish. Immunol. 2011, 30, 215–223. [Google Scholar] [CrossRef]
- Hong, S.; Zou, J.; Crampe, M.; Peddie, S.; Scapigliati, G.; Bols, N.C.; Cunningham, C.; Secombes, C. The production and bioactivity of rainbow trout (Oncorhynchus mykiss) recombinat IL-1B. Vet. Immunol. Immunopathol. 2001, 81, 1–14. [Google Scholar] [CrossRef]
- Pares, S.; Cano-Garrido, O.; Bach, A.; Ferrer-Miralles, N.; Villaverde, A.; Garcia-Fruitos, E.; Aris, A. The Potential of Metalloproteinase-9 Administration to Accelerate Mammary Involution and Boost the Immune System at Dry-Off. Animals 2021, 11, 3415. [Google Scholar] [CrossRef]
- Gifre-Renom, L.; Carratala, J.V.; Pares, S.; Sanchez-Garcia, L.; Ferrer-Miralles, N.; Villaverde, A.; Bach, A.; Garcia-Fruitos, E.; Aris, A. Potential of MMP-9 based nanoparticles at optimizing the cow dry period: Pulling apart the effects of MMP-9 and nanoparticles. Sci. Rep. 2020, 10, 11299. [Google Scholar] [CrossRef]
- Roher, N.; Callol, A.; Planas, J.V.; Goetz, F.W.; MacKenzie, S.A. Endotoxin recognition in fish results in inflammatory cytokine secretion not gene expression. Innate Immun. 2011, 17, 16–28. [Google Scholar] [CrossRef]
- Bhatwa, A.; Wang, W.; Hassan, Y.I.; Abraham, N.; Li, X.Z.; Zhou, T. Challenges Associated with the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front. Bioeng. Biotechnol. 2021, 9, 630551. [Google Scholar] [CrossRef]
- Slouka, C.; Kopp, J.; Hutwimmer, S.; Strahammer, M.; Strohmer, D.; Eitenberger, E.; Schwaighofer, A.; Herwig, C. Custom made inclusion bodies: Impact of classical process parameters and physiological parameters on inclusion body quality attributes. Microb. Cell Factories 2018, 17, 148. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Cruz, N.A.; Reynoso-Cereceda, G.I.; Perez-Rodriguez, S.; Restrepo-Pineda, S.; Gonzalez-Santana, J.; Olvera, A.; Zavala, G.; Alagon, A.; Trujillo-Roldan, M.A. Production of a recombinant phospholipase A2 in Escherichia coli using resonant acoustic mixing that improves oxygen transfer in shake flasks. Microb. Cell Factories 2017, 16, 129. [Google Scholar] [CrossRef] [PubMed]
- Restrepo-Pineda, S.; Bando-Campos, C.G.; Valdez-Cruz, N.A.; Trujillo-Roldan, M.A. Recombinant production of ESAT-6 antigen in thermoinducible Escherichia coli: The role of culture scale and temperature on metabolic response, expression of chaperones, and architecture of inclusion bodies. Cell Stress Chaperones 2019, 24, 777–792. [Google Scholar] [CrossRef]
- Restrepo-Pineda, S.; Pérez, N.O.; Valdez-Cruz, N.A.; Trujillo-Roldan, M.A. Thermoinducible expression system for producing recombinant proteins in Escherichia coli: Advances and insights. FEMS Microbiol. Rev. 2021, 45, fuab023. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ochoa, F.; Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 2009, 27, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Lara, A.R.; Jaén, K.E.; Folarin, O.; Keshavarz-Moore, E.; Büchs, J. Effect of the oxygen transfer rate on oxygen-limited production of plasmid DNA by Escherichia coli. Biochem. Eng. J. 2019, 150, 107303. [Google Scholar] [CrossRef]
- Reynoso-Cereceda, G.I.; Garcia-Cabrera, R.I.; Valdez-Cruz, N.A.; Trujillo-Roldán, M.A. Shaken flasks by resonant acoustic mixing versus orbital mixing: Mass transfer coefficient kLa characterization and Escherichia coli cultures comparison. Biochem. Eng. J. 2016, 105, 379–390. [Google Scholar] [CrossRef]
- Krauss, U.; Jager, V.D.; Diener, M.; Pohl, M.; Jaeger, K.E. Catalytically-active inclusion bodies-Carrier-free protein immobilizates for application in biotechnology and biomedicine. J. Biotechnol. 2017, 258, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.K.; Murmu, A.; Singh, A.; Panda, A.K. Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli. PLoS ONE 2012, 7, e33951. [Google Scholar] [CrossRef] [PubMed]
- Slouka, C.; Kopp, J.; Strohmer, D.; Kager, J.; Spadiut, O.; Herwig, C. Monitoring and control strategies for inclusion body production in E. coli based on glycerol consumption. J. Biotechnol. 2019, 296, 75–82. [Google Scholar] [CrossRef]
- Kopp, J.; Slouka, C.; Ulonska, S.; Kager, J.; Fricke, J.; Spadiut, O.; Herwig, C. Impact of Glycerol as Carbon Source onto Specific Sugar and Inducer Uptake Rates and Inclusion Body Productivity in E. coli BL21(DE3). Bioengineering 2017, 5, 1. [Google Scholar] [CrossRef]
Parameters | Shake Flask | Bioreactor | |||
---|---|---|---|---|---|
Non-Induced | Induced at 0.5 U.A | Non-Induced | Induced at 0.5 U.A | Induced at 1.0 U.A | |
Growth velocity (µ) (h−1) | 0.63 ± 0.03 | - | 0.72 ± 0.02 | - | 0.73 ± 0.04 |
Culture time | 8 | 5 | 8 | 5.5 | 7 |
Time to raise induction biomass (h) | - | 2 | - | 2.5 | 4 |
Biomass raised (g/L) | 1.78 ± 0.16 | 0.50 ± 0.04 | 1.59 ± 0.22 | 0.48 ± 0.01 | 1.51 ± 0.18 |
Biomass raised at harvest time (g/L) | 1.20 ± 0.02 | 0.50 ± 0.04 | 1.12 ± 0.13 | 0.48 ± 0.01 | 1.51 ± 0.18 |
IBs Yields (mg/L) | - | 39 ± 1.15 | - | 14.5 ± 4.08 | 71.8 ± 5.2 |
Total IB (mg) | - | 19.5 ± 0.58 | - | 21.75 ± 6.12 | 107.7 ± 7.8 |
IB specific productivity (mg/g·h) | - | 26.0 ± 0.77 | - | 10.1 ± 2.8 | 15.1 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torrealba, D.; López, D.; Zelada, P.; Salinas-Parra, N.; Valenzuela-Avilés, P.; Garcia-Fruitós, E.; Arís, A.; Mercado, L.; Altamirano, C.; Gallardo-Matus, J. Immunomodulation Evidence of Nanostructured Recombinant Proteins in Salmonid Cells. Animals 2024, 14, 844. https://doi.org/10.3390/ani14060844
Torrealba D, López D, Zelada P, Salinas-Parra N, Valenzuela-Avilés P, Garcia-Fruitós E, Arís A, Mercado L, Altamirano C, Gallardo-Matus J. Immunomodulation Evidence of Nanostructured Recombinant Proteins in Salmonid Cells. Animals. 2024; 14(6):844. https://doi.org/10.3390/ani14060844
Chicago/Turabian StyleTorrealba, Débora, Daniela López, Patricio Zelada, Nicolás Salinas-Parra, Paula Valenzuela-Avilés, Elena Garcia-Fruitós, Anna Arís, Luis Mercado, Claudia Altamirano, and José Gallardo-Matus. 2024. "Immunomodulation Evidence of Nanostructured Recombinant Proteins in Salmonid Cells" Animals 14, no. 6: 844. https://doi.org/10.3390/ani14060844
APA StyleTorrealba, D., López, D., Zelada, P., Salinas-Parra, N., Valenzuela-Avilés, P., Garcia-Fruitós, E., Arís, A., Mercado, L., Altamirano, C., & Gallardo-Matus, J. (2024). Immunomodulation Evidence of Nanostructured Recombinant Proteins in Salmonid Cells. Animals, 14(6), 844. https://doi.org/10.3390/ani14060844