Porous Zinc Oxide and Plant Polyphenols as a Replacement for High-Dose Zinc Oxide on Growth Performance, Diarrhea Incidence, Intestinal Morphology and Microbial Diversity of Weaned Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Piglets and Experimental Design
2.2. Sample Collection and Processing
2.3. Growth Performance and Diarrhea Incidence Measurement
2.4. Intestinal Morphology
2.5. Microbiology of Cecal Contents
2.6. Statistical Analysis
3. Results
3.1. Growth Performance and Diarrhea Incidence
3.2. Intestinal Morphology
3.3. Microbiolota in Cecal Contents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, L.; Ying, Z.; He, J.; Zhou, L.; Zhang, L.; Zhong, X.; Wang, T. Effects of dietary zinc oxide nanoparticles on growth, diarrhea, mineral deposition, intestinal morphology, and barrier of weaned piglets. Biol. Trace Elem. Res. 2018, 185, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Satessa, G.D.; Kjeldsen, N.J.; Mansouryar, M.; Hansen, H.H.; Bache, J.K.; Nielsen, M.O. Effects of alternative feed additives to medicinal zinc oxide on productivity, diarrhoea incidence and gut development in weaned piglets. Animal 2020, 14, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Upadhaya, S.D.; Kim, I.H. Effects of dietary supplementation of modified zinc oxide on growth performance, nutrient digestibility, blood profiles, fecal microbial shedding and fecal score in weanling pigs. Anim. Sci. J. 2015, 86, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Buff, C.E.; Bollinger, D.W.; Ellersieck, M.R.; Brommelsiek, W.A.; Veum, T.L. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc-polysaccharide or zinc oxide. J. Anim. Sci. 2005, 83, 2380–2386. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Chen, J.; Yao, K.; Yin, Y.; Long, L.; Fang, R. The effects of dietary supplementation with porous zinc oxide on growth performance, intestinal microbiota, morphology, and permeability in weaned piglets. Anim. Sci. J. 2019, 90, 1220–1228. [Google Scholar] [CrossRef] [PubMed]
- Grilli, E.; Tugnoli, B.; Vitari, F.; Domeneghini, C.; Morlacchini, M.; Piva, A.; Prandini, A. Low doses of microencapsulated zinc oxide improve performance and modulate the ileum architecture, inflammatory cytokines and tight junctions expression of weaned pigs. Animal 2015, 9, 1760–1768. [Google Scholar] [CrossRef] [PubMed]
- Starke, I.C.; Pieper, R.; Neumann, K.; Zentek, J.; Vahjen, W. The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiol. Ecol. 2014, 87, 416–427. [Google Scholar] [CrossRef]
- Pei, X.; Xiao, Z.; Liu, L.; Wang, G.; Tao, W.; Wang, M.; Zou, J.; Leng, D. Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs. J. Sci. Food Agric. 2019, 99, 1366–1374. [Google Scholar] [CrossRef]
- Wilt, H.D.; Carlson, M.S. Effect of supplementing zinc oxide and biotin with or without carbadox on nursery pig performance. J. Anim. Sci. 2009, 87, 3253–3258. [Google Scholar] [CrossRef]
- Burrough, E.R.; De, M.C.; Gabler, N.K. Zinc overload in weaned pigs: Tissue accumulation, pathology, and growth impacts. J. Vet. Diagn. Investig. 2019, 31, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Janczyk, P.; Busing, K.; Dobenecker, B.; Nockler, K.; Zeyner, A. Effect of high dietary zinc oxide on the caecal and faecal short-chain fatty acids and tissue zinc and copper concentration in pigs is reversible after withdrawal of the high zinc oxide from the diet. J. Anim. Physiol. Anim. Nutr. 2015, 99, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Chen, J.; Zhang, Y.; Liang, X.; Ni, H.; Zhang, B.; Yin, Y. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. PLoS ONE 2017, 12, e182550. [Google Scholar]
- Hou, L.; Jiang, F.; Huang, B.; Zheng, W.; Jiang, Y.; Cai, G.; Liu, D.; Hu, C.Y.; Wang, C. Dihydromyricetin ameliorates inflammation-induced insulin resistance via phospholipase C-CaMKK-AMPK signal pathway. Oxid. Med. Cell. Longev. 2021, 2021, 8542809. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hua, H.; Wang, L.; He, P.; Zhang, L.; Qin, Q.; Yu, C.; Wang, X.; Zhang, G.; Liu, Y. Holly polyphenols alleviate intestinal inflammation and alter microbiota composition in lipopolysaccharide-challenged pigs. Br. J. Nutr. 2020, 123, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Wei, W.; Li, Y.; Wu, J.; Zhao, Y.; Zhang, L.; Wang, T.; Zhong, X. Curcumin and resveratrol regulate intestinal bacteria and alleviate intestinal inflammation in weaned piglets. Molecules 2019, 24, 1220. [Google Scholar] [CrossRef] [PubMed]
- Taleb, H.; Maddocks, S.E.; Morris, R.K.; Kanekanian, A.D. The antibacterial activity of date syrup polyphenols against S. aureus and E. coli. Front. Microbiol. 2016, 7, 198. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway. Oxid. Med. Cell. Longev. 2019, 2019, 7591840. [Google Scholar] [CrossRef]
- Chedea, V.S.; Palade, L.M.; Marin, D.E.; Pelmus, R.S.; Habeanu, M.; Rotar, M.C.; Gras, M.A.; Pistol, G.C.; Taranu, I. Intestinal absorption and antioxidant activity of grape pomace polyphenols. Nutrients 2018, 10, 588. [Google Scholar] [CrossRef]
- Xu, B.; Qin, W.; Xu, Y.; Yang, W.; Chen, Y.; Huang, J.; Zhao, J.; Ma, L. Dietary quercetin supplementation attenuates diarrhea and intestinal damage by regulating gut microbiota in weanling piglets. Oxid. Med. Cell. Longev. 2021, 2021, 6221012. [Google Scholar] [CrossRef]
- Chen, J.; Yu, B.; Chen, D.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 59, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Division on Earth and Life Studies; Board on Agriculture and Natural Resources; Committee on Nutrient Requirements of Swine. Nutrient Requirements of Swine; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Jiang, X.R.; Agazzi, A.; Awati, A.; Vitari, F.; Bento, H.; Ferrari, A.; Alborali, G.L.; Crestani, M.; Domeneghini, C.; Bontempo, V. Influence of a blend of essential oils and an enzyme combination on growth performance, microbial counts, ileum microscopic anatomy and the expression of inflammatory mediators in weaned piglets following an Escherichia coli infection. Anim. Feed Sci. Technol. 2015, 209, 219–229. [Google Scholar] [CrossRef]
- Ou, D.; Li, D.; Cao, Y.; Li, X.; Yin, J.; Qiao, S.; Wu, G. Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs. J. Nutr. Biochem. 2007, 18, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Deng, D.; Chen, S.; Li, C.; Luo, J.; Romeo, A.; Li, T.; Tang, X.; Fang, R. The effects of dietary porous zinc oxide supplementation on growth performance, inflammatory cytokines and tight junction’s gene expression in early-weaned piglets. J. Nutr. Sci. Vitaminol. 2020, 66, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, D.; Romeo, A.; Durosoy, S.; Meme, N.; Chevalier, Y.; Narcy, A. Dissolution kinetics of zinc oxide and its relationship with physicochemical characteristics. Powder Technol. 2021, 378, 746–759. [Google Scholar] [CrossRef]
- Cardoso, D.; Romeo, A.; Durosoy, S.; Meme, N.; Chevalier, Y.; Narcy, A. Effect of the physicochemical properties of zinc oxide sources on their bioavailability in broilers. Br. Poult. Sci. 2021, 62, 846–851. [Google Scholar] [CrossRef]
- Vahjen, W.; Zentek, J.; Durosoy, S. Inhibitory action of two zinc oxide sources on the ex vivo growth of porcine small intestine bacteria. J. Anim. Sci. 2012, 90, 334–336. [Google Scholar] [CrossRef]
- Wang, W.; Van, N.N.; Degroote, J.; Romeo, A.; Vermeir, P.; Michiels, J. Effect of zinc oxide sources and dosages on gut microbiota and integrity of weaned piglets. J. Anim. Physiol. Anim. Nutr. 2019, 103, 231–241. [Google Scholar] [CrossRef]
- Jang, I.; Kwon, C.H.; Ha, D.M.; Jung, D.Y.; Kang, S.Y.; Park, M.J.; Han, J.H.; Park, B.C.; Lee, C.Y. Effects of a lipid-encapsulated zinc oxide supplement on growth performance and intestinal morphology and digestive enzyme activities in weanling pigs. J. Anim. Sci. Technol. 2014, 56, 29. [Google Scholar] [CrossRef]
- Yuan, D.; Wang, J.; Xiao, D.; Li, J.; Liu, Y.; Tan, B.; Yin, Y. Eucommia ulmoides flavones as potential alternatives to antibiotic growth promoters in a low-protein diet improve growth performance and intestinal health in weaning piglets. Animals 2020, 10, 1998. [Google Scholar] [CrossRef]
- Shen, J.; Chen, Y.; Wang, Z.; Zhou, A.; He, M.; Mao, L.; Zou, H.; Peng, Q.; Xue, B.; Wang, L.; et al. Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. Br. J. Nutr. 2014, 111, 2123–2134. [Google Scholar] [CrossRef]
- Kwon, C.H.; Lee, C.Y.; Han, S.J.; Kim, S.J.; Park, B.C.; Jang, I.; Han, J.H. Effects of dietary supplementation of lipid-encapsulated zinc oxide on colibacillosis, growth and intestinal morphology in weaned piglets challenged with enterotoxigenic Escherichia coli. Anim. Sci. J. 2014, 85, 805–813. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, Z.; Huang, Z.; Chen, D.; He, J.; Chen, H.; Yu, B.; Yu, J.; Luo, J.; Luo, Y.; et al. Effects of dietary resveratrol supplementation on immunity, antioxidative capacity and intestinal barrier function in weaning piglets. Anim. Biotechnol. 2021, 32, 240–245. [Google Scholar] [CrossRef]
- Xun, W.; Fu, Q.; Shi, L.; Cao, T.; Jiang, H.; Ma, Z. Resveratrol protects intestinal integrity, alleviates intestinal inflammation and oxidative stress by modulating AhR/Nrf2 pathways in weaned piglets challenged with diquat. Int. Immunopharmacol. 2021, 99, 107989. [Google Scholar] [CrossRef]
- Roselli, M.; Finamore, A.; Garaguso, I.; Britti, M.S.; Mengheri, E. Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J. Nutr. 2003, 133, 4077–4082. [Google Scholar] [CrossRef]
- Wu, C.; Labrie, J.; Tremblay, Y.D.; Haine, D.; Mourez, M.; Jacques, M. Zinc as an agent for the prevention of biofilm formation by pathogenic bacteria. J. Appl. Microbiol. 2013, 115, 30–40. [Google Scholar] [CrossRef]
- Bin, P.; Tang, Z.; Liu, S.; Chen, S.; Xia, Y.; Liu, J.; Wu, H.; Zhu, G. Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Vet. Res. 2018, 14, 385. [Google Scholar] [CrossRef]
- Da, S.C.; Bentin, L.; Dias, C.P.; Callegari, M.A.; Facina, V.B.; Dias, F.; Passos, A.; Da, S.M.C.; Costa, M.C. Impact of zinc oxide, benzoic acid and probiotics on the performance and cecal microbiota of piglets. Anim. Microbiome. 2021, 3, 86. [Google Scholar]
- Yu, T.; Zhu, C.; Chen, S.; Gao, L.; Lv, H.; Feng, R.; Zhu, Q.; Xu, J.; Chen, Z.; Jiang, Z. Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Front. Microbiol. 2017, 8, 825. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Song, J.; Qin, X.; Yang, K.; Liu, M.; Yang, C.; Nyachoti, C.M. Dietary supplementation of red-osier dogwood polyphenol extract changes the ileal microbiota structure and increases Lactobacillus in a pig model. AMB Express 2021, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Zhong, R.; Zhou, Y.; Xiong, B.; Chen, L.; Jiang, Y.; Liu, L.; Sun, H.; Tan, J.; Tao, F.; et al. Hydroxytyrosol benefits boar semen quality via improving gut microbiota and blood metabolome. Front. Nutr. 2021, 8, 815922. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yu, B.; Chen, D.; Zheng, P.; Luo, Y.; Huang, Z.; Luo, J.; Mao, X.; Yu, J.; He, J. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Appl. Microbiol. Biotechnol. 2019, 103, 8157–8168. [Google Scholar] [CrossRef] [PubMed]
Item | Pre-Starter (0–14 Days) | Starter (14–42 Days) |
---|---|---|
Ingredients, % | ||
Extruded corn | 48.40 | 63.58 |
Soybean meal, 46% | 14.60 | 17.50 |
Extruded soybean | 11.50 | 5.00 |
Fish meal, 68% | 5.00 | 3.00 |
Whey power | 15.00 | 5.00 |
Soybean oil | 1.00 | 1.20 |
CaH2PO4 | 0.40 | 0.60 |
Limestone | 0.80 | 1.00 |
NaCl | 0.30 | 0.30 |
Choline chloride (60%) | 0.05 | 0.05 |
Lysine | 1.20 | 1.10 |
Methionine | 0.09 | 0.09 |
Threonine | 0.27 | 0.25 |
Tyrosine | 0.02 | 0.01 |
Phytase | 0.02 | 0.02 |
Organic acids | 0.20 | 0.20 |
Butyric acid | 0.15 | 0.10 |
Premix 1 | 1.00 | 1.00 |
Nutrient levels | ||
CP, % | 19.50 | 18.00 |
Ca, % | 0.80 | 0.70 |
Total P, % | 0.65 | 0.60 |
ME, MJ//kg | 14.47 | 13.70 |
Lysine, % | 1.30 | 1.15 |
Methionine, % | 0.38 | 0.34 |
Threonine, % | 0.76 | 0.68 |
Tyrosine, % | 0.21 | 0.18 |
Item | NC | PC | PZ | PP | PZ + PP | SEM | p Value |
---|---|---|---|---|---|---|---|
BW, kg | |||||||
d 0 | 7.19 | 7.19 | 7.19 | 7.19 | 7.19 | 0.55 | 1.000 |
d 14 | 9.67 | 10.04 | 9.67 | 9.59 | 9.78 | 0.76 | 0.351 |
d 28 | 15.54 | 15.93 | 15.73 | 15.38 | 16.24 | 1.15 | 0.643 |
d 42 | 23.55 | 24.03 | 23.47 | 22.90 | 24.84 | 1.50 | 0.496 |
ADG, g/d | |||||||
d 0 to 14 | 177 | 204 | 177 | 168 | 184 | 15 | 0.296 |
d 14 to 28 | 419 | 420 | 433 | 414 | 462 | 33 | 0.672 |
d 28 to 42 | 572 | 578 | 553 | 538 | 614 | 34 | 0.535 |
d 0 to 42 | 366 | 383 | 379 | 352 | 399 | 25 | 0.483 |
ADFI, g/d | |||||||
d 0 to 14 | 298 | 306 | 267 | 288 | 308 | 24 | 0.356 |
d 14 to 28 | 643 xy | 603 xy | 569 y | 681 x | 627 xy | 47 | 0.099 |
d 28 to 42 | 928 | 915 | 911 | 967 | 959 | 53 | 0.779 |
d 0 to 42 | 623 | 608 | 583 | 645 | 631 | 41 | 0.453 |
FCR | |||||||
d 0 to 14 | 1.68 | 1.50 | 1.52 | 1.74 | 1.71 | 0.08 | 0.280 |
d 14 to 28 | 1.54 | 1.45 | 1.32 | 1.71 | 1.36 | 0.09 | 0.113 |
d 28 to 42 | 1.63 ab | 1.58 ab | 1.66 ab | 1.83 a | 1.56 b | 0.06 | 0.049 |
d 0 to 42 | 1.70 ab | 1.59 b | 1.54 b | 1.85 a | 1.58 b | 0.05 | 0.009 |
Diarrhea incidence, % | |||||||
d 0 to 14 | 9.07 | 6.19 | 8.33 | 10.75 | 7.86 | - | 0.204 |
Item | NC | PC | PZ | PP | PZ + PP | SEM | p Value |
---|---|---|---|---|---|---|---|
Duodenum | |||||||
Villus height, µm | 334 y | 418 xy | 405 xy | 454 x | 438 xy | 23 | 0.077 |
Crypt depth, µm | 221 | 263 | 221 | 276 | 247 | 21 | 0.400 |
V:C ratio | 1.54 | 1.61 | 1.95 | 1.68 | 1.90 | 0.12 | 0.195 |
Jejunum | |||||||
Villus height, µm | 317 y | 399 x | 395 xy | 398 xy | 404 x | 18 | 0.055 |
Crypt depth, µm | 199 | 182 | 246 | 213 | 201 | 13 | 0.105 |
V:C ratio | 1.65 b | 2.27 a | 1.65 b | 1.92 ab | 2.14 a | 0.07 | 0.002 |
Ileum | |||||||
Villus height, µm | 294 | 315 | 335 | 302 | 347 | 14 | 0.150 |
Crypt depth, µm | 187 | 130 | 182 | 142 | 169 | 18 | 0.187 |
V:C ratio | 1.67 y | 2.52 x | 1.95 xy | 2.24 xy | 2.13 xy | 0.16 | 0.052 |
Item | NC | PC | PZ | PP | PZ + PP | SEM | p Value |
---|---|---|---|---|---|---|---|
ACE | 436 | 418 | 470 | 473 | 450 | 69 | 0.984 |
Chao | 441 | 424 | 481 | 496 | 468 | 68 | 0.960 |
Shannon | 0.06 | 0.05 | 0.05 | 0.05 | 0.08 | 0.25 | 0.909 |
Simpson | 3.80 | 3.84 | 3.99 | 4.05 | 3.71 | 0.02 | 0.727 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ming, D.; Wang, J.; Yin, C.; Chen, Y.; Li, Y.; Sun, W.; Pi, Y.; Monteiro, A.; Li, X.; Jiang, X. Porous Zinc Oxide and Plant Polyphenols as a Replacement for High-Dose Zinc Oxide on Growth Performance, Diarrhea Incidence, Intestinal Morphology and Microbial Diversity of Weaned Piglets. Animals 2024, 14, 523. https://doi.org/10.3390/ani14030523
Ming D, Wang J, Yin C, Chen Y, Li Y, Sun W, Pi Y, Monteiro A, Li X, Jiang X. Porous Zinc Oxide and Plant Polyphenols as a Replacement for High-Dose Zinc Oxide on Growth Performance, Diarrhea Incidence, Intestinal Morphology and Microbial Diversity of Weaned Piglets. Animals. 2024; 14(3):523. https://doi.org/10.3390/ani14030523
Chicago/Turabian StyleMing, Dongxu, Jizhe Wang, Chenggang Yin, Yiqun Chen, Yanpin Li, Wenjuan Sun, Yu Pi, Alessandra Monteiro, Xilong Li, and Xianren Jiang. 2024. "Porous Zinc Oxide and Plant Polyphenols as a Replacement for High-Dose Zinc Oxide on Growth Performance, Diarrhea Incidence, Intestinal Morphology and Microbial Diversity of Weaned Piglets" Animals 14, no. 3: 523. https://doi.org/10.3390/ani14030523
APA StyleMing, D., Wang, J., Yin, C., Chen, Y., Li, Y., Sun, W., Pi, Y., Monteiro, A., Li, X., & Jiang, X. (2024). Porous Zinc Oxide and Plant Polyphenols as a Replacement for High-Dose Zinc Oxide on Growth Performance, Diarrhea Incidence, Intestinal Morphology and Microbial Diversity of Weaned Piglets. Animals, 14(3), 523. https://doi.org/10.3390/ani14030523