The Effects of Different Treatments on Serum Trace Element Levels in Dogs with Heart Failure
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatment Groups
2.2. Inclusion/Exclusion Criteria
2.3. Clinical and Cardiovascular Examinations
2.4. Trace Element Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keene, B.W.; Atkins, C.E.; Bonagura, J.D.; Fox, P.R.; Häggström, J.; Luis Fuentes, V.; Oyama, M.A.; Rush, E.; Stepien, R.; Uechi, M. ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dog. J. Vet. Intern. Med. 2019, 33, 1127–1140. [Google Scholar] [CrossRef] [PubMed]
- Boyle, K.L.; Leech, E. A review of the pharmacology and clinical uses of pimobendan. J. Vet. Emerg. Crit. Care 2012, 22, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Tabacova, S.A.; Kimmel, C.A. Enalapril: Pharmacokinetic/dynamic inferences for comparative developmental toxicity: A review. Reprod. Toxicol. 2001, 15, 467–478. [Google Scholar] [CrossRef]
- Lopez-Sendon, J.; Swedberg, K.; McMurray, J.; Tamargo, J.; Maggioni, A.P.; Dargie, H.; Tendera, M.; Waastein, F.; Kjekshus, J.; Lechat, P.; et al. Expert consensus document on angiotensin converting enzyme inhibitors in cardiovascular disease: The Task Force on ACE-inhibitors of the European Society of Cardiology. Eur. Heart J. 2004, 25, 1454–1470. [Google Scholar] [PubMed]
- Hori, Y.; Takusagawa, F.; Ikadai, H.; Uechi, M.; Hoshi, F.; Higuchi, S.I. Effects of oral administration of furosemide and torsemide in healthy dogs. Am. J. Vet. Res. 2007, 68, 1058–1063. [Google Scholar] [CrossRef]
- Al-Taesh, H.; Çelekli, A.; Sucu, M.; Taysi, S. Trace elements in patients with aortic valve sclerosis. Ther. Adv. Cardiovasc. Dis. 2021, 15, 1–9. [Google Scholar] [CrossRef]
- Bergqvist, A.C.; Chee, C.M.; Lutchka, L.; Rychik, J.; Stallings, V.A. Selenium deficiency associated with cardiomyopathy: A complication of the ketogenic diet. Epilepsia 2003, 44, 618–620. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhao, S.; Wu, H.; Qin, W.; Zhang, T.; Wang, Y.; Tang, Y.; Qi, S.; Cao, Y.; Gao, X. Cross-sectional study: Relationship between serum trace elements and hypertension. J. Trace Elem. Med. Biol. 2022, 69, 126893. [Google Scholar] [CrossRef]
- Tubek, S. Role of trace elements in primary arterial hypertension: Is mineral water style or prophylaxis? Biol. Trace Elem. Res. 2006, 114, 1–5. [Google Scholar] [CrossRef]
- Klevay, L.M.; Viestenz, K.E. Abnormal electrocardiograms in rats deficient in copper. Am. J. Physiol. Heart Circ. 1981, 240, H185–H189. [Google Scholar] [CrossRef]
- Klevay, L.M.; Halas, E.S. The effects of dietary copper deficiency and psychological stress on blood pressure in rats. Physiol. Behav. 1991, 49, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Altekin, E.; Çoker, C.; Şişman, A.R.; Önvural, B.; Kuralay, F.; Kırımlı, Ö. The relationship between trace elements and cardiac markers in acute coronary syndromes. J. Trace Elem. Med. Biol. 2005, 18, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Barandier, C.; Tanguy, S.; Pucheu, S.; Boucher, F.; De Leiris, J. Effect of Antioxidant Trace Elements on the Response of Cardiac Tissue to Oxidative Stress. Ann. N. Y. Acad. Sci. 1999, 874, 138–155. [Google Scholar] [CrossRef]
- Bogden, J.D.; Klevay, L.M. Clinical Nutrition of the Essential Trace Elements and Minerals: The Guide for Health Professionals, 1st ed.; Springer Science & Business Media: New York, NY, USA, 2000; pp. 3–99. [Google Scholar]
- Tong, G.M.; Rude, R.K. Magnesium deficiency in critical illness. J. Intensive Care Med. 2005, 20, 3–17. [Google Scholar] [CrossRef]
- Liao, F.; Folsom, A.R.; Brancati, F.L. Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 1998, 136, 480–490. [Google Scholar] [CrossRef]
- Kieboom, B.C.; Niemeijer, M.N.; Leening, M.J.; van den Berg, M.E.; Franco, O.H.; Deckers, J.W.; Hofman, A.; Zietse, R.; Sticker, B.H.; Hoorn, E.J. Serum magnesium and the risk of death from coronary heart disease and sudden cardiac death. JAHA 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Khan, A.M.; Lubitz, S.A.; Sullivan, L.M.; Sun, J.X.; Levy, D.; Vasan, R.S.; Magnani, J.W.; Ellinor, P.T.; Benjmin, E.J.; Wang, T.J. Low serum magnesium and the development of atrial fibrillation in the community: The Framingham Heart Study. Circulation 2013, 127, 33–38. [Google Scholar] [CrossRef]
- Choi, S.; Liu, X.; Pan, Z. Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.E.; Kovacic, J.P. The ubiquitous role of zinc in health and disease. J. Vet. Emerg. Crit. Care 2009, 9, 215–240. [Google Scholar] [CrossRef]
- Godwin, K.O. Abnormal electrocardiograms in rats fed a low selenium diet. Q. J. Exp. Physiol. Cogn. Med. Sci. 1965, 50, 282–288. [Google Scholar] [CrossRef]
- Godwin, K.O.; Fraser, F.J. Abnormal electrocardiograms, blood pressure changes, and some aspects of the histopathology of selenium deficiency in lambs. Q. J. Exp. Physiol. Cogn. Med. Sci. 1966, 51, 94–110. [Google Scholar] [PubMed]
- Trapp, A.L.; Keahey, K.K.; Whitenack, D.L.; Whitehair, C.K. Vitamin E-selenium deficiency in swine: Differential diagnosis and nature of field problem. J. Am. Vet. Med. Assoc. 1970, 157, 289–300. [Google Scholar] [PubMed]
- Scott, M.L.; Olson, G.; Krook, L.; Brown, W.R. Selenium-responsive myopathies of myocardium and of smooth muscle in the young poult. J. Nutr. 1967, 91, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Dou, Q.P. New uses for old copper-binding drugs: Converting the pro-angiogenic copper to a specific cancer cell death inducer. Expert Opin. Ther. Targets 2008, 12, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cui, Q.C.; Yang, H.; Dou, Q.P. Disulfiram, a clinically used anti-alcoholism drug and copper-binding agent, induces apoptotic cell death in breast cancer cultures and xenografts via inhibition of the proteasome activity. Cancer Res. 2006, 66, 10425–10433. [Google Scholar] [CrossRef]
- Cohen, N.; Golik, A. Zinc balance and medications commonly used in the management of heart failure. Heart Fail Rev. 2006, 11, 19–24. [Google Scholar] [CrossRef]
- Golik, A.; Zaidenstein, R.; Dishi, V.; Blatt, A.; Cohen, N.; Cotter, G.; Berman, S.; Weissgarten, J. Effects of captopril and enalapril on zinc metabolism in hypertensive patients. J. Am. Coll. Nutr. 1998, 17, 75–78. [Google Scholar] [CrossRef]
- Suliburska, J.; Krejpcio, Z.; Staniek, H.; Król, E.; Bogdanski, P.; Kupsz, J.; Hertig, I. The effects of antihypertensive drugs on chromium status, glucose metabolism, and antioxidant and inflammatory indices in spontaneously hypertensive rats. Biol. Trace Elem. Res. 2014, 157, 60–66. [Google Scholar] [CrossRef]
- Kisters, K.; Gröber, U. Magnesium and thiazide diuretics. Magnes. Res. 2018, 31, 143–145. [Google Scholar]
- Gazyağcı, A.N.; Bilgiç, B.; Bakay, B.B.; Tarhan, D.; Ercan, A.M.; Erdoğan, S.; Erdoğan, H.; Or, M.E.; Ural, K. Serum trace element levels in dogs with canine visceral leishmaniasis. Turkish J. Vet. Anim. Sci. 2023, 47, 155–159. [Google Scholar] [CrossRef]
- Rosendahl, S.; Anturaniemi, J.; Kukko-Lukjanov, T.K.; Vuori, K.A.; Moore, R.; Hemida, M.; Muhle, A.; Hielm-Björkman, A. Whole blood trace element and toxic metal concentration in dogs with idiopathic epilepsy and healthy dogs: A case-control study. Front. Vet. Sci. 2023, 9, 1066851. [Google Scholar] [CrossRef]
- Nasiboğlu, B. The Relationship Between Mitral Valve Disease and Serum Trace Element Levels in Dogs. Ph.D. Thesis, İstanbul University-Cerrahpaşa, İstanbul, Turkey, 2019. [Google Scholar]
- Klevay, L.M. Cardiovascular disease from copper deficiency—A history. J. Nutr. 2000, 130, 489–492. [Google Scholar] [CrossRef]
- Medeiros, D.M. Perspectives on the role and relevance of copper in cardiac disease. Biol. Trace Elem. Res. 2017, 176, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.W.; Neri, L.C.; Schreiber, G.B.; Talbot, F.D.; Zdrojewski, A. Ischemic heart disease, water hardness and myocardial magnesium. Can. Med. Assoc. J. 1975, 113, 199–203. [Google Scholar] [PubMed]
- Chipperfield, B.; Chipperfield, J.R. Differences in metal content of the heart muscle in death from ischemic heart disease. Am. Heart J. 1978, 95, 732–737. [Google Scholar] [CrossRef]
- Zama, N.; Towns, R.L. Cardiac copper, magnesium, and zinc in recent and old myocardial infarction. Biol. Trace Elem. Res. 1986, 10, 201–208. [Google Scholar] [CrossRef]
- Medeiros, D.M.; Wildman, R.E. Newer findings on a unified perspective of copper restriction and cardiomyopathy. Proc. Soc. Exp. Biol. Med. 1997, 215, 299–313. [Google Scholar] [CrossRef]
- Kang, Y.J.; Wu, H.; Saari, J.T. Alterations in hypertrophic gene expression by dietary copper restriction in mouse heart (44492). Proc. Soc. Exp. Biol. Med. 2000, 223, 282–287. [Google Scholar]
- Elsherif, L.; Ortines, R.V.; Saari, J.T.; Kang, Y.J. Congestive heart failure in copper deficient mice. Exp. Biol. Med. 2003, 228, 811–817. [Google Scholar] [CrossRef]
- Mohr, I.; Weiss, K.H. Current anti-copper therapies in management of Wilson disease. Ann. Transl. Med. 2019, 7, S69. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.D.; Albanesi Filho, F.M.; Bastos, V.L.F.D.C.; Antelo, D.S.; Souza, M.M.D. Thiamin, selenium, and copper levels in patients with idiopathic dilated cardiomyopathy taking diuretics. Arq. Bras. Cardiol. 2002, 79, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.T.; Dimke, H. Effect of diuretics on renal tubular transport of calcium and magnesium. Am. J. Physiol-Renal 2017, 312, F998–F1015. [Google Scholar] [CrossRef] [PubMed]
- Eknoyan, G.; Suki, W.N.; Martinez-Maldonado, M. Effect of diuretics on urinary excretion of phosphate, calcium, and magnesium in thyroparathyroidectomized dogs. J. Lab. Clin. Med. 1970, 76, 257–266. [Google Scholar] [PubMed]
- Wester, P.O. Urinary zinc excretion during treatment with different diuretics. Acta Med. Scand. 1980, 208, 209–212. [Google Scholar] [CrossRef]
- Reyes, A.J.; Olhaberry, J.W.; Leary, W.P.; Lockett, C.J.; Van Der Byl, K. Urinary zinc excretion, diuretics, zinc deficiency and some side-effects of diuretics. S. Afr. Med. J. 1983, 64, 936–941. [Google Scholar]
- Miraj, R.; Jahangir, M.; Zaheer, A.; Azam, N.; Siddiqui, A.H.; Chiradh, S. Effect of Furosemide and Spironolactone on urinary zinc excretion in rats. J. Fatima Jinnah Med. Univ. 2021, 15, 40–44. [Google Scholar] [CrossRef]
- King, J.C. Assessment of zinc status. J. Nutr. 1990, 120, 1474–1479. [Google Scholar] [CrossRef]
- O’Connor, D.T.; Strause, L.; Saltman, P.; Parmer, R.J.; Cervenka, J. Serum zinc is unaffected by effective captopril treatment of hypertension. J. Clin. Hypertens. 1987, 3, 405–408. [Google Scholar]
- Savarese, A.; Probo, M.; Locatelli, C.; Gazzonis, A.L.; Zanzani, Z.A.; Traini, G.; Vitiello, T.; Brambilla, P.G. Iron status in dogs with myxomatous mitral valve disease. Pol. J. Vet. Sci. 2018, 21, 507–515. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Malyszko, J.; Ardehali, H.; Koc-Zorawska, E.; Banasiak, W.; Von Haehling, S.; Macdougall, I.C.; Weiss, G.; McMurray, J.J.V.; Anker, S.; et al. Iron status in patients with chronic heart failure. Eur. Heart J. 2013, 34, 827–834. [Google Scholar] [CrossRef]
- von Haehling, S.; Ebner, N.; Evertz, R.; Ponikowski, P.; Anker, S.D. Iron deficiency in heart failure: An overview. JACC Heart Fail. 2019, 7, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.C. Closing the iron gate. N. Engl. J. Med. 2012, 366, 376–377. [Google Scholar] [CrossRef]
- Cunha, G.J.; Rocha, B.M.; Falcão, L.M. Iron deficiency in chronic and acute heart failure: A contemporary review on intertwined conditions. Eur. J. Intern. Med. 2018, 52, 1–7. [Google Scholar] [CrossRef]
- Júnior, A.D.F.S.; Korn, M.D.G.A. Effects of furosemide administration on the concentration of essential and toxic elements in Wistar rats by inductively coupled plasma optical emission spectrometry. Trace Elem. Med. Biol. 2018, 48, 25–29. [Google Scholar]
- Zhu, Q.; Liao, S.; Lu, X.; Shi, S.; Gong, D.; Cheang, I.; Zhu, X.U.; Zhang, H.; Li, X. Cobalt exposure in relation to cardiovascular disease in the United States general population. Environ. Sci. Pollut. Res. Int. 2021, 28, 41834–41842. [Google Scholar] [CrossRef] [PubMed]
- Morin, Y.; Tetu, A.; Mercier, G. Quebec beer-drinkers’ cardiomyopathy: Clinical and hemodynamic aspects. Ann. N. Y. Acad. Sci. 1969, 156, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.I.; Hong, J.A.; Kim, M.S.; Lee, S.E.; Jung, S.H.; Yoon, P.W.; Song, J.S.; Kim, J.J. Severe cardiomyopathy due to arthroprosthetic cobaltism: Report of two cases with different outcomes. Cardiovasc. Toxicol. 2019, 19, 82–89. [Google Scholar] [CrossRef]
- Psomas, G.; Kessissoglou, D.P. Quinolones and non-steroidal anti-inflammatory drugs interacting with copper (II), nickel (II), cobalt (II) and zinc (II): Structural features, biological evaluation and perspectives. Dalton Trans. 2013, 42, 6252–6276. [Google Scholar] [CrossRef]
- Young, I.S.; Goh, E.M.; McKillop, U.H.; Stanford, C.F.; Nicholls, D.P.; Trimble, E.R. Magnesium status and digoxin toxicity. Br. J. Clin. Pharmacol. 1991, 32, 717–721. [Google Scholar] [CrossRef]
- Abu-Amer, N.; Priel, E.; Karlish, S.J.; Farfel, Z.; Mayan, H. Hypermagnesuria in humans following acute intravenous administration of digoxin. Nephron 2018, 138, 113–118. [Google Scholar]
- Cohen, N.; Almoznino-Sarafian, D.; Zaidenstein, R.; Alon, I.; Gorelik, O.; Shteinshnaider, M.; Chachashvily, S.; Averbukh, Z.; Golik, A.; Chen-Levy, Z.; et al. Serum magnesium aberrations in furosemide (frusemide) treated patients with congestive heart failure: Pathophysiological correlates and prognostic evaluation. Heart 2003, 89, 411–416. [Google Scholar] [CrossRef]
- Spasov, A.A.; Ozerov, A.A.; Iezhitsa, I.N.; Kharitonova, M.V.; Kravchenko, M.S.; Zheltova, A.A. Correction of furosemide-induced magnesium deficiency with different stereoisomers of organic magnesium salts: A comparative study. Bull. Exp. Biol. Med. 2011, 151, 333–335. [Google Scholar] [CrossRef] [PubMed]
- Thomason, J.D.; Rapoport, G.; Fallaw, T.; Calvert, C.A. The influence of enalapril and spironolactone on electrolyte concentrations in Doberman pinschers with dilated cardiomyopathy. Vet. J. 2014, 202, 573–577. [Google Scholar] [CrossRef] [PubMed]
- van Angelen, A.A.; van der Kemp, A.W.; Hoenderop, J.G.; Bindels, R.J. Increased expression of renal TRPM6 compensates for Mg2+ wasting during furosemide treatment. Nephrol. Dial. Transplant. 2012, 5, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zheng, W. Cardiovascular toxicities upon managanese exposure. Cardiovasc. Toxicol. 2005, 5, 345–354. [Google Scholar] [CrossRef]
- Charash, B.; Placek, E.; Sos, T.A.; Kligfield, P. Dose-related effects of manganese on the canine electrocardiogram. J. Electrocardiol. 1982, 15, 149–152. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, S.L.; Zheng, W. Manganese toxicity upon overexposure: A decade in review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef]
- Verho, M.; Bossaller, W.; Malerczyk, V. Serum selenium levels in diuretic-treated hypertensives: A double-blind trial of piretanide against hydrochlorothiazide plus amiloride. Int. J. Clin. Pharmacol. 1988, 8, 5–8. [Google Scholar]
- Kamath, S.M.; Stoecker, B.J.; Davis-Whitenack, M.L.; Smith, M.M.; Adeleye, B.O.; Sangiah, S. Absorption, retention and urinary excretion of chromium-51 in rats pretreated with indomethacin and dosed with dimethylprostaglandin E2, misoprostol or prostacyclin. J. Nutr. 1977, 127, 478–482. [Google Scholar] [CrossRef]
- Seaborn, C.D.; Stoecker, B.J. Effects of antacid or ascorbic acid on tissue accumulation and urinary excretion of 51chromium. Nutr. Res. 1990, 10, 1401–1407. [Google Scholar] [CrossRef]
- Banner, W., Jr.; Koch, M.; Capin, D.M.; Hopf, S.B.; Chang, S.; Tong, T.G. Experimental chelation therapy in chromium, lead, and boron intoxication with N-acetylcysteine and other compounds. Toxicol. Appl. Pharmacol. 1986, 83, 142–147. [Google Scholar] [CrossRef]
- Kobla, H.V.; Volpe, S.L. Chromium, exercise, and body composition. Crit. Rev. Food Sci. Nutr. 2000, 40, 291–308. [Google Scholar] [CrossRef] [PubMed]
- European Pet Food. Available online: https://europeanpetfood.org/self-regulation/nutritional-guidelines/ (accessed on 25 September 2024).
- Schultheiss, H.P.; Fairweather, D.; Caforio, A.L.; Escher, F.; Hershberger, R.E.; Lipshultz, S.E.; Liu, P.P.; Matsumori, A.; Mazzanti, A.; McMurray, J.; et al. Dilated cardiomyopathy. Nat. Rev. Dis. Primers 2019, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
Asymptomatic | Symptomatic | ||||
---|---|---|---|---|---|
Stages | A | B1 | B2 | C | D |
Findings | Genetically predisposed breeds |
|
|
|
|
Drugs | None | None | Pimobendan or enalapril | Furosemide + enalapril or Pimobendan + enalapril | Furosemide + pimobendan + enalapril |
Parameters | Specified Values |
---|---|
Plasma gas flow rate | 15 L/min |
Argon flow rate | 0.5 L/min |
Sample flow rate | 1.51 L/min |
Peristaltic pump speed | 100 rpm |
RF Power | 1150 W |
Elements | Quality Control (QC) | LOD (ppm) | LOQ (ppm) | Expected Concentration (ppm) | Measured Concentration (n = 3) (ppm) | Precision (RSD%) | Recovery (%) |
---|---|---|---|---|---|---|---|
Cu | QC-1 QC-2 | 0.003 | 0.008 | 0.500 1.000 | 0.536 0.963 | 0.752 0.213 | 107.2 96.3 |
Zn | QC-1 QC-2 | 0.004 | 0.006 | 0.500 1.000 | 0.464 1.035 | 0.712 0.394 | 92.8 103.5 |
Fe | QC-1 QC-2 | 0.004 | 0.008 | 0.500 1.000 | 0.509 0.990 | 0.321 0.675 | 101.8 99 |
Co | QC-1 QC-2 QC-3 QC-4 | 0.002 | 0.003 | 0.050 0.100 0.500 1.000 | 0.052 0.099 0.524 0.973 | 6.844 2.474 1.895 0.539 | 104 99 104.8 97.3 |
Mg | QC-1 QC-2 | 0.004 | 0.005 | 0.500 1.000 | 0.538 0.961 | 0.803 0.098 | 107.6 96.1 |
Mn | QC-1 QC-2 | 0.001 | 0.001 | 0.050 0.100 | 0.052 0.097 | 0.177 0.700 | 104 97 |
Se | QC-1 QC-2 | 0.002 | 0.003 | 0.050 0.100 | 0.049 0.100 | 0.726 0.816 | 98 100 |
Cr | QC-1 QC-2 | 0.000 | 0.001 | 0.050 0.100 | 0.052 0.097 | 4.503 1.740 | 104 97 |
Element | Wavelength (nm) |
---|---|
Cu | 324,754 |
Zn | 206,200 |
Fe | 259,940 |
Co | 228,616 |
Mg | 285,213 |
Mn | 257,610 |
Se | 196,090 |
Cr | 267,716 |
Treatment Groups | Min. 30 Days | Min. 120 Days | P 1 | ||
---|---|---|---|---|---|
Mean (SD) | Min.–Max. | Mean (SD) | Min.–Max. | ||
P | 0.983 (0.695) | 0.57–2.57 | 0.719 (0.143) | 0.47–0.95 | 0.910 |
E | 0.743 (0.088) | 0.67–0.95 | 0.770 (0.535) | 0.46–2.79 | 0.124 |
PE | 0.728 (0.283) | 0.42–1.44 | 0.613 (0.167) | 0.35–0.95 | 0.346 |
EF | 0.724 (0.378) | 0.43–1.95 | 0.584 (0.069) | 0.49–0.69 | 0.444 |
PEF | 0.578 (0.188) | 0.31–0.96 | 0.898 (0.763) | 0.46–3.12 | 0.175 |
P 2 | 0.095 | 0.323 |
Treatment Groups | Min. 30 Days | Min. 120 Days | P 1 | ||
---|---|---|---|---|---|
Mean (SD) | Min.–Max. | Mean (SD) | Min.–Max. | ||
P | 0.683 (0.242) | 0.37–1.10 | 0.668 (0.282) | 0.23–1.10 | 0.910 |
E | 0.704 (0.193) | 0.49–1.08 | 0.663 (0.176) | 0.34–1.05 | 0.798 |
PE | 0.680 (0.225) | 0.35–1.12 | 0.532 (0.160) | 0.35–0.88 | 0.069 |
EF | 0.621 (0.250) | 0.22–1.06 | 0.851 (0.235) | 0.59–1.14 | 0.051 |
PEF | 0.608 (0.178) | 0.30–0.90 | 0.772 (0.273) | 0.33–1.28 | 0.152 |
P 2 | 0.890 | 0.051 |
Treatment Groups | Min. 30 Days | Min. 120 Days | P 1 | ||
---|---|---|---|---|---|
Mean (SD) | Min.–Max. | Mean (SD) | Min.–Max. | ||
P | 4.191 (3.428) | 1.2–11.44 | 2.100 ab (0.419) | 1.69–3.01 | 0.305 |
E | 2.231 (0.568) | 1.57–3.39 | 4.233 a (3.518) | 0.29–14.43 | 0.066 |
PE | 2.600 (1.009) | 1.27–4.50 | 1.935 b (0.887) | 0.74–3.76 | 0.123 |
EF | 2.352 (0.902) | 1.39–4.27 | 2.580 ab (0.745) | 1.49–3.76 | 0.353 |
PEF | 1.674 (0.722) | 0.64–3.05 | 3.741 a (1.854) | 1.69–7.74 | 0.002 |
P 2 | 0.055 | 0.012 |
Treatment Groups | Min. 30 Days | Min. 120 Days | P 1 | ||
---|---|---|---|---|---|
Mean (SD) | Min.–Max. | Mean (SD) | Min.–Max. | ||
P | 0.019 (0.042) | 0–0.15 | 0.033 (0.067) | 0–0.20 | 0.27 |
E | 0.009 (0.005) | 0–0.20 | 0.106 (0.231) | 0–0.88 | 0.798 |
PE | 0.036 (0.105) | 0–0.37 | 0.428 (1.340) | 0–4.24 | 0.771 |
EF | 0.004 (0.004) | 0–0.01 | 0.004 (0.004) | 0–0.10 | 0.968 |
PEF | 0.006 (0.006) | 0–0.02 | 0.124 (0.381) | 0–1.28 | 0.261 |
P 2 | 0.630 | 0.381 |
Treatment Groups | Min. 30 Days | Min. 120 Days | P 1 | ||
---|---|---|---|---|---|
Mean (SD) | Min.–Max. | Mean (SD) | Min.–Max. | ||
P | 31.45 ab (18.50) | 20.34–87.21 | 21.81 (2.581) | 19.18–27.3 | 0.031 |
E | 25.99 a (2.161) | 23–30.2 | 26.57 (13.56) | 12.64–77.01 | 0.124 |
PE | 25.89 ab (15.33) | 6.29–71.05 | 20.91 (1.645) | 19.36–25.02 | 0.107 |
EF | 27.90 ab (14.31) | 20.46–75.52 | 24.45 (4.754) | 19.53–31.08 | 0.602 |
PEF | 21.32 b (2.284) | 18.77–26.2 | 29.59 (16.32) | 16.05–69.86 | 0.175 |
P 2 | 0.028 | 0.091 |
Treatment Groups | Min. 30 Days | Min. 120 Days | P 1 | ||
---|---|---|---|---|---|
Mean (SD) | Min.–Max. | Mean (SD) | Min.–Max. | ||
P | 0.006 (0.005) | 0–0.02 | 0.004 (0.006) | 0–0.02 | 0.473 |
E | 0.004 (0.001) | 0–0.01 | 0.004 (0.003) | 0–0.01 | 0.315 |
PE | 0.006 (0.004) | 0–0.01 | 0.005 (0.004) | 0–0.01 | 0.539 |
EF | 0.006 (0.006) | 0–0.02 | 0.005 (0.003) | 0–0.01 | 0.904 |
PEF | 0.007 (0.005) | 0–0.01 | 0.006 (0.006) | 0–0.02 | 0.656 |
P 2 | 0.939 | 0.598 |
Treatment Groups | Min. 30 Days | Min. 120 Days | P 1 | ||
---|---|---|---|---|---|
Mean (SD) | Min.–Max. | Mean (SD) | Min.–Max. | ||
P | 0.523 (0.046) | 0.20–0.83 | 0.404 (0.054) | 0.18–0.60 | 0.115 |
E | 0.527 (0.038) | 0.42–0.74 | 0.489 (0.033) | 0.23–0.80 | 0.504 |
PE | 0.456 (0.048) | 0.19–0.82 | 0.380 (0.030) | 0.27–0.58 | 0.218 |
EF | 0.449 (0.036) | 0.24–0.67 | 0.447 (0.076) | 0.14–0.66 | 0.977 |
PEF | 0.425 (0.067) | 0.17–0.75 | 0.577 (0.063) | 0.18–0.88 | 0.119 |
P 2 | 0.491 | 0.055 |
Treatment Groups | Min. 30 Days | Min. 120 Days | P 1 | ||
---|---|---|---|---|---|
Mean (SD) | Min.–Max. | Mean (SD) | Min.–Max. | ||
P | 0.012 (0.007) | 0–0.03 | 0.012 (0.015) | 0–0.05 | 0.734 |
E | 0.006 (0.004) | 0–0.01 | 0.011 (0.012) | 1–0.05 | 0.175 |
PE | 0.010 (0.007) | 0–0.03 | 0.008 (0.005) | 0–0.02 | 0.497 |
EF | 0.011 (0.013) | 0–0.05 | 0.013 (0.008) | 0–0.03 | 0.353 |
PEF | 0.006 (0.005) | 0–0.02 | 0.008 (0.005) | 0–0.02 | 0.710 |
P 2 | 0.337 | 0.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilgiç, B.; Tarhan, D.; Or, M.E. The Effects of Different Treatments on Serum Trace Element Levels in Dogs with Heart Failure. Animals 2024, 14, 3390. https://doi.org/10.3390/ani14233390
Bilgiç B, Tarhan D, Or ME. The Effects of Different Treatments on Serum Trace Element Levels in Dogs with Heart Failure. Animals. 2024; 14(23):3390. https://doi.org/10.3390/ani14233390
Chicago/Turabian StyleBilgiç, Bengü, Duygu Tarhan, and Mehmet Erman Or. 2024. "The Effects of Different Treatments on Serum Trace Element Levels in Dogs with Heart Failure" Animals 14, no. 23: 3390. https://doi.org/10.3390/ani14233390
APA StyleBilgiç, B., Tarhan, D., & Or, M. E. (2024). The Effects of Different Treatments on Serum Trace Element Levels in Dogs with Heart Failure. Animals, 14(23), 3390. https://doi.org/10.3390/ani14233390