Development of a Simple IFN-γ Release Whole Blood Assay for the Assessment of Leishmania infantum Specific Cellular Immunity in Dogs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dogs and Sampling
2.2. Whole Blood Assay (WBA)
2.3. IFN-γ Enzyme-Linked Immunosorbent Assay (ELISA)
2.4. Enzyme-Linked Immunosorbent Assay for the Detection of Antibodies Against L. infantum Antigen
2.5. Statistical Analysis
3. Results
3.1. Clinical and Immunological Characteristics of Dogs
3.2. Comparison Between WBA-S and WBA-T After Stimulation with LSA
3.3. Comparison Between WBA-S and WBA-T After Stimulation with ConA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rombolà, P.; Barlozzari, G.; Carvelli, A.; Scarpulla, M.; Iacoponi, F.; Macrì, G. Seroprevalence and risk factors associated with exposure to Leishmania infantum in dogs, in an endemic Mediterranean region. PLoS ONE 2021, 16, e0244923. [Google Scholar] [CrossRef] [PubMed]
- Baneth, G.; Nachum-Biala, Y.; Adamsky, O.; Gunther, I. Leishmania tropica and Leishmania infantum infection in dogs and cats in central Israel. Parasites Vectors 2022, 15, 147. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Li, S.; Lu, D.; He, Z.; Wang, D.; Qian, D.; Liu, Y.; Zhou, R.; Ji, P.; Chen, J.H.; et al. Reemergence of visceral leishmaniasis in Henan province, China. Trop. Med. Infect. Dis. 2023, 8, 318. [Google Scholar] [CrossRef] [PubMed]
- Rivas, A.K.; Alcover, M.M.; Martínez-Orellana, P.; Montserrat-Sangrà, S.; Nachum-Biala, Y.; Fisa, R.; Riera, C.; Baneth, G.; Solano-Gallego, L. Serological and molecular survey of Leishmania infection in dogs from Venezuela. Vet. Parasitol. Reg. Stud. Rep. 2020, 21, 100420. [Google Scholar] [CrossRef]
- Bourdeau, P.; Rowton, E.; Petersen, C. Impact of different Leishmania reservoirs on sand fly transmission: Perspectives from xenodiagnosis and other one health observations. Vet. Parasitol. 2020, 287, 134–143. [Google Scholar] [CrossRef]
- Toepp, A.J.; Petersen, C.A. The balancing act: Immunology of leishmaniasis. Res. Vet. Sci. 2020, 130, 19–25. [Google Scholar] [CrossRef]
- Reguera, R.M.; Morán, M.; Pérez-Pertejo, Y.; García-Estrada, C.; Balaña-Fouce, R. Current status on prevention and treatment of canine leishmaniasis. Vet. Parasitol. 2016, 227, 98–114. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Di Filippo, L.; Ordeix, L.; Planellas, M.; Roura, X.; Altet, L.; Martínez-Orellana, P.; Montserrat, S. Early reduction of Leishmania infantum-specific antibodies and blood parasitemia during treatment in dogs with moderate or severe disease. Parasites Vectors 2016, 9, 235. [Google Scholar] [CrossRef]
- Rodríguez-Escolar, I.; Balmori-de la Puente, A.; Collado-Cuadrado, M.; Bravo-Barriga, D.; Delacour-Estrella, S.; Hernández-Lambraño, R.E.; Sánchez, A.J.Á.; Morchón, R. Analysis of the current risk of Leishmania infantum transmission for domestic dogs in Spain and Portugal and its future projection in climate change scenarios. Front. Vet. Sci. 2024, 11, 1399772. [Google Scholar] [CrossRef]
- Montoya-Alonso, J.A.; Morchón, R.; Costa-Rodríguez, N.; Matos, J.I.; Falcón-Cordón, Y.; Carretón, E. Current distribution of selected vector-borne diseases in dogs in Spain. Front. Vet. Sci. 2020, 7, 564429. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Cardoso, L.; Pennisi, M.G.; Petersen, C.; Bourdeau, P.; Oliva, G.; Miró, G.; Ferrer, L.; Baneth, G. Diagnostic challenges in the Era of canine Leishmania infantum vaccines. Trends Parasitol. 2017, 33, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 2016, 10, e0004349. [Google Scholar] [CrossRef] [PubMed]
- Costa-Da-silva, A.C.; Nascimento, D.d.O.; Ferreira, J.R.M.; Guimarães-Pinto, K.; Freire-De-lima, L.; Morrot, A.; Decote-Ricardo, D.; Filardy, A.A.; Freire-De-lima, C.G. Immune responses in leishmaniases: An overview. Trop. Med. Infect. Dis. 2022, 7, 54. [Google Scholar] [CrossRef]
- Baxarias, M.; Jornet-Rius, O.; Donato, G.; Mateu, C.; Alcover, M.M.; Pennisi, M.G.; Solano-Gallego, L. Signalment, immunological and parasitological status and clinicopathological findings of Leishmania-seropositive apparently healthy dogs. Animals 2023, 13, 1649. [Google Scholar] [CrossRef]
- García-Castro, A.; Egui, A.; Thomas, M.C.; López, M.C. Humoral and cellular immune response in asymptomatic dogs with visceral leishmaniasis: A review. Vaccines 2022, 10, 947. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Montserrat-Sangrà, S.; Ordeix, L.; Martínez-Orellana, P. Leishmania infantum-specific production of IFN-γ and IL-10 in stimulated blood from dogs with clinical leishmaniosis. Parasites Vectors 2016, 9, 459. [Google Scholar] [CrossRef]
- Aleka, Y.; Ibarra-Meneses, A.V.; Workineh, M.; Tajebe, F.; Kiflie, A.; Tessema, M.K.; Melkamu, R.; Tadesse, A.; Moreno, J.; Van Griensven, J.; et al. Whole blood stimulation assay as a treatment outcome monitoring tool for VL patients in Ethiopia: A pilot evaluation. J. Immunol. Res. 2020, 2020, 8385672. [Google Scholar] [CrossRef]
- Ibarra-Meneses, A.V.; Mondal, D.; Alvar, J.; Moreno, J.; Carrillo, E. Cytokines and chemokines measured in dried SLA-stimulated whole blood spots for asymptomatic Leishmania infantum and Leishmania donovani infection. Sci. Rep. 2017, 7, 17266. [Google Scholar] [CrossRef]
- Singh, O.P.; Sundar, S. Whole blood assay and visceral leishmaniasis: Challenges and promises. Immunobiology 2014, 219, 323–328. [Google Scholar] [CrossRef]
- Mattoo, S.U.S.; Aganja, R.P.; Kim, S.C.; Jeong, C.G.; Nazki, S.; Khatun, A.; Kim, W.I.; Lee, S.M. A standardized method to study immune responses using porcine whole blood. J. Vet. Sci. 2023, 24, e11. [Google Scholar] [CrossRef]
- Deenadayalan, A.; Maddineni, P.; Raja, A. Comparison of whole blood and PBMC assays for T-cell functional analysis. BMC Res. Notes 2013, 6, 120. [Google Scholar] [CrossRef] [PubMed]
- Zribi, L.; El-Goulli, A.F.; Ben-Abid, M.; Gharbi, M.; Ben-Sghaier, I.; Boufaden, I.; Aoun, K.; Bouratbine, A. Use of an interferon gamma release assay (IGRA) to test T-cell responsiveness to soluble Leishmania infantum antigen in whole blood of dogs from endemic areas. Vet. Parasitol. 2017, 246, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.; Antoniou, M.; Ruiz-Argüello, M.B.; Alcami, A.; Christodoulou, V.; Messaritakis, I.; Blackwell, J.M.; Courtenay, O. A prime/boost DNA/Modified vaccinia virus Ankara vaccine expressing recombinant Leishmania DNA encoding TRYP is safe and immunogenic in outbred dogs, the reservoir of zoonotic visceral leishmaniasis. Vaccine 2009, 27, 1080–1086. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Orellana, P.; Marí-Martorell, D.; Montserrat-Sangrà, S.; Ordeix, L.; Baneth, G.; Solano-Gallego, L. Leishmania infantum-specific IFN-γ production in stimulated blood from dogs with clinical leishmaniosis at diagnosis and during treatment. Vet. Parasitol. 2017, 248, 39–47. [Google Scholar] [CrossRef]
- Gidwani, K.; Jones, S.; Kumar, R.; Boelaert, M.; Sundar, S. Interferon-gamma release assay (modified quantiFERON) as a potential marker of infection for Leishmania donovani, a proof of concept study. PLoS Negl. Trop. Dis. 2011, 5, e1042. [Google Scholar] [CrossRef]
- De Pascali, A.M.; Todeschini, R.; Baiocchi, S.; Ortalli, M.; Attard, L.; Ibarra-Meneses, A.V.; Carrillo, E.; Varani, S. Test combination to detect latent Leishmania infection: A prevalence study in a newly endemic area for L. infantum, northeastern Italy. PLoS Negl. Trop. Dis. 2022, 16, e0010676. [Google Scholar] [CrossRef]
- Martínez-Orellana, P.; González, N.; Baldassarre, A.; Álvarez-Fernández, A.; Ordeix, L.; Paradies, P.; Soto, M.; Solano-Gallego, L. Humoral responses and ex vivo IFN-γ production after canine whole blood stimulation with Leishmania infantum antigen or KMP11 recombinant protein. Vet. Sci. 2022, 9, 116. [Google Scholar] [CrossRef]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. 2020. Available online: https://cran.r-project.org/package=emmeans (accessed on 10 January 2024).
- R Core Team. R: A Language and Environment for Statistical Computing. 2021. Available online: https://cran.r-project.org (accessed on 10 January 2024).
- Singmann, H. afex: Analysis of Factorial Experiments. 2018. Available online: https://cran.r-project.org/package=afex (accessed on 10 January 2024).
- The Jamovi Project. 2022. Available online: https://www.jamovi.org (accessed on 10 January 2024).
- Botana, L.; Ibarra-Meneses, A.V.; Sanchez, C.; Matia, B.; San Martin, J.V.; Moreno, J.; Carrillo, E. Leishmaniasis: A new method for confirming cure and detecting asymptomatic infection in patients receiving immunosuppressive treatment for autoimmune disease. PLoS Negl. Trop. Dis. 2021, 15, e0009662. [Google Scholar] [CrossRef]
- Finco, D.; Grimaldi, C.; Fort, M.; Walker, M.; Kiessling, A.; Wolf, B.; Salcedo, T.; Faggioni, R.; Schneider, A.; Ibraghimov, A.; et al. Cytokine release assays: Current practices and future directions. Cytokine 2014, 66, 143–155. [Google Scholar] [CrossRef]
- Keustermans, G.C.E.; Hoeks, S.B.E.; Meerding, J.M.; Prakken, B.J.; de Jager, W. Cytokine assays: An assessment of the preparation and treatment of blood and tissue samples. Methods 2013, 61, 10–17. [Google Scholar] [CrossRef]
- Klimosch, S.N.; Weber, M.; Caballé-Serrano, J.; Knorpp, T.; Munar-Frau, A.; Schaefer, B.M.; Schmolz, M. A human whole blood culture system reveals detailed cytokine release profiles of implant materials. Med. Devices 2024, 17, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Mfarrej, B.G.; Azzi, J.; De Serres, S.A. Determination of optimal incubation time for the production of acute phase cytokines ex vivo by peripheral blood mononuclear cells from renal transplant recipients. J. Immunol. Methods 2011, 366, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Bosward, K.L.; Dhand, N.K.; Begg, D.J.; Thomson, P.C.; Emery, D.L.; Whittington, R.J. Optimization of a whole blood gamma interferon assay for the detection of sheep infected with Mycobacterium avium subspecies paratuberculosis. J. Vet. Diagn. Invest. 2010, 22, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, Y.; Tsukimoto, M. Adenine nucleotides attenuate murine T cell activation induced by concanavalin A or T cell receptor stimulation. Front. Pharmacol. 2018, 8, 986. [Google Scholar] [CrossRef]
- Segeritz, C.P.; Vallier, L. Basic Science Methods for Clinical Researchers, 1st ed.; Academic Press Publishing: New York, NY, USA, 2017; pp. 151–172. [Google Scholar]
- Jeurink, P.V.; Vissers, Y.M.; Rappard, B.; Savelkoul, H.F.J. T cell responses in fresh and cryopreserved peripheral blood mononuclear cells: Kinetics of cell viability, cellular subsets, proliferation, and cytokine production. Cryobiology 2008, 57, 91–103. [Google Scholar] [CrossRef]
- Kurita, K.; Ohta, H.; Shirakawa, I.; Tanaka, M.; Kitaura, Y.; Iwasaki, Y.; Matsuzaka, T.; Shimano, H.; Aoe, S.; Arima, H.; et al. Macrophages rely on extracellular serine to suppress aberrant cytokine production. Sci. Rep. 2021, 11, 11137. [Google Scholar] [CrossRef]
- Morinobu, A.; Gadina, M.; Strober, W.; Visconti, R.; Fornace, A.; Montagna, C.; Feldman, G.M.; Nishikomori, R.; O’Shea, J.J. STAT4 serine phosphorylation is critical for IL-12-induced IFN-production but not for cell proliferation. Proc. Natl. Acad. Sci. USA 2002, 99, 12280–12286. [Google Scholar] [CrossRef]
- Rodas, L.; Martínez, S.; Riera-Sampol, A.; Moir, H.J.; Tauler, P. Blood cell in vitro cytokine production in response to lipopolysaccharide stimulation in a healthy population: Effects of age, sex, and smoking. Cells 2021, 11, 103. [Google Scholar] [CrossRef]
States of L. infantum Infection | Number of Dogs | Number of Dogs by Sex | Age (Years) (Median (Q1–Q3)) | LSA IFN-γ (pg/mL) (WBA-S) (Median (Q1–Q3)) | Serology (EU) (Median (Q1–Q3)) |
---|---|---|---|---|---|
Healthy seronegative non-IFN-γ producers | 14 | ♀: 5 ♂: 9 | 4 (3–7) | 0 (0–13.95) | 4.21 (2.55–6.24) |
Healthy seronegative/seropositive IFN-γ producers | 20 | ♀: 9 ♂: 11 | 5.5 (4–7) | 821.65 (392.98–3117.5) | 15.86 (11.81–32.4) |
Sick non-IFN-γ producers | 2 | ♀: 0 ♂: 2 | 9 (9–9) | 0 (0–0) | 279.81 (275.35–284.26) |
Sick IFN-γ producers | 5 | ♀: 2 ♂: 3 | 5 (4–6) | 458.4 (297.5–1632) | 286.71 (205.69–357.92) |
Total dogs | 41 | ♀: 16 ♂: 25 | 4.5 (3–7) | 297.5 (0–1067) | 13.5 (4.66–55.9) |
IFN-γ pg/mL (Median (Q1–Q3)) After Stimulation with LSA | |||||
---|---|---|---|---|---|
States of L. infantum Infection (Health Status) | Infection Status | WBA-T 24 h (Median (Q1–Q3)) | WBA-T 48 h (Median (Q1–Q3)) | WBA-T 72 h (Median (Q1–Q3)) | WBA-S 5 Days (Median (Q1–Q3)) |
Healthy seronegative non-IFN-γ producers | Non-infected | 0 (0–9.79) | 0 (0–37.46) | 0 (0–57.45) | 0 (0–13.95) |
Healthy seronegative/seropositive IFN-γ producers | Infected | 817.8 (82.3–2051.25) | 1520.67 (234.03–2730.25) | 1011.75 (295.05–1685.75) | 821.65 (392.98–3117.5) |
Sick non-IFN-γ producers | Infected | 0 (0–0) | 95 (47.5–142.5) | 169.6 (84.8–254.4) | 0 (0–0) |
Sick IFN-γ producers | Infected | 675.7 (631.7–3307) | 976.9 (786–2692) | 644.1 (624.8–1583.96) | 458.4 (297.5–1632) |
IFN-γ pg/mL (Median (Q1–Q3)) After Stimulation with ConA | |||||
---|---|---|---|---|---|
States of L. infantum Infection (Health Status) | Infection Status | WBA-T 24 h (Median (Q1–Q3)) | WBA-T 48 h (Median (Q1–Q3)) | WBA-T 72 h (Median (Q1–Q3)) | WBA-S 5 Days (Median (Q1–Q3)) |
Healthy seronegative non-IFN-γ producers | Non-infected | 1367.5 (699.03–9287.25) | 1298 (1087.58–7106) | 2040.35 (796.4–7916.75) | 8071.5 (5408–15,034.74) |
Healthy seronegative/seropositive IFN-γ producers | Infected | 8271.84 (3975.2–10,914.42) | 7813.25 (4839.75–10,346.47) | 8074.8 (4307.25–13,696.88) | 14,260 (8392.83–19,317.5) |
Sick non-IFN-γ producers | Infected | 1791.4 (1093.6–2489.2) | 2959.85 (1646.28–4273.43) | 3230.1 (1784.65–4675.55) | 1321.55 (970.33–1672.78) |
Sick IFN-γ producers | Infected | 3739 (2733–5361) | 4176 (3409–7396.9) | 4924 (3912.96–7627) | 9916.06 (9393–11,090) |
Parameters (Units) | WBA-T 24 h | WBA-T 48 h | WBA-T 72 h | WBA-S 5 Days |
---|---|---|---|---|
Number of IFN-γ producer dogs (n = 25) * | 20/25 | 22/25 | 20/25 | 25/25 |
Percentage (%) | 80% | 88% | 80% | 100% |
Median (Q1–Q3) (pg/mL) | 756.5 (109.8–2178) | 1454 (319.9–2762) | 1006 (292.3–1712) | 820.8 (362.9–2482) |
Parameters (Units) | WBA-T 24 h | WBA-T 48 h | WBA-T 72 h | WBA-S 5 Days |
---|---|---|---|---|
Number of IFN-γ producer dogs (n = 41) | 40/41 | 41/41 | 41/41 | 41/41 |
Percentage (%) | 97.5% | 100% | 100% | 100% |
Median (Q1–Q3) (pg/mL) | 4050 (1368–10,306) | 5587 (1298–9985) | 4924 (2118–10,858) | 10,970 (6216–17,499) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molnár, A.S.; Murillo-Picco, A.; Jiménez-Fortunato, C.; Solano-Gallego, L. Development of a Simple IFN-γ Release Whole Blood Assay for the Assessment of Leishmania infantum Specific Cellular Immunity in Dogs. Animals 2024, 14, 3464. https://doi.org/10.3390/ani14233464
Molnár AS, Murillo-Picco A, Jiménez-Fortunato C, Solano-Gallego L. Development of a Simple IFN-γ Release Whole Blood Assay for the Assessment of Leishmania infantum Specific Cellular Immunity in Dogs. Animals. 2024; 14(23):3464. https://doi.org/10.3390/ani14233464
Chicago/Turabian StyleMolnár, Anna Sára, Andrea Murillo-Picco, Clara Jiménez-Fortunato, and Laia Solano-Gallego. 2024. "Development of a Simple IFN-γ Release Whole Blood Assay for the Assessment of Leishmania infantum Specific Cellular Immunity in Dogs" Animals 14, no. 23: 3464. https://doi.org/10.3390/ani14233464
APA StyleMolnár, A. S., Murillo-Picco, A., Jiménez-Fortunato, C., & Solano-Gallego, L. (2024). Development of a Simple IFN-γ Release Whole Blood Assay for the Assessment of Leishmania infantum Specific Cellular Immunity in Dogs. Animals, 14(23), 3464. https://doi.org/10.3390/ani14233464