Enhancing Milk Quality and Antioxidant Status in Lactating Dairy Goats through the Dietary Incorporation of Purple Napier Grass Silage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals, and Diets
2.2. Animal Management
2.3. Feeds and Milk Sampling
2.4. Blood Sampling
2.5. Chemical Analysis of Feeds and Milk
2.6. Antioxidant Activity
2.7. Anthocyanin Composition
2.8. Statistical Analysis
3. Results
3.1. Feed Intake, Milk Yield
3.2. Milk Composition
3.3. Antioxidant Activity in Plasma and Milk
3.4. Anthocyanin Composition in Milk
4. Discussion
4.1. Feed Intake, Milk Yield, and Composition
4.2. Antioxidant Activity in Plasma and Milk
4.3. Anthocyanin Composition in Milk
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ames, B.N.; Shigenaga, M.K.; Hagen, T.M. Mitochondrial decay in aging. BBA 1995, 1271, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.K.; Brzezinska-Slebodzinska, E.; Madsen, F.C. Oxidative stress, antioxidants, and animal function. J. Dairy Sci. 1993, 76, 2812–2823. [Google Scholar] [CrossRef]
- Bendich, A. Physiological role of antioxidants in the immune system. J. Dairy Sci. 1993, 76, 2789–2794. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P.; Salem, A.Z.M.; Liang, J.B. Mammary gene expressions and oxidative indicators in ruminal fluid, blood, milk, and mammary tissue of dairy goats fed a total mixed ration containing piper meal (Piper betle L.). Ital. J. Anim Sci. 2022, 21, 129–141. [Google Scholar] [CrossRef]
- Celi, P. Oxidative stress in ruminants. In Studies on Veterinary Medicine, Oxidative Stress in Applied Basic Research and Clinical Practice 5, 5th ed.; Mandelker, L., Vajdovich, P., Eds.; Humana Press: Totowa, NJ, USA; Springer Science Business Media LLC: New York, NY, USA, 2011; pp. 191–231. [Google Scholar]
- Di Trana, A.; Celi, P.; Claps, S.; Fedele, V.; Rubino, R. The effect of hot season and nutrition on the oxidative status and metabolic profile in dairy goats during mid lactation. Anim. Sci. J. 2006, 82, 717–722. [Google Scholar] [CrossRef]
- Castillo, C.; Hernandez, J.; Valverde, I.; Pereira, V.; Sotillo, J.; Alonso, M.L.; Benedito, J.L. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Francis, G.; Becker, K. Bioactivity of phytochemicals in some lesser known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 2007, 1, 1371–1391. [Google Scholar] [CrossRef]
- Celi, P.; Raadsma, H.W. The effects of Yerba Mate (Ilex paraguarensis) supplementation on the productive performance of lactating dairy cows. Anim. Prod. Sci. 2010, 50, 339–344. [Google Scholar] [CrossRef]
- Luciano, G.; Vasta, V.; Monahan, F.J.; Lòpez-Andréz, P.; Biondi, L.; Lanza, M.; Priolo, A. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem. 2011, 124, 1036–1042. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Dursta, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Szajdek, A.; Borowska, E.J. Bioactive compounds and health-promoting properties of berry fruits: A review. Plant Foods Hum. Nutr. 2008, 63, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Z.; Xin, H.; Paengkoum, P.; Paengkoum, S.; Ban, C.; Thongpea, S. Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. J. Anim. Sci. 2019, 97, 1384–1397. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.Z.; Lu, Q.; Paengkoum, P.; Paengkoum, S. Short communication: Effect of purple corn pigment on change of anthocyanin composition and unsaturated fatty acids during milk storage. J. Dairy Sci. 2020, 103, 7808–7812. [Google Scholar] [CrossRef] [PubMed]
- Purba, R.A.P.; Paengkoum, S.; Yuangklang, C.; Paengkoum, P. Flavonoids and their aromatic derivatives in Piper betle powder promote in vitro methane mitigation in a variety of diets. Cienc. Agrotec. 2020, 44, e012420. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Piper oil decreases in vitro methane production with shifting ruminal fermentation in a variety of diets. Int. J. Agric. Biol. 2020, 25, 231–240. [Google Scholar]
- Hosoda, K.; Eruden, B.; Matsuyama, H.; Shioya, S. Effect of anthocyanin-rich corn silage on digestibility, milk production and plasma enzyme activities in lactating dairy cows. Anim. Sci. J. 2012, 83, 453–459. [Google Scholar] [CrossRef]
- Vorlaphim, T.; Paengkoum, P.; Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Schonewille, J.T. Treatment of rice stubble with Pleurotus ostreatus and urea improves the growth performance in slow-growing goats. Animals 2021, 11, 1053. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Goats, Angora, Dairy, and Meat Goats in Temperate and Tropical Countries; National Academy Press: Washington, DC, USA, 1981; pp. 10–20. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, ML, USA, 2005; pp. 24–39. [Google Scholar]
- Paengkoum, P.; Liang, J.; Jelan, Z.A.; Baserry, M. Utilization of steam-treated oil palm fronds in growing Saanen goats: II. Supplementation with energy and urea. Asian-Australas. J. Anim. Sci. 2006, 19, 1623–1631. [Google Scholar] [CrossRef]
- Paengkoum, S.; Petlum, A.; Purba, R.A.P.; Paengkoum, P. Protein-binding affinity of various condensed tannin molecular weights from tropical leaf peel. J. Appl. Pharm. Sci. 2021, 11, 114–120. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Hamzaoui, S.; Salama, A.A.K.; Albanell, E.; Such, X.; Caja, G. Physiological responses and lactational performances of late-lactation dairy goats under heat stress conditions. J. Dairy Sci. 2013, 96, 6355–6365. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.T.; Chiang, B.H. Bioactive peptide production by hydrolysis of porcine blood proteins in a continuous enzymatic membrane reactor. J. Sci. Food Agric. 2009, 89, 372–378. [Google Scholar] [CrossRef]
- Zarban, A.; Taheri, F.; Chahkandi, T.; Sharifzadeh, G.; Khorashadizadeh, M. Antioxidant and radical scavenging activity of human colostrum, transitional and mature milk. J. Clin. Biochem. Nutr. 2009, 45, 150–154. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, P. Bioanalytical HPLC method of Piper betle L. for quantifying phenolic compound, water-soluble vitamin, and essential oil in five different solvent extracts. J. Appl. Pharm. Sci. 2019, 9, 33–39. [Google Scholar] [CrossRef]
- Purba, R.A.P.; Paengkoum, S.; Paengkoum, P. Development of a simple high-performance liquid chromatography-based method to quantify synergistic compounds and their composition in dried leaf extracts of Piper sarmentosum Robx. Separations 2021, 8, 152. [Google Scholar] [CrossRef]
- Hosoda, K.; Eruden, B.; Matsuyama, H.; Shioya, S. Silage fermentative quality and characteristics of anthocyanin stability in anthocyanin-rich corn (Zea mays L.). Asian-Australas. J. Anim. Sci. 2009, 22, 528–533. [Google Scholar] [CrossRef]
- Seeram, N.P.; Lee, R.; Scheuller, H.S.; Heber, D. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem. 2006, 97, 1–11. [Google Scholar] [CrossRef]
- Tadapaneni, R.K.; Banaszewski, K.; Patazca, E.; Edirisinghe, I.; Cappozzo, J.; Jackson, L.; Burton-Freeman, B. Effect of high-pressure processing and milk on the anthocyanin composition and antioxidant capacity of strawberry-based beverages. J. Agric. Food Chem. 2012, 60, 5795–5802. [Google Scholar] [CrossRef]
- SAS. Statistical Analysis System User‘s Guide, 8th ed.; SAS Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Steel, R.G.D.; Torrie, J.N. Principles and Procedures of Statistics, 2nd ed.; McGraw-Hill. Book C: New York, NY, USA, 1980. [Google Scholar]
- Chalker-Scott, L. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 1999, 70, 1–9. [Google Scholar] [CrossRef]
- Tian, X.Z.; Paengkoum, P.; Paengkoum, S.; Thongpea, S.; Ban, C. Comparison of forage yield, silage fermentative quality, anthocyanin stability, antioxidant activity, and in vitro rumen fermentation of anthocyanin-rich purple corn (Zea mays L.) stover and sticky corn stover. J. Integr. Agric. 2018, 17, 2082–2095. [Google Scholar] [CrossRef]
- Wanapat, M.; Chumpawadee, S.; Paengkoum, P. Utilization of urea-treated rice straw and whole sugar cane crop as roughage sources for dairy cattle during the dry season. Asian-australas. J. Anim. Sci. 2000, 13, 474–477. [Google Scholar] [CrossRef]
- Bruhn, J.C. Dairy Goat Milk Composition; Dairy Research and Information Center (DRINC), Department of Food Science & Technology, University of California: Davis, CA, USA, 2017. [Google Scholar]
- Harvatine, K.J.; Allen, M.S. The effect of production level on feed intake, milk yield, and endocrine responses to two fatty acid supplements in lactating cows. J. Dairy Sci. 2005, 88, 4018–4027. [Google Scholar] [CrossRef]
- Rigout, S.; Hurtaud, C.; Lemosquet, S.; Bach, A.; Rulquin, H. Lactational effect of propionic acid and duodenal glucose in cows. J. Dairy Sci. 2003, 86, 243–253. [Google Scholar] [CrossRef]
- Giusti, M.M.; Ghanadan, H.; Wrolstad, R.E. Elucidation of the structure and conformation of red radish (Raphanus sativus) anthocyanins using one- and two-dimensional nuclear magnetic resonance techniques. J. Agric. Food Chem. 1998, 46, 4858–4863. [Google Scholar] [CrossRef]
- Torskangerpoll, K.; Noerbaek, R.; Nodland, E.; Oevstedal, D.O.; Andersen, Ø.M. Anthocyanin content of Tulipa species and cultivars and its impact on tepal colours. Biochem. Syst. Ecol. 2005, 33, 499–510. [Google Scholar] [CrossRef]
- Passamonti, S.; Vrhovsek, U.; Vanzo, A.; Mattivi, F. The stomach as a site for anthocyanins absorption from food. FEBS Lett. 2003, 544, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Purba, R.A.P.; Yuangklang, C.; Paengkoum, S.; Paengkoum, P. Milk fatty acid composition, rumen microbial population and animal performance in response to diets rich in linoleic acid supplemented with Piper betle leaves in Saanen goats. Anim. Prod. Sci. 2020, 62, 1391. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. Composit. In Feeding Goats for Improved Milk and Meat Production; Haenlein, G.F.W., Ed.; Department of Animal and Food Science, University of Delaware: Newark, DE, USA, 2002. [Google Scholar]
- Singh, S.N.; Sengar, O.P.S. Studies on the Combining Ability of Desirable Characters of Important Goat Breeds, Final Technical Report; Raja Balwant Singh College, Department of Animal Husbandry and Dairying: Agra, India, 1978; pp. 1–480. [Google Scholar]
- Pal, U.K.; Saxena, V.K.; Agnihottri, M.K.; Roy, R. 1996. Effect of season, parity and stage of lactation on the composition of Jamunapari goats milk. Int. J. Vet. Sci. 1990, 11, 245–248. [Google Scholar]
- Lacombe, A.; Tadepalli, S.; Hwang, C.A.; Wu, V.C. Phytochemicals in lowbush wild blueberry inactivate Escherichia coli O157:H7 by damaging its cell membrane. Foodborne Pathog. Dis. 2013, 10, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, E.; Kwon, Y.I.; Shetty, K. Inhibition of Listeria monocytogenes by oregano, cranberry and sodium lactate combination in broth and cooked ground beef systems and likely mode of action through proline metabolism. Int. J. Food Microbiol. 2008, 128, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Perez, C.; Wei, Y.; Rapoza, E.; Su, G.; Bou-Abdallah, F.; Chasteen, N. Iron-binding properties of plant phenolics and cranberry’s bio-effects. Dalton Trans. 2007, 43, 4951–4961. [Google Scholar] [CrossRef]
- Kwon, Y.I.; Apostolidis, E.; Labbe, R.G.; Shetty, K. Inhibition of Staphylococcus aureus by phenolic phytochemicals of selected clonal herbs species of lamiaceae family and likely mode of action through proline oxidation. Food Biotechnol. 2007, 21, 71–89. [Google Scholar] [CrossRef]
- Hellingwerf, K.J.; Konings, W.N. The energy flow in bacteria: The main free energy intermediates and their regulatory role. Adv. Microb. Physiol. 1985, 26, 125–154. [Google Scholar] [PubMed]
- Wu, D.; Kong, Y.; Han, C.; Chen, J.; Hu, L.; Jiang, H.; Shen, X. D-Alanine: D-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int. J. Antimicrob. 2008, 32, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Konwarh, R.; Konwar, B.K.; Karak, N. Molecular docking studies on analogues of quercetin with D-alanine:D-alanine ligase of Helicobacter pylori. Med. Chem. Res. 2013, 22, 2139–2150. [Google Scholar] [CrossRef]
- Gardete, S.; Tomasz, A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J. Clin. Investig. 2014, 124, 2836–2840. [Google Scholar] [CrossRef] [PubMed]
- Pekkarinen, S.S.; Heinonen, I.M.; Hopia, A.I. Flavonoids quercetin, myricetin, kaempferol and (+)-catechin as antioxidants in methyl linoleate. J. Sci. Food Agric. 1999, 79, 499–506. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef]
- Ramos, C.G.; Sousa, S.A.; Grilo, A.M.; Feliciano, J.R.; Leitão, J.H. Retraction for the second RNA chaperone, Hfq2, is also required for survival under stress and full virulence of Burkholderia cenocepacia J2315. J. Bacteriol. 2014, 196, 3980. [Google Scholar] [CrossRef]
- Wang, L.S.; Stoner, G.D. Anthocyanins and their role in cancer prevention. Cancer Lett. 2008, 269, 281–290. [Google Scholar] [CrossRef]
- Shih, P.H.; Yeh, C.T.; Yen, G.C. Anthocyanins induce the activation of phase II enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J. Agric. Food Chem. 2007, 55, 9427–9435. [Google Scholar] [CrossRef]
- Nguyen, T.; Nioi, P.; Pickett, C. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.P.; DeLong, M.J. Detoxification and protective functions of nutrients. In Biochemical & Physiological Aspects of Human Nutrition; Stipanuk, M.H., Ed.; W.B. Saunders Company: St. Louis, MO, USA, 2000; pp. 901–916. [Google Scholar]
- Gough, D.R.; Cotter, T.G. Hydrogen peroxide: A Jekyll and Hyde signaling molecule. Cell Death Dis. 2011, 2, e213. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.R. The glutathione peroxidases. Cell. Mol. Life Sci. 2000, 57, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Cabiscol, E.; Tamarit, J.; Ros, J. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 2000, 3, 3–8. [Google Scholar] [PubMed]
- Tian, X.Z.; Paengkoum, P.; Paengkoum, S.; Chumpawadee, S.; Ban, C.; Thongpea, S. Short communication: Purple corn (Zea mays L.) stover silage with abundant anthocyanins transferring anthocyanin composition to the milk and increasing antioxidant status of lactating dairy goats. J. Dairy Sci. 2019, 102, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Fee, J.; Bergamini, R.; Briggs, R. Observation on the mechanism of the oxygen dialuric acid induced hemolysis of vitamin E-deficient rat blood cells and the protective roles of catalase and superoxide dismutase. Arch. Biochem. Biophys. 1975, 169, 160–167. [Google Scholar] [CrossRef]
- Felgines, C.; Texier, O.; Garcin, P.; Besson, C.; Lamaison, J.L.; Scalbert, A. Tissue distribution of anthocyanins in rats fed a blackberry anthocyanin-enriched diet. Mol. Nutr. Food Res. 2009, 53, 1098–1103. [Google Scholar] [CrossRef]
- Hollman, P.C.; Katan, M.B. Health effects and bioavailability of dietary flavonols. Free Radic. Res. 1999, 31, S75–S80. [Google Scholar] [CrossRef] [PubMed]
- Gee, J.M.; DuPont, M.S.; Day, A.J.; Plumb, G.W.; Williamson, G.; Johnson, I.T. Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. J. Nutr. 2000, 130, 2765–2771. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Day, A.J.; Plumb, G.W.; Couteau, D. Human metabolic pathways of dietary flavonoids and cinnamates. Biochem. Soc. Trans. 2000, 28, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Remesy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, S230–S242. [Google Scholar] [CrossRef] [PubMed]
- Hollman, P.C.; de Vries, J.H.; van Leeuwen, S.D.; Mengelers, M.J.; Katan, M.B. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 1995, 62, 1276–1282. [Google Scholar] [CrossRef]
- Hollman, P.C.; Katan, M.B. Bioavailability and health effects of dietary flavonols in man. Arch. Toxicol. 1998, 20, 237–248. [Google Scholar] [CrossRef]
- Müllender, U.; Murkovic, M.; Pfannhauser, W. Urinary excretion of cyanidin glycosides. J. Biochem. Bioph. Meth. 2002, 53, 61–66. [Google Scholar] [CrossRef]
- Wolffram, S.; Weber, T.; Grenacher, B.; Scharrer, E.A. A Na(+)-dependent mechanism is involved in mucosal uptake of cinnamic acid across the jejunal brush border in rats. J. Nutr. 1995, 125, 1300–1308. [Google Scholar]
- Day, A.J.; DuPont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.; Morgan, M.R.; Williamson, G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver betaglucosidase activity. FEBS Lett. 1998, 436, 71–75. [Google Scholar] [CrossRef]
- Walle, T.; Otake, Y.; Walle, U.K.; Wilson, F.A. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J. Nutr. 2000, 130, 2658–2661. [Google Scholar] [CrossRef]
- Németh, K.; Plumb, G.W.; Berrin, J.G.; Juge, N.; Jacob, R.; Naim, H.Y.; Williamson, G.; Swallow, D.M.; Kroon, P.A. Deglycosylation by small intestinal epithelial cell beta-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur. J. Nutr. 2003, 42, 29–42. [Google Scholar] [CrossRef]
- Mazza, G.; Kay, C.D.; Cottrell, T.; Holub, B.J. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J. Agric. Food Chem. 2002, 50, 7731–7737. [Google Scholar] [CrossRef]
- Wu, X.; Cao, G.; Prior, R.L. Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J. Nutr. 2002, 132, 1865–1871. [Google Scholar] [PubMed]
- Felgines, C.; Talavera, S.; Gonthier, M.P.; Texier, O.; Scalbert, A.; Lamaison, J.L.; Remesy, C. Strawberry anthocyanins are recovered in urine as glucuro- and sulfoconjugates in humans. J. Nutr. 2003, 133, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- Galvano, F.; La Fauci, L.; Lazzarino, G.; Fogliano, V.; Ritieni, A.; Ciappellano, S.; Battistini, N.C.; Tavazzi, B.; Galvano, G. Cyanidins: Metabolism and biological properties. J. Nutr. Biochem. 2004, 15, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Kay, C.D.; Mazza, G.; Holub, B.J. Anthocyanins exist in the circulation primarily as metabolites in adult men. J. Nutr. 2005, 135, 2582–2588. [Google Scholar] [CrossRef]
Item 1 | Treatment 2 | ||
---|---|---|---|
Control | 50% | 100% | |
Ingredient (%DM) | On dry basis% | ||
Napier Pak Chong 1 grass silage | 50.00 | 25.00 | - |
Purple Napier grass silage | - | 25.00 | 50.00 |
Soybean hull | 4.50 | 4.50 | 4.50 |
Soybean residue | 30.00 | 30.00 | 30.00 |
Concentrate 21% CP | 15.00 | 15.00 | 15.00 |
Premix | 0.50 | 0.50 | 0.50 |
Total | 100.00 | 100.00 | 100.00 |
Chemical composition | |||
DM | 36.27 | 35.97 | 35.67 |
On dry basis% | |||
OM | 90.86 | 89.96 | 89.24 |
CP | 17.28 | 17.39 | 17.49 |
NDF | 72.16 | 69.79 | 67.41 |
ADF | 41.30 | 40.99 | 40.68 |
Hemicellulose | 30.86 | 28.80 | 26.73 |
CF | 22.71 | 22.07 | 21.42 |
EE | 4.55 | 4.68 | 4.81 |
ME, kJ/g DM | 2464.30 | 2497.76 | 2531.22 |
DE, kJ/g DM | 3005.25 | 3046.05 | 3086.85 |
GE, kJ/g DM | 3998.61 | 4082.64 | 4166.67 |
Anthocyanin (mg/kg DM) | 446.92 | 813.69 | 1180.61 |
Item 1 | Treatment 2 | SEM 3 | p-Value 4 | ||||
---|---|---|---|---|---|---|---|
Control | 50% | 100% | T | Linear | Quadratic | ||
Dry matter intake, g/d | 1164.49 b | 1172.21 ab | 1214.87 a | 8.78 | 0.030 | 0.014 | 0.28 |
Milk yield, kg/d | 1.20 | 1.25 | 1.40 | 0.041 | 0.12 | 0.050 | 0.55 |
3.5% FCM, kg/d | 1.25 | 1.30 | 1.51 | 0.057 | 0.13 | 0.059 | 0.50 |
Fat, g/d | 45.02 | 46.95 | 55.73 | 2.40 | 0.15 | 0.071 | 0.48 |
Protein, g/d | 40.74 | 44.39 | 51.36 | 2.29 | 0.16 | 0.063 | 0.72 |
Lactose, g/d | 53.50 c | 59.10 b | 74.85 a | 3.90 | 0.060 | 0.023 | 0.50 |
Total solid, g/d | 139.26 | 150.44 | 181.93 | 8.56 | 0.10 | 0.042 | 0.55 |
SNF, g/d | 94.24 | 103.49 | 126.20 | 6.18 | 0.087 | 0.034 | 0.58 |
Item 1 | Treatment 2 | SEM 3 | p-Value 4 | ||||
---|---|---|---|---|---|---|---|
Control | 50% | 100% | T | Linear | Quadratic | ||
pH | 6.57 | 6.58 | 6.60 | 0.012 | 0.65 | 0.36 | 0.92 |
Fat, % | 3.73 | 3.74 | 3.95 | 0.062 | 0.29 | 0.16 | 0.48 |
Protein, % | 3.38 | 3.53 | 3.64 | 0.057 | 0.18 | 0.069 | 0.82 |
Lactose, % | 4.40 b | 4.68 b | 5.29 a | 0.12 | 0.001 | 0.0002 | 0.32 |
TS, % | 11.50 | 11.95 | 12.87 | 0.27 | 0.098 | 0.037 | 0.66 |
SNF, % | 7.78 | 8.21 | 8.93 | 0.21 | 0.068 | 0.023 | 0.73 |
SCC, cells × 106/mL | 1.93 a | 1.26 b | 1.14 c | 0.095 | <0.0001 | <0.0001 | <0.0001 |
Item 1 | Treatment 2 | SEM 3 | p-Value 4 | ||||
---|---|---|---|---|---|---|---|
Control | 50% | 100% | T | Linear | Quadratic | ||
Anthocyanin intake, mg/day | 520.43 c | 953.81 b | 1434.29 a | 90.72 | <0.0001 | <0.0001 | 0.10 |
Plasma | |||||||
DPPH, % | 24.00 | 25.03 | 26.64 | 0.70 | 0.32 | 0.14 | 0.85 |
TAC, nmole/µL | |||||||
0 h | 1.04 | 1.06 | 1.07 | 0.025 | 0.91 | 0.68 | 0.92 |
2 h | 1.12 | 1.15 | 1.19 | 0.026 | 0.50 | 0.25 | 0.93 |
4 h | 1.08 | 1.11 | 1.14 | 0.024 | 0.63 | 0.35 | 0.94 |
Mean | 1.08 | 1.11 | 1.14 | 0.025 | 0.67 | 0.38 | 0.99 |
SOD, % | |||||||
0 h | 67.91 | 76.32 | 80.17 | 2.23 | 0.059 | 0.022 | 0.58 |
2 h | 76.28 b | 86.63 a | 91.67 a | 2.22 | 0.004 | 0.001 | 0.43 |
4 h | 75.01 b | 78.01 b | 82.81 a | 1.02 | 0.001 | 0.0002 | 0.48 |
Mean | 73.06 b | 80.32 ab | 84.89 a | 1.75 | 0.008 | 0.003 | 0.63 |
GST, mmol/min/mL | |||||||
0 h | 31.84 | 32.82 | 30.54 | 0.96 | 0.65 | 0.60 | 0.46 |
2 h | 38.37 c | 51.99 b | 61.17 a | 2.74 | <0.0001 | <0.0001 | 0.40 |
4 h | 34.73 c | 47.75 b | 56.20 a | 2.62 | <0.0001 | <0.0001 | 0.40 |
Mean | 35.47 c | 43.82 b | 48.00 a | 1.48 | <0.0001 | <0.0001 | 0.10 |
MDA, umol/L | |||||||
0 h | 0.79 | 0.80 | 0.82 | 0.021 | 0.88 | 0.62 | 0.94 |
2 h | 0.71 a | 0.60 b | 0.50 c | 0.024 | <0.0001 | <0.0001 | 0.81 |
4 h | 0.75 a | 0.68 b | 0.61 c | 0.018 | <0.0001 | <0.0001 | 0.78 |
Mean | 0.75 a | 0.69 ab | 0.64 b | 0.017 | 0.012 | 0.004 | 0.88 |
Milk | |||||||
DPPH, % | 25.33 | 29.91 | 32.00 | 1.23 | 0.066 | 0.025 | 0.59 |
TAC, nmole/µL | 0.90 | 0.97 | 1.04 | 0.027 | 0.095 | 0.033 | 0.97 |
SOD, % | 67.71 b | 68.70 b | 74.28 a | 0.96 | 0.002 | 0.001 | 0.10 |
GST, mmol/min/mL | 33.40 c | 46.55 b | 55.48 a | 2.48 | <0.0001 | <0.0001 | 0.10 |
MDA, umol/L | 0.50 a | 0.42 b | 0.37 c | 0.015 | <0.0001 | <0.0001 | 0.26 |
Item 1 | Treatment 2 | SEM 3 | p-Value 4 | ||||
---|---|---|---|---|---|---|---|
Control | 50% | 100% | T | Linear | Quadratic | ||
C3G, mg/kg | 1.00 c | 1.84 b | 2.61 a | 0.18 | <0.0001 | <0.0001 | 0.66 |
Del, mg/kg | - | - | - | - | - | - | |
P3G, mg/kg | 0.54 c | 1.03 b | 1.55 a | 0.11 | <0.0001 | <0.0001 | 0.76 |
Peo3G, mg/kg | 0.60 c | 1.05 b | 1.52 a | 0.10 | <0.0001 | <0.0001 | 0.82 |
M3G, mg/kg | 0.23 c | 0.42 b | 0.61 a | 0.042 | <0.0001 | <0.0001 | 0.99 |
Cya, mg/kg | 0.56 c | 1.02 b | 1.47 a | 0.10 | <0.0001 | <0.0001 | 1.00 |
Pel, mg/kg | 0.60 c | 0.89 b | 1.30 a | 0.083 | <0.0001 | <0.0001 | 0.47 |
Mal, mg/kg | - | - | - | - | - | - | |
Total, mg/kg | 3.53 c | 6.24 b | 9.06 a | 0.62 | <0.0001 | <0.0001 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onjai-uea, N.; Paengkoum, S.; Taethaisong, N.; Thongpea, S.; Paengkoum, P. Enhancing Milk Quality and Antioxidant Status in Lactating Dairy Goats through the Dietary Incorporation of Purple Napier Grass Silage. Animals 2024, 14, 811. https://doi.org/10.3390/ani14050811
Onjai-uea N, Paengkoum S, Taethaisong N, Thongpea S, Paengkoum P. Enhancing Milk Quality and Antioxidant Status in Lactating Dairy Goats through the Dietary Incorporation of Purple Napier Grass Silage. Animals. 2024; 14(5):811. https://doi.org/10.3390/ani14050811
Chicago/Turabian StyleOnjai-uea, Narawich, Siwaporn Paengkoum, Nittaya Taethaisong, Sorasak Thongpea, and Pramote Paengkoum. 2024. "Enhancing Milk Quality and Antioxidant Status in Lactating Dairy Goats through the Dietary Incorporation of Purple Napier Grass Silage" Animals 14, no. 5: 811. https://doi.org/10.3390/ani14050811
APA StyleOnjai-uea, N., Paengkoum, S., Taethaisong, N., Thongpea, S., & Paengkoum, P. (2024). Enhancing Milk Quality and Antioxidant Status in Lactating Dairy Goats through the Dietary Incorporation of Purple Napier Grass Silage. Animals, 14(5), 811. https://doi.org/10.3390/ani14050811