Comparative Effects of Crude Extracts and Bioactive Compounds from Bidens pilosa and Bidens alba on Nonspecific Immune Responses and Antibacterial Activity Against Vibrio sp. in Coculture with Lactic Acid Bacteria in Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Hybrid Grouper Culture
2.2. Material Preparation
2.3. Cell Viability and Nonspecific Immune Responses of Head Kidney Leukocytes
2.3.1. Head Kidney Leukocyte Extraction
2.3.2. Cell Viability
2.3.3. Phagocytic Activity
PI = (Beads in phagocytic cell)/(Total phagocytic cell)
2.3.4. Respiratory Burst
2.4. Antibacterial Activity Against Vibrio sp.
2.4.1. Bacterial Preparation
2.4.2. Measurement of Bacterial Growth
2.4.3. Minimum Inhibitory Concentration and Bactericidal Concentration Tests
2.4.4. Inhibition Zone Test
2.5. Time-Kill Experiment in Coculture Against Some Vibrio sp.
- Experiment 1: Vibrio sp. at 105 CFU/mL
- Experiment 2: Vibrio sp. at 105 CFU/mL + EC at 25 µg/mL
- Experiment 3: Vibrio sp. at 105 CFU/mL + CP at 25 µg/mL
- Experiment 4: Vibrio sp. at 105 CFU/mL + BP HW at 250 mg/L
- Experiment 5: Vibrio sp. at 105 CFU/mL + BP PW at 150 mg/L
- Experiment 6: Vibrio sp. at 105 CFU/mL + BA HW at 250 mg/L
- Experiment 7: Vibrio sp. at 105 CFU/mL + BA PW at 150 mg/L
2.6. Statistical Analysis
- a.
- Analysis of Variance
- b.
- PCA
3. Results
3.1. Effect of B. pilosa on Cell Viability, Phagocytic Activity, and Respiratory Burst
3.2. Effect of B. alba on Cell Viability, Phagocytic Activity, and Respiratory Burst
3.3. Effect of Bioactive Compounds on Cell Viability, Phagocytic Activity, and Respiratory Burst
3.4. MIC, MBC, and Inhibition Zone Against Vibrio sp. and LAB
3.5. Time-Kill Experiments Performed in Coculture Against Some Vibrio sp.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, R.; Reguaera, D.F.; Fuentevilla, C.; Agostini, V.; Barange, M. Aquatic Food Systems for Blue Transformation: A Vision for FAO. In Transformation of Agri-Food Systems; Springer: Berlin/Heidelberg, Germany, 2024; pp. 193–204. [Google Scholar]
- Ybanez, C., Jr.; Gonzales, R. Challenges and progress of grouper aquaculture in asia: A Review. Davao Res. J. 2023, 14, 6–29. [Google Scholar] [CrossRef]
- Huang, P.L.; Afero, F.; Chang, Y.; Chen, B.Y.; Lan, H.Y.; Hou, Y.L.; Huang, C.-T. The Bioeconomic Analysis of Hybrid Giant Grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) and Green Grouper (Epinephelus malabaricus): A Case Study in Taiwan. Fishes 2023, 8, 610. [Google Scholar] [CrossRef]
- Yin, Z.X.; He, W.; Chen, W.J.; Yan, J.H.; Yang, J.N.; Chan, S.M.; He, J.-G. Cloning, expression and antimicrobial activity of an antimicrobial peptide, epinecidin-1, from the orange-spotted grouper, Epinephelus coioides. Aquaculture 2006, 253, 204–211. [Google Scholar] [CrossRef]
- Chi, C.; Giri, S.S.; Jun, J.W.; Kim, H.J.; Yun, S.; Kim, S.G.; Park, S.C. Immunomodulatory effects of a bioactive compound isolated from Dryopteris crassirhizoma on the grass carp Ctenopharyngodon idella. J. Immunol. Res. 2016, 2016, 3068913. [Google Scholar] [CrossRef]
- Van Hai, N. The use of medicinal plants as immunostimulants in aquaculture: A review. Aquaculture 2015, 446, 88–96. [Google Scholar] [CrossRef]
- Mtenga, D.; Ripanda, A. A Review on the Potential of Underutilized Blackjack (Bidens pilosa) Naturally Occurring in Sub-Saharan Africa. Heliyon 2022, 8, e09586. [Google Scholar] [CrossRef]
- Chiang, Y.M.; Chuang, D.Y.; Wang, S.Y.; Kuo, Y.H.; Tsai, P.W.; Shyur, L.F. Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J. Ethnopharmacol. 2004, 95, 409–419. [Google Scholar] [CrossRef]
- Chang, S.L.; Chiang, Y.M.; Chang, C.L.T.; Yeh, H.H.; Shyur, L.F.; Kuo, Y.H.; Wu, T.K.; Yang, W.C. Flavonoids, centaurein and centaureidin, from Bidens pilosa, stimulate IFN-γ expression. J. Ethnopharmacol. 2007, 112, 232–236. [Google Scholar] [CrossRef]
- Dimo, T.; Nguelefack, T.; Tan, P.; Yewah, M.; Dongo, E.; Rakotonirina, S.; Kamanyi, A.; Bopelet, M. Possible mechanisms of action of the neutral extract from Bidens pilosa L. leaves on the cardiovascular system of anaesthetized rats. Phytother. Res. Int. J. Devoted Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 2003, 17, 1135–1139. [Google Scholar] [CrossRef]
- Corren, J.; Lemay, M.; Lin, Y.; Rozga, L.; Randolph, R.K. Clinical and biochemical effects of a combination botanical product (ClearGuard™) for allergy: A pilot randomized double-blind placebo-controlled trial. Nutr. J. 2008, 7, 20. [Google Scholar] [CrossRef]
- Chang, S.L.; Yeh, H.H.; Lin, Y.S.; Chiang, Y.M.; Wu, T.K.; Yang, W.C. The effect of centaurein on interferon-γ expression and Listeria infection in mice. Toxicol. Appl. Pharmacol. 2007, 219, 54–61. [Google Scholar] [CrossRef]
- Bartolome, A.P.; Villaseñor, I.M.; Yang, W.C. Bidens pilosa L. (Asteraceae): Botanical properties, traditional uses, phytochemistry, and pharmacology. Evid.-Based Complement. Altern. Med. 2013, 2013, 340215. [Google Scholar] [CrossRef]
- Simonetti, P.; Gardana, C.; Pietta, P. Plasma levels of caffeic acid and antioxidant status after red wine intake. J. Agric. Food Chem. 2001, 49, 5964–5968. [Google Scholar] [CrossRef]
- Jeong, G.S.; Lee, D.S.; Song, M.Y.; Park, B.H.; Kang, D.G.; Lee, H.S.; Kwon, K.B.; Kim, Y.C. Butein from Rhus verniciflua protects pancreatic β cells against cytokine-induced toxicity mediated by inhibition of nitric oxide formation. Biol. Pharm. Bull. 2011, 34, 97–102. [Google Scholar] [CrossRef]
- Yu, H.; Li, L.; Yu, L.; Xu, C.; Zhang, J.; Qiu, X.; Zhang, Y.; Shan, L. Effect of dietary linoleic acid (18: 2n-6) supplementation on the growth performance, fatty acid profile, and lipid metabolism enzyme activities of coho salmon (Oncorhynchus kisutch) alevins. Animals 2022, 12, 2631. [Google Scholar] [CrossRef]
- Chang, C.; Chang, S.; Chiang, Y.; Kuo, H.; Shyur, L.; Yang, W. The Role of a Polyacetylenic Glucoside, Cytopiloyne, in Preventing the Onset of Non-Obese Diabetes. 2009. Available online: http://ir.sinica.edu.tw/handle/201000000A/13438 (accessed on 17 September 2024).
- Yin, P.; Xie, S.; Zhuang, Z.; Fang, H.; Tian, L.; Liu, Y.; Niu, J. Chlorogenic acid improves health in juvenile largemouth bass (Micropterus salmoides) fed high-fat diets: Involvement of lipid metabolism, antioxidant ability, inflammatory response, and intestinal integrity. Aquaculture 2021, 545, 737169. [Google Scholar] [CrossRef]
- Lizárraga-Velázquez, C.E.; Hernández, C.; González-Aguilar, G.A.; Heredia, J.B. Effect of dietary intake of phenolic compounds from mango peel extract on growth, lipid peroxidation and antioxidant enzyme activities in zebrafish (Danio rerio). Lat. Am. J. Aquat. Res. 2019, 47, 602–611. [Google Scholar] [CrossRef]
- Konaté, K.; Mavoungou, J.F.; Lepengué, A.N.; Aworet-Samseny, R.R.; Hilou, A.; Souza, A.; Dicko, M.H.; M’batchi, B. Antibacterial activity against β-lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 18. [Google Scholar] [CrossRef]
- Li, T.; Yan, X.; Dong, X.; Pan, S.; Tan, B.; Zhang, S.; Suo, X.; Huang, W.; Zhou, M.; Yang, Y. Effects of choline supplementation on growth performance, liver histology, nonspecific immunity and related genes expression of hybrid grouper (♀ Epinephelus fuscoguttatus × ♂ E. lanceolatu) fed with high-lipid diets. Fish Shellfish Immunol. 2023, 138, 108815. [Google Scholar] [CrossRef]
- Lee, P.T.; Chen, H.Y.; Liao, Z.H.; Huang, H.T.; Chang, T.C.; Huang, C.T.; Chang, T.C.; Huang, C.T.; Lee, M.C.; Nan, F.H. Effects of three medicinal herbs Bidens pilosa, Lonicera japonica, and Cyathula officinalis on growth and non-specific immune responses of cobia (Rachycentron canadum). Fish Shellfish Immunol. 2020, 106, 526–535. [Google Scholar] [CrossRef]
- Adedapo, A.; Jimoh, F.; Afolayan, A. Comparison of the nutritive value and biological activities of the acetone, methanol and water extracts of the leaves of Bidens pilosa and Chenopodium album. Acta Pol. Pharm. 2011, 68, 83–92. [Google Scholar]
- Hsu, J.C.P.; Rairat, T.; Lu, Y.P.; Chou, C.C. The Use of Tricaine Methanesulfonate (MS-222) in Asian Seabass (Lates calcarifer) at Different Temperatures: Study of Optimal Doses, Minimum Effective Concentration, Blood Biochemistry, Immersion Pharmacokinetics, and Tissue Distributions. Vet. Sci. 2023, 10, 539. [Google Scholar] [CrossRef]
- Domínguez-Borbor, C.; Chalén-Alvarado, B.; Rodríguez, J.A. A simple in vitro method to evaluate the toxicity of functional additives used in shrimp aquaculture. MethodsX 2018, 5, 90–95. [Google Scholar] [CrossRef]
- Twentyman, P.R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer 1987, 56, 279–285. [Google Scholar] [CrossRef]
- Yue, F.; Pan, L.; Xie, P.; Zheng, D.; Li, J. Immune responses and expression of immune-related genes in swimming crab Portunus trituberculatus exposed to elevated ambient ammonia-N stress. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 157, 246–251. [Google Scholar] [CrossRef]
- Wu, Y.S.; Liau, S.Y.; Huang, C.T.; Nan, F.H. Beta 1,3/1,6-glucan and vitamin C immunostimulate the non-specific immune response of white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 2016, 57, 269–277. [Google Scholar] [CrossRef]
- Ruangpan, L.; Tendencia, E. Bacterial isolation, identification and storage. In Laboratory Manual of Standardized Methods for Antimicrobial Sensitivity Tests for Bacteria Isolated from Aquatic Animals and Environment; Aquaculture Department, Southeast Asian Fisheries Development Center: Iloilo, Philippines, 2004; pp. 3–11. [Google Scholar]
- Taylor, R.H.; Allen, M.J.; Geldreich, E.E. Standard plate count: A comparison of pour plate and spread plate methods. J.-Am. Water Work. Assoc. 1983, 75, 35–37. [Google Scholar] [CrossRef]
- Abidin, Z.; Huang, H.T.; Hu, Y.F.; Chang, J.J.; Huang, C.Y.; Wu, Y.S.; Nan, F.-H. Effect of dietary supplementation with Moringa oleifera leaf extract and Lactobacillus acidophilus on growth performance, intestinal microbiota, immune response, and disease resistance in whiteleg shrimp (Penaeus vannamei). Fish Shellfish Immunol. 2022, 127, 876–890. [Google Scholar] [CrossRef]
- Isnansetyo, A.; Kamei, Y. Direct antagonistic method for screening anti-methicillin-resistant Staphylococcus aureus (MRSA) substance-producing marine bacteria. Biota 2005, 10, 141–145. [Google Scholar]
- Isnansetyo, A.; Kamei, Y. MC21-A, a bactericidal antibiotic produced by a new marine bacterium, Pseudoalteromonas phenolica sp. nov. O-BC30T, against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 2003, 47, 480–488. [Google Scholar] [CrossRef]
- Mariam, S.H.; Zegeye, N.; Aseffa, A.; Howe, R. Diffusible substances from lactic acid bacterial cultures exert strong inhibitory effects on Listeria monocytogenes and Salmonella enterica serovar enteritidis in a co-culture model. BMC Microbiol. 2017, 17, 35. [Google Scholar] [CrossRef]
- Miles, A.A.; Misra, S.; Irwin, J. The estimation of the bactericidal power of the blood. Epidemiol. Infect. 1938, 38, 732–749. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009; p. 34.
- Ebrahimi, B.; Baroutian, S.; Li, J.; Zhang, B.; Ying, T.; Lu, J. Combination of marine bioactive compounds and extracts for the prevention and treatment of chronic diseases. Front. Nutr. 2023, 9, 1047026. [Google Scholar] [CrossRef]
- Chung, C.Y.; Yang, W.C.; Liang, C.L.; Liu, H.Y.; Lai, S.K.; Chang, C.L.T. Cytopiloyne, a polyacetylenic glucoside from Bidens pilosa, acts as a novel anticandidal agent via regulation of macrophages. J. Ethnopharmacol. 2016, 184, 72–80. [Google Scholar] [CrossRef]
- Chiang, Y.M.; Chang, C.L.T.; Chang, S.L.; Yang, W.C.; Shyur, L.F. Cytopiloyne, a novel polyacetylenic glucoside from Bidens pilosa, functions as a T helper cell modulator. J. Ethnopharmacol. 2007, 110, 532–538. [Google Scholar] [CrossRef]
- Li, M.; Zhu, X.; Tian, J.; Liu, M.; Wang, G. Dietary flavonoids from Allium mongolicum Regel promotes growth, improves immune, antioxidant status, immune-related signaling molecules and disease resistance in juvenile northern snakehead fish (Channa argus). Aquaculture 2019, 501, 473–481. [Google Scholar] [CrossRef]
- Chiang, Y.M.; Lo, C.P.; Chen, Y.P.; Wang, S.Y.; Yang, N.S.; Kuo, Y.H.; Shyur, L.F. Ethyl caffeate suppresses NF-κB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2in vitro or in mouse skin. Br. J. Pharmacol. 2005, 146, 352–363. [Google Scholar] [CrossRef]
- Mgomi, F.C.; Yang, Y.R.; Cheng, G.; Yang, Z.Q. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm 2023, 5, 100118. [Google Scholar] [CrossRef]
- Choi, A.R.; Patra, J.K.; Kim, W.J.; Kang, S.S. Antagonistic activities and probiotic potential of lactic acid bacteria derived from a plant-based fermented food. Front. Microbiol. 2018, 9, 365192. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.; Kim, G.Y. Synergistic Effects of a Probiotic Culture Extract and Antimicrobial Combinations against Multidrug-Resistant Acinetobacter baumannii. Medicina 2023, 59, 947. [Google Scholar] [CrossRef]
- Ellis, A. Innate host defense mechanisms of fish against viruses and bacteria. Dev. Comp. Immunol. 2001, 25, 827–839. [Google Scholar] [CrossRef]
Crude Extract | V. parahaemolyticus | V. alginolyticus | V. harveyi | L. plantarum | L. acidophilus | L. reuteri | P. acidilactici | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC (mg/L) | MBC (mg/L) | MIC (mg/L) | MBC (mg/L) | MIC (mg/L) | MBC (mg/L) | MIC (mg/L) | MBC (mg/L) | MIC (mg/L) | MBC (mg/L) | MIC (mg/L) | MBC (mg/L) | MIC (mg/L) | MBC (mg/L) | |
BP HW | 250 | 2000 | 250 | 1000 | 250 | 1000 | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 ** |
BP PW | 150 | 2000 | 150 | 2000 | 150 | 1000 | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 ** |
BP ME | 500 | >4000 *** | 500 | >4000 *** | 500 | >4000 *** | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 ** |
BP ET | 1000 | >4000 *** | 1000 | >4000 *** | 1000 | >4000 *** | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 ** |
BA HW | 250 | 2000 | 250 | 2000 | 250 | 2000 | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 ** |
BA PW | 250 | 1000 | 250 | 1000 | 250 | 1000 | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 ** |
BA ME | 500 | >4000 *** | 500 | >4000 *** | 500 | >4000 *** | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 ** |
BA ET | 1000 | >4000 *** | 1000 | >4000 *** | 1000 | >4000 *** | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 * | 4000 | >4000 ** |
Specific Bioactive Compounds | V. parahaemolyticus | V. alginolyticus | V. harveyi | L. plantarum | L. acidophilus | L. reuteri | P. acidilactici | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | |
CA | 2.5 | >500 *** | 2.5 | >500 *** | 2.5 | >500 *** | 5 | >500 * | 5 | >500 * | 5 | >500 * | 5 | >500 ** |
LT | 0.5 | >500 *** | 0.5 | >500 *** | 0.5 | >500 *** | 0.5 | >500 * | 0.5 | >500 * | 0.5 | >500 * | 0.5 | >500 ** |
LA | 150 | >500 *** | 150 | >500 *** | 150 | >500 *** | 250 | >500 * | 250 | >500 * | 250 | >500 * | 500 | >500 ** |
CP | 25 | 250 | 25 | 250 | 25 | 250 | 250 | >500 * | 250 | >500 * | 250 | >500 * | 250 | >500 ** |
EC | 5 | 250 | 5 | 150 | 5 | 150 | 500 | >500 * | 500 | >500 * | 500 | >500 * | 50 | >500 ** |
BT | 250 | >500 *** | 150 | >500 *** | 150 | >500 *** | 500 | >500 * | 500 | >500 * | 500 | >500 * | 500 | >500 ** |
PH | 250 | >500 *** | 250 | >500 *** | 250 | >500 *** | 500 | >500 * | 500 | >500 * | 500 | >500 * | 500 | >500 ** |
FV | 50 | >500 *** | 50 | >500 *** | 50 | >500 *** | 100 | >500 * | 100 | >500 * | 100 | >500 * | 100 | >500 ** |
Extract | Dose (mg/L) | Inhibition Zone (mm) | ||||||
---|---|---|---|---|---|---|---|---|
V. parahaemolyticus | V. alginolyticus | V. harveyi | L. plantarum | L. acidophilus | L. reuteri | P. acidilactici | ||
BP HW | 100 | NA | NA | NA | NA | NA | NA | NA |
150 | NA | NA | NA | NA | NA | NA | NA | |
250 | 7.4 ± 0.12 b | 7.53 ± 0.23 b | 7.40 ± 0.40 b | NA | NA | NA | NA | |
500 | 8.47 ± 0.12 a | 8.63 ± 0.06 a | 8.43 ± 0.25 a | 6.47 ± 0.06 a | 6.53 ± 0.12 a | 6.47 ± 0.12 a | 6.27 ± 0.12 a | |
BP PW | 100 | NA | NA | NA | NA | NA | NA | NA |
150 | 6.87 ± 0.12 c | 7.07 ± 0.12 b | 7.0 ± 0.2 b | NA | NA | NA | NA | |
250 | 7.13 ± 0.12 b | 7.27 ± 0.12 b | 7.2 ± 0.2 b | NA | NA | NA | NA | |
500 | 7.73 ± 0.12 a | 7.87 ± 0.12 a | 7.8 ± 0.2 a | 6.27 ± 0.12 a | 6.33 ± 0.12 a | 6.27 ± 0.12 a | 6.47 ± 0.06 a | |
BP ME | 100 | NA | NA | NA | NA | NA | NA | NA |
150 | NA | NA | NA | NA | NA | NA | NA | |
250 | NA | NA | NA | NA | NA | NA | NA | |
500 | 6.27 ± 0.12 a | 6.47 ± 0.12 a | 6.3 ± 0.1 a | NA | NA | NA | NA | |
BP ET | 100 | NA | NA | NA | NA | NA | NA | NA |
150 | NA | NA | NA | NA | NA | NA | NA | |
250 | NA | NA | NA | NA | NA | NA | NA | |
500 | NA | NA | NA | NA | NA | NA | NA | |
BA HW | 100 | NA | NA | NA | NA | NA | NA | NA |
150 | NA | NA | NA | NA | NA | NA | NA | |
250 | 7.53 ± 0.11 b | 7.61 ± 0.21 b | 7.46 ± 0.30 b | NA | NA | NA | NA | |
500 | 8.27 ± 0.12 a | 8.4 ± 0.1 a | 8.16 ± 0.21 a | 6.16 ± 0.05 a | 6.2 ± 0.1 a | 6.33 ± 0.05 a | 6.23 ± 0.05 a | |
BA PW | 100 | NA | NA | NA | NA | NA | NA | NA |
150 | 6.97 ± 0.12 c | 7.12 ± 0.12 c | 7.1 ± 0.2 c | NA | NA | NA | NA | |
250 | 7.17 ± 0.05 b | 7.23 ± 0.06 b | 7.3 ± 0.1 b | NA | NA | NA | NA | |
500 | 7.56 ± 0.06 a | 7.57 ± 0.21 a | 7.86 ± 0.11 a | 6.23 ± 0.15 a | 6.37 ± 0.15 a | 6.3 ± 0.1 a | 6.43 ± 0.06 a | |
BA ME | 100 | NA | NA | NA | NA | NA | NA | NA |
150 | NA | NA | NA | NA | NA | NA | NA | |
250 | NA | NA | NA | NA | NA | NA | NA | |
500 | 6.3 ± 0.1 a | 6.23 ± 0.15 a | 6.16 ± 0.05 a | NA | NA | NA | NA | |
BA ET | 100 | NA | NA | NA | NA | NA | NA | NA |
150 | NA | NA | NA | NA | NA | NA | NA | |
250 | NA | NA | NA | NA | NA | NA | NA | |
500 | NA | NA | NA | NA | NA | NA | NA |
Specific Bioactive Compounds | Dose (µg/mL) | Inhibition Zone (mm) | ||||||
---|---|---|---|---|---|---|---|---|
V. parahaemolyticus | V. alginolyticus | V. harveyi | L. plantarum | L. acidophilus | L. reuteri | P. acidilactici | ||
CA | 0.5 | NA | NA | NA | NA | NA | NA | NA |
1 | NA | NA | NA | NA | NA | NA | NA | |
2.5 | 6.5 ± 0.05 b | 6.6 ± 0.2 a | 7.40 ± 0.40 a | NA | NA | NA | NA | |
5 | 6.7 ± 0.06 a | 6.8 ± 0.2 a | 8.43 ± 0.25 a | 6.33 ± 0.57 a | 6.3 ± 0.57 a | 6.43 ± 0.2 a | 6.23 ± 0.057 a | |
LT | 0.5 | NA | NA | NA | NA | NA | NA | NA |
1 | NA | NA | NA | NA | NA | NA | NA | |
2.5 | NA | NA | NA | NA | NA | NA | NA | |
5 | NA | NA | NA | NA | NA | NA | NA | |
LA | 50 | NA | NA | NA | NA | NA | NA | NA |
100 | NA | NA | NA | NA | NA | NA | NA | |
150 | 6.5 ± 0.05 b | 6.5 ± 0.1 b | 6.56 ± 0.11 b | NA | NA | NA | NA | |
250 | 7.1 ± 0.1 a | 7.03 ± 0.06 a | 7.13 ± 0.05 a | 6.46 ± 0.05 a | 6.2 ± 0.1 a | 6.36 ± 0.57 a | 6.16 ± 0.05 a | |
CP | 10 | 10.3 ± 0.57 b | 9.6 ± 0.57 c | 10.6 ± 0.57 c | NA | NA | NA | NA |
25 | 11 ± 1.2 b | 11 ± 1 bc | 11 ± 0.1 bc | NA | NA | NA | 6.5 ± 0.05 b | |
50 | 12 ± 1.1 b | 12.6 ± 0.6 b | 12.6 ± 1.57 b | NA | NA | NA | 7.4 ± 0.11 a | |
100 | 14.3 ± 0.57 a | 15 ± 1 a | 15.3 ± 0.57 a | 6.4 ± 0.2 a | 6.4 ± 0.2 a | 6.33 ± 0.11 a | 7.5 ± 0.12 a | |
EC | 5 | 12.3 ± 0.57 d | 13.3 ± 0.57 b | 13.1 ± 1.52 c | NA | NA | NA | NA |
10 | 14.6 ± 0.57 c | 14.3 ± 1.15 b | 13.6 ± 1.52 bc | NA | NA | NA | NA | |
25 | 16.3 ± 0.56 b | 17.4 ± 0.57 a | 16.6 ± 0.57 b | NA | NA | NA | 7.5 ± 0.1 b | |
50 | 19.7 ± 0.56 a | 19.3 ± 1.53 a | 20.6 ± 1.53 a | NA | NA | NA | 8.5 ± 0.12 a | |
BT | 5 | NA | NA | NA | NA | NA | NA | NA |
10 | NA | NA | NA | NA | NA | NA | NA | |
25 | NA | NA | NA | NA | NA | NA | NA | |
50 | 6.53 ± 0.057 a | 6.43 ± 0.15 a | 6.3 ± 0.11 a | NA | NA | NA | NA | |
PH | 5 | NA | NA | NA | NA | NA | NA | NA |
10 | NA | NA | NA | NA | NA | NA | NA | |
25 | NA | NA | NA | NA | NA | NA | NA | |
50 | NA | NA | NA | NA | NA | NA | NA | |
FV | 5 | NA | NA | NA | NA | NA | NA | NA |
10 | NA | NA | NA | NA | NA | NA | NA | |
25 | 6.5 ± 0.1 b | 6.46 ± 0.05 a | 6.73 ± 0.25 a | NA | NA | NA | NA | |
50 | 6.93 ± 0.11 a | 6.9 ± 0.3 a | 7.46 ± 0.55 a | 6.16 ± 0.05 a | 6.16 ± 0.05 a | 6.36 ± 0.05 a | 6.33 ± 0.15 a |
Crude Extract | Dose (mg/mL) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 25 | 50 | 100 | 150 | 250 | 500 | 1000 | 2000 | 4000 | |
BP ME | 128.66978 | 120.66106 | 106.76661 | 91.275683 | 83.922963 | 81.700686 | 76.172239 | 75.632171 | 73.966302 | 70.286097 | 60.777215 |
BP ET | 128.93089 | 130.58486 | 124.96977 | 96.980605 | 88.781692 | 85.796216 | 81.510072 | 79.943719 | 76.063114 | 72.075121 | 69.692979 |
BP HW | 126.18867 | 133.17739 | 135.50306 | 136.98 | 141.28009 | 143.63015 | 151.962 | 147.7109 | 137.7453 | 130.75496 | 121.94723 |
BP PW | 123.92978 | 136.49032 | 138.41595 | 140.42338 | 152.2565 | 152.82938 | 138.843 | 133.32008 | 132.58739 | 119.9654 | 112.85631 |
BA ME | 125.62204 | 116.6499 | 104.31768 | 80.860153 | 74.276723 | 71.974831 | 66.704052 | 66.325812 | 59.368246 | 52.941725 | 44.29571 |
BA ET | 126.55204 | 128.10515 | 123.60482 | 98.140778 | 91.199385 | 87.857121 | 85.361457 | 81.638062 | 75.51667 | 61.594941 | 55.646214 |
BA HW | 126.43204 | 136.9656 | 137.64279 | 137.8765 | 141.58168 | 144.35332 | 152.57296 | 145.87678 | 136.01678 | 129.00605 | 117.58907 |
BA PW | 126.25204 | 127.71872 | 133.52552 | 141.17868 | 146.74593 | 151.33947 | 137.27057 | 131.53269 | 124.33206 | 114.61101 | 102.38271 |
Bioactive Compounds | Dose (µg/mL) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5 | 1 | 2.5 | 5 | 10 | 25 | 50 | 100 | 150 | 250 | 500 | |
CA | 123.90702 | 149.99011 | 134.02195 | 127.60824 | 103.47267 | 83.734107 | 68.658389 | 64.164423 | 60.593718 | 57.62961 | 56.967123 | 53.332773 |
LT | 123.90702 | 140.7735 | 118.58029 | 115.0597 | 112.90018 | 90.501681 | 73.320501 | 68.671621 | 64.63929 | 61.63706 | 60.861669 | 59.295177 |
PH | 122.78797 | 130.56853 | 98.807796 | 88.311693 | 86.355814 | 82.930432 | 78.858015 | 59.095338 | 58.590619 | 51.87813 | 41.504634 | 41.036064 |
LA | 123.90035 | 130.612 | 130.79819 | 131.69414 | 131.05272 | 139.59844 | 138.18002 | 137.05689 | 132.39157 | 131.69355 | 119.68278 | 108.09936 |
CP | 122.72575 | 132.39772 | 140.45046 | 140.381 | 150.18971 | 151.03944 | 152.58724 | 139.17952 | 130.45697 | 123.09137 | 116.70509 | 110.44937 |
EC | 123.90035 | 134.33878 | 144.80795 | 143.69204 | 151.56082 | 152.47916 | 158.34149 | 144.69747 | 126.69281 | 116.23811 | 109.25791 | 104.11492 |
BT | 122.72208 | 132.93386 | 139.90453 | 141.03611 | 149.07267 | 151.23616 | 136.79554 | 123.16716 | 118.63355 | 102.59078 | 96.782666 | 91.679372 |
FV | 122.7853 | 134.46433 | 141.47831 | 144.68498 | 150.82606 | 150.99733 | 144.2822 | 140.29115 | 134.74191 | 120.52063 | 113.47133 | 108.11874 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widodo, A.; Huang, H.-T.; Dewi, N.R.; Chen, B.-Y.; Wu, Y.-S.; Hu, Y.-F.; Nan, F.-H. Comparative Effects of Crude Extracts and Bioactive Compounds from Bidens pilosa and Bidens alba on Nonspecific Immune Responses and Antibacterial Activity Against Vibrio sp. in Coculture with Lactic Acid Bacteria in Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Animals 2024, 14, 2990. https://doi.org/10.3390/ani14202990
Widodo A, Huang H-T, Dewi NR, Chen B-Y, Wu Y-S, Hu Y-F, Nan F-H. Comparative Effects of Crude Extracts and Bioactive Compounds from Bidens pilosa and Bidens alba on Nonspecific Immune Responses and Antibacterial Activity Against Vibrio sp. in Coculture with Lactic Acid Bacteria in Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Animals. 2024; 14(20):2990. https://doi.org/10.3390/ani14202990
Chicago/Turabian StyleWidodo, Ari, Huai-Ting Huang, Novi Rosmala Dewi, Bo-Ying Chen, Yu-Sheng Wu, Yeh-Fang Hu, and Fan-Hua Nan. 2024. "Comparative Effects of Crude Extracts and Bioactive Compounds from Bidens pilosa and Bidens alba on Nonspecific Immune Responses and Antibacterial Activity Against Vibrio sp. in Coculture with Lactic Acid Bacteria in Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂)" Animals 14, no. 20: 2990. https://doi.org/10.3390/ani14202990
APA StyleWidodo, A., Huang, H.-T., Dewi, N. R., Chen, B.-Y., Wu, Y.-S., Hu, Y.-F., & Nan, F.-H. (2024). Comparative Effects of Crude Extracts and Bioactive Compounds from Bidens pilosa and Bidens alba on Nonspecific Immune Responses and Antibacterial Activity Against Vibrio sp. in Coculture with Lactic Acid Bacteria in Hybrid Grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Animals, 14(20), 2990. https://doi.org/10.3390/ani14202990