Use of Chemical Tracers in Sus scrofa Population Studies—A Scoping Review
Simple Summary
Abstract
1. Introduction
2. Use of Tracers in Free-Ranging Sus scrofa
2.1. Free-Ranging Sus scrofa
2.2. Rhodamine B
2.3. Tetracyclines
2.4. Iophenoxic Acid
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- National Cancer Institute Thesaurus (v23.12d). Available online: https://ncithesaurus.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&version=23.12d&ns=ncit&code=C2480&key=n166641536&b=1&n=null (accessed on 9 January 2024).
- Baruzzi, C.; Coats, J.; Callaby, R.; Cowan, D.P.; Massei, G. Rhodamine B as a long-term semi-quantitative bait marker for wild boar. Wildl. Soc. Bull. 2017, 41, 271–277. [Google Scholar] [CrossRef]
- Long, J.L. Artiodactyla. In Introduced Mammals of the World: Their History Distribution and Influence; CSIRO Publishing: Collingwood, Australia, 2003. [Google Scholar]
- Bevins, S.N.; Pedersen, K.; Lutman, M.W.; Gidlewski, T.; Deliberto, T.J. Consequences associated with the recent range expansion of nonnative feral swine. BioScience 2014, 64, 291–299. [Google Scholar] [CrossRef]
- Katahira, L.K.; Finnegan, P.; Stone, C.P. Eradicating feral pigs in montane mesic habitat at Hawaii Volcanoes National Park. Wildl. Soc. Bull. 1993, 21, 269–274. [Google Scholar]
- Bieber, C.; Ruf, T. Population dynamics in wild boar Sus scrofa: Ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. J. Appl. Ecol. 2005, 42, 1203–1213. [Google Scholar] [CrossRef]
- Massei, G.; Genov, P.V. The environmental impact of wild boar. Galemys 2004, 16, 135–145. [Google Scholar] [CrossRef]
- Schley, L.; Roper, T.J. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mammal Rev. 2003, 33, 43–56. [Google Scholar] [CrossRef]
- Hahn, E.C.; Fadl-Alla, B.; Lichtensteiger, C.A. Variation of Aujeszky’s disease viruses in wild swine in USA. Vet. Microbiol. 2010, 143, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.S.; Farnsworth, M.L.; Malmberg, J.L. Diseases at the livestock-wildlife interface: Status, challenges, and opportunities in the United States. Prev. Vet. Med. 2013, 110, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Staubach, C.; Blome, S.; Guberti, V.; Thulke, H.H.; Vos, A.; Koenen, F.; Le Potier, M.F. Controlling of CSFV in European wild boar using oral vaccination: A review. Front. Microbiol. 2015, 6, 1141. [Google Scholar] [CrossRef]
- Pejsak, Z.; Tarasiuk, K. Eight years of African swine fever in Poland. Med. Wet. 2022, 78, 481–488. [Google Scholar] [CrossRef]
- Alexandrov, T.; Stefanov, D.; Kamenov, P.; Miteva, A.; Khomenko, S.; Sumption, K.; Meyer-Gerbaulet, H.; Depner, K. Surveillance of foot-and-mouth disease (FMD) in susceptible wildlife and domestic ungulates in Southeast of Bulgaria following a FMD case in wild boar. Vet. Microbiol. 2013, 166, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.S.; Sweeney, S.J.; Slootmaker, C.; Grear, D.A.; Di Salvo, P.A.; Kiser, D.; Shwiff, S.A. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: Implications for disease risk management in North America. Sci. Rep. 2017, 7, 7821. [Google Scholar] [CrossRef] [PubMed]
- Brown, V.R.; Miller, R.S.; McKee, S.C.; Ernst, K.H.; Didero, N.M.; Maison, R.M.; Grady, M.J.; Shwiff, S.A. Risks of introduction and economic consequences associated with African swine fever, classical swine fever and foot-and-mouth disease: A review of the literature. Transbound. Emerg. Dis. 2021, 68, 1910–1965. [Google Scholar] [CrossRef]
- Massei, G.; Roy, S.; Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Hum. Wildl. Interact. 2011, 5, 79–99. [Google Scholar]
- Müller, T.F.; Schröder, R.; Wysocki, P.; Mettenleiter, T.C.; Freuling, C.M. Spatio-temporal use of oral rabies vaccines in fox rabies elimination programmes in Europe. PLoS Negl. Trop. Dis. 2015, 9, e0003953. [Google Scholar] [CrossRef]
- Ikeda, T.; Higashide, D.; Suzuki, T.; Asano, M. Efficient oral vaccination program against classical swine fever in wild boar population. Prev. Vet. Med. 2022, 205, 105700. [Google Scholar] [CrossRef]
- Sabatini, F.; Giugliano, R.; Degano, I. Photo-oxidation processes of Rhodamine B: A chromatographic and mass spectrometric approach. Microchem. J. 2018, 140, 114–122. [Google Scholar] [CrossRef]
- Smart, P.L.; Laidlaw, I.M.S. An evaluation of some fluorescent dyes for water tracing. Water Resour. Res. 1977, 13, 15–33. [Google Scholar] [CrossRef]
- Fisher, P. Review of using Rhodamine B as a marker for wildlife studies. Wildl. Soc. Bull. 1999, 27, 318–329. [Google Scholar]
- Gast, J.A. Rhodamine B dye for studying movements of animals. Ecology 1963, 44, 611–612. [Google Scholar] [CrossRef]
- Rochat, J.; Demenge, P.; Rerat, J.C. Contribution à l’étude toxicologique d’un traceur fluorescent: La Rhodamine B [Toxicologic study of a fluorescent tracer: Rhodamine B]. Toxicol. Eur. Res. 1978, 1, 23–26. (In French) [Google Scholar]
- Beasley, J.; Webster, S.C.; Rhodes, O.E., Jr.; Cunningham, F.L. Evaluation of Rhodamine B as a biomarker for assessing bait acceptance in wild pigs. Wildl. Soc. Bull. 2015, 39, 188–192. [Google Scholar] [CrossRef]
- Lindsey, G.D. Rhodamine B: A systemic fluorescent marker for studying mountain beavers(Aplodontia rufa) and other animals. Northwest Sci. 1983, 57, 16–21. [Google Scholar]
- Johns, B.E.; Pan, H.P. Analytical techniques for fluorescent chemicals used as systemic or external wildlife markers. In Vertebrate Pest Control and Management Materials; ASTM International: West Conshohocken, PA, USA, 1981. [Google Scholar] [CrossRef]
- Morriss, G.A.; Nugent, G.; Fisher, P. Exposure of Feral Pigs to Brodifacoum Following Baiting for Rodent Control; DOC Science Internal Series 194; Department of Conservation: Wellington, New Zealand, 2004; 16p. [Google Scholar]
- Webster, S.C.; Cunningham, F.L.; Kilgo, J.C.; Vukovich, M.; Rhodes, O.E., Jr.; Beasley, J.C. Effective dose and persistence of Rhodamine-B in wild pig Vibrissae. Wildl Soc. Bull. 2017, 41, 764–769. [Google Scholar] [CrossRef]
- Snow, N.P.; Lavelle, M.J.; Halseth, J.M.; Glow, M.P.; VanNatta, E.H.; Davis, A.J.; Pepin, K.M.; Tabor, M.P.; Leland, B.R.; Staples, L.D.; et al. Exposure of a population of invasive wild pigs to simulated toxic bait containing biomarker: Implications for population reduction. Pest Manag. Sci. 2019, 75, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.L.; Levy, S.B. The history of the tetracyclines. Ann. N. Y. Acad. Sci. 2011, 1241, 17–32. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2011, 65, 232–260. [Google Scholar] [CrossRef]
- Frost, H.M.; Villaneuva, A.R.; Hospital, H.F.; Roth, H. Tetracycline staining of newly forming bone and mineralizing cartilage in vivo. Stain Technol. 1960, 35, 135–138. [Google Scholar] [CrossRef]
- Sánchez, A.R.; Rogers, R.S., III; Sheridan, P.J. Tetracycline and other tetracycline-derivative staining of the teeth and oral cavity. Int. J. Dermatol. 2004, 43, 709–715. [Google Scholar] [CrossRef]
- Skinner, H.C.; Nalbandian, J.O.H.N. Tetracyclines and mineralized tissues: Review and perspectives. Yale J. Biol. Med. 1975, 48, 377–397. [Google Scholar]
- Myers, H.M.; Jaffe, S.N. Tetracycline binding by skeletal tissue. J. Dent. Res. 1965, 44, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.G.; Buyske, D.A. Metabolism of tetracycline in the rat and the dog. J. Pharmacol. Exp. Ther. 1960, 130, 144–149. [Google Scholar] [PubMed]
- Buyske, D.A.; Eisner, H.J.; Kelly, R.G. Concentration and persistence of tetracycline and chlortetracycline in bone. J. Pharmacol. Exp. Ther. 1960, 130, 150–156. [Google Scholar] [PubMed]
- Reidy, M.M.; Campbell, T.A.; Hewitt, D.G. A mark–recapture technique for monitoring feral swine populations. Rangel. Ecol. Manag. 2011, 64, 316–318. [Google Scholar] [CrossRef]
- Reidy, M.M.; Campbell, T.A.; Hewitt, D.G. Tetracycline as an ingestible biological marker for feral pigs. In Proceedings of the Vertebrate Pest Conference; University of California, Davis: Davis, CA, USA, 2008; pp. 210–212. [Google Scholar]
- Campbell, T.A.; Long, D.B.; Massei, G. Efficacy of the Boar-Operated-System to deliver baits to feral swine. Prev. Vet. Med. 2011, 98, 243–249. [Google Scholar] [CrossRef]
- Shapiro, R. A preliminary report on Teridax, a new cholecystographic medium. Radiology 1953, 60, 687–690. [Google Scholar] [CrossRef]
- Margolin, S.; Stephens, I.R.; Spoerlein, M.T.; Makovsky, A.; Belloff, G.B. Experimental oral cholecystography with a new contrast medium, teridax (triiodoethionic acid). J. Am. Pharm. Assoc. 1953, 42, 476–481. [Google Scholar] [CrossRef]
- Astwood, E.B. Occurrence in the sera of certain patients of large amounts of a newly isolated iodine compound. Trans. Assoc. Am. Physicians 1957, 70, 183–191. [Google Scholar]
- Hall, R.R.; VanderLaan, W.P. Effects of iophenoxic acid on tests of thyroid function. JAMA 1961, 177, 648–649. [Google Scholar] [CrossRef]
- Ballesteros, C.; Sage, M.; Fisher, P.; Massei, G.; Mateo, R.; De La Fuente, J.; Rossi, S.; Gortázar, C. Iophenoxic acid as a bait marker for wild mammals: Efficacy and safety considerations. Mammal Rev. 2013, 43, 156–166. [Google Scholar] [CrossRef]
- Fletcher, W.O.; Creekmore, T.E.; Smith, M.S.; Nettles, V.F. A field trial to determine the feasibility of delivering oral vaccines to wild swine. J. Wildl. Dis. 1990, 26, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, C.; Camarero, P.R.; Cristòfol, C.; Vicente, J.; Gortazar, C.; De la Fuente, J.; Mateo, R. Analysis by LC/ESI-MS of iophenoxic acid derivatives and evaluation as markers of oral baits to deliver pharmaceuticals to wildlife. J. Chromatogr. B 2010, 878, 1997–2002. [Google Scholar] [CrossRef] [PubMed]
- Campbell, T.A.; Lapidge, S.J.; Long, D.B. Using baits to deliver pharmaceuticals to feral swine in southern Texas. Wildl. Soc. Bull. 2006, 34, 1184–1189. [Google Scholar] [CrossRef]
- Cowled, B.D.; Lapidge, S.J.; Smith, M.L.; Staples, L.D. Vaccination of feral pigs (Sus scrofa) using iophenoxic acid as a simulated vaccine. Aust. Vet. J. 2008, 86, 50–55. [Google Scholar] [CrossRef]
- Mitchell, J. The effectiveness of aerial baiting for control of feral pigs (Sus scrofa) in North Queensland. Wildl. Res. 1998, 25, 297–303. [Google Scholar] [CrossRef]
- Massei, G.; Jones, A.; Platt, T.; Cowan, D.P. Iophenoxic acid as a long-term marker for wild boar. J. Wildl. Manag. 2009, 73, 458–461. [Google Scholar] [CrossRef]
- Sage, M.; Fourel, I.; Lahoreau, J.; Siat, V.; Berny, P.; Rossi, S. Iophenoxic acid derivatives as markers of oral baits to wildlife: New tools for their detection in tissues of a game species and safety considerations for human exposure. Environ. Sci. Pollut. Res. 2013, 20, 2893–2904. [Google Scholar] [CrossRef]
- Ballesteros, C.; Vicente, J.; Carrasco-García, R.; Mateo, R.; de la Fuente, J.; Gortázar, C. Specificity and success of oral-bait delivery to Eurasian wild boar in Mediterranean woodland habitats. Eur. J. Wildl. Res. 2011, 57, 749–757. [Google Scholar] [CrossRef]
- Tong, H.; Jiang, Q.; Zhong, X.; Hu, X. Rhodamine B dye staining for visualizing microplastics in laboratory-based studies. Environ. Sci. Pollut. Res. 2021, 28, 4209–4215. [Google Scholar] [CrossRef]
- Kinsey, J.C.; Coward, J.R.; Foster, J.A.; Snow, N.P.; VerCauteren, K.C. Effects of Rhodamine B on Palatability of Invasive Wild Pig Baits. In Proceedings of the Vertebrate Pest Conference, Rohnert Park, CA, USA, 26 February–1 March 2018. [Google Scholar] [CrossRef]
- Skjolding, L.M.; Dyhr, K.S.; Köppl, C.J.; McKnight, U.S.; Bauer-Gottwein, P.; Mayer, P.; Bjerg, P.L.; Baun, A. Assessing the aquatic toxicity and environmental safety of tracer compounds Rhodamine B and Rhodamine WT. Water Res. 2021, 197, 117109. [Google Scholar] [CrossRef]
- Duman, S.; Yilmaz, E.; Soylak, M. Solid phase microextraction of rhodamine B in cosmetic samples using ZnS@ GO@ WMCNTs Nanocomposite with Spectrophotometric Detection. Microchem. J. 2024, 199, 110214. [Google Scholar] [CrossRef]
- York, P. The shelf life of some antibiotic preparations stored under tropical conditions. Die Pharm. 1977, 32, 101–104. [Google Scholar]
- Fabre, J.; Milek, E.; Kalpopoulos; Merier, G. La Cinetique des tetracyclines chez I’homme. Schweiz. Med. Wschr. 1977, 101, 573–578. [Google Scholar]
- Welling, P.G.; Koch, P.A.; Lau, C.C.; Craig, W.A. Bioavailability of tetracycline and doxycycline in fasted and nonfasted subjects. Antimicrob. Agents Chemother. 1977, 11, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Lee, J. Tetracycline as a biomarker for polar bears. Wildl. Soc. Bull. 1994, 22, 83–89. [Google Scholar] [CrossRef]
- Gajda, A.; Nowacka–Kozak, E.; Posyniak, A. Contamination of wild boars’ (Sus scrofa) muscles with tetracycline antibiotic from oral-delivered rabies vaccine baits. Food Addit. Contam. Part A 2018, 35, 1286–1291. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarasiuk, G.; Giménez-Lirola, L.G.; Rotolo, M.L.; Zimmerman, J.J. Use of Chemical Tracers in Sus scrofa Population Studies—A Scoping Review. Animals 2024, 14, 3424. https://doi.org/10.3390/ani14233424
Tarasiuk G, Giménez-Lirola LG, Rotolo ML, Zimmerman JJ. Use of Chemical Tracers in Sus scrofa Population Studies—A Scoping Review. Animals. 2024; 14(23):3424. https://doi.org/10.3390/ani14233424
Chicago/Turabian StyleTarasiuk, Grzegorz, Luis G. Giménez-Lirola, Marisa L. Rotolo, and Jeffrey J. Zimmerman. 2024. "Use of Chemical Tracers in Sus scrofa Population Studies—A Scoping Review" Animals 14, no. 23: 3424. https://doi.org/10.3390/ani14233424
APA StyleTarasiuk, G., Giménez-Lirola, L. G., Rotolo, M. L., & Zimmerman, J. J. (2024). Use of Chemical Tracers in Sus scrofa Population Studies—A Scoping Review. Animals, 14(23), 3424. https://doi.org/10.3390/ani14233424