Scale-Dependent Habitat Nestedness and Its Implications for Anuran Conservation in the Chengdu Region: A Multi-Extent Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Amphibians Field Sampling
2.3. Indicative Environmental Variables
2.4. Nestedness Metrics
2.5. Explanatory Analyses
3. Results
3.1. Species Composition and Nested-Distribution Patterns of Anuran Amphibians
3.2. Relationships between Environmental Variables and Nestedness across Sampling Sizes and Regions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patterson, B.D.; Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. 1986, 28, 65–82. [Google Scholar] [CrossRef]
- Patterson, B.D. The principle of nested subsets and its implications for biological conservation. Conserv. Biol. 1987, 1, 323–334. [Google Scholar] [CrossRef]
- Blake, J.G. Nested subsets and the distribution of Birds on Isolated woodlots. Conserv. Biol. 1991, 5, 58–66. [Google Scholar] [CrossRef]
- Bolger, D.T.; Alberts, A.C.; Soulé, M.E. Occurrence patterns of bird species in habitat fragments: Sampling, extinction, and nested species subsets. Am. Nat. 1991, 137, 155–166. [Google Scholar] [CrossRef]
- Wright, D.H.; Patterson, B.D.; Mikkelson, G.M.; Cutler, A.; Atmar, W. A comparative analysis of nested subset patterns of species composition. Oecologia 1997, 113, 1–20. [Google Scholar] [CrossRef]
- Wang, Y.; Bao, Y.; Yu, M.; Xu, G.; Ding, P. BIODIVERSITY RESEARCH: Nestedness for different reasons: The distributions of birds, lizards and small mammals on islands of an inundated lake. Divers. Distrib. 2010, 16, 862–873. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, P.; Chen, S.; Zheng, G. Nestedness of bird assemblages on urban woodlots: Implications for conservation. Landsc. Urban Plan 2013, 111, 59–67. [Google Scholar] [CrossRef]
- Greve, M.; Gremmen, N.J.M.; Gaston, K.J.; Chown, S.L. Nestedness of Southern Ocean island biotas: Ecological perspectives on a biogeographical conundrum. J. Biogeogr. 2005, 32, 155–168. [Google Scholar] [CrossRef]
- Bloch, C.P.; Higgins, C.L.; Willig, M.R. Effects of large-scale disturbance on metacommunity structure of terrestrial gastropods: Temporal trends in nestedness. Oikos 2007, 116, 395–406. [Google Scholar] [CrossRef]
- Hill, J.K.; Gray, M.A.; Khen, C.V.; Benedick, S.; Tawatao, N.; Hamer, K.C. Ecological impacts of tropical forest fragmentation: How consistent are patterns in species richness and nestedness? Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3265–3276. [Google Scholar] [CrossRef]
- Larsen, S.; Ormerod, S.J. Combined effects of habitat modification on trait composition and species nestedness in river invertebrates. Biol. Conserv. 2010, 143, 2638–2646. [Google Scholar] [CrossRef]
- Thompson, L.R.; Sanders, J.G.; McDonald, D.; Amir, A.; Ladau, J.; Locey, K.J.; Prill, R.J.; Tripathi, A.; Gibbons, S.M.; Ackermann, G.; et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 2017, 551, 457–463. [Google Scholar] [CrossRef]
- Ladau, J.; Eloe-Fadrosh, E.A. Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol. 2019, 27, 662–669. [Google Scholar] [CrossRef]
- Liu, Z.; Müller, S. Bacterial community diversity dynamics highlight degrees of nestedness and turnover patterns. Cytom. Part A 2020, 97, 742–748. [Google Scholar] [CrossRef]
- Cook, R.R.; Angermeier, P.L.; Finn, D.S.; Poff, N.L.; Krueger, K.L. Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia. Oecologia 2004, 140, 639–649. [Google Scholar] [CrossRef]
- Heino, J.; Mykrä, H.; Muotka, T. Temporal variability of nestedness and idiosyncratic species in stream insect assemblages. Divers. Distrib. 2009, 15, 198–206. [Google Scholar] [CrossRef]
- Chen, C.; Zhan, C.; Wang, Y. Do functional and phylogenetic nestedness follow the same mechanisms as taxonomic nestedness? Evidence from amphibians in the largest archipelago of China. J. Anim. Ecol. 2022, 91, 2424–2436. [Google Scholar] [CrossRef]
- García-Quintas, A.; Isada, A.P. Effects of migrations on the nestedness structure of bird assemblages in cays of the Jardines de la Reina archipelago, Cuba. Anim. Biodivers. Conserv. 2014, 37, 127–139. [Google Scholar] [CrossRef]
- McAbendroth, L.; Foggo, A.; Rundle, S.D.; Bilton, D.T. Unravelling nestedness and spatial pattern in pond assemblages. J. Anim. Ecol. 2005, 74, 41–49. [Google Scholar] [CrossRef]
- Cook, R.R.; Quinn, J.F. The influence of colonization in nested species subsets. Oecologia 1995, 102, 413–424. [Google Scholar] [CrossRef]
- Fernández-Juricic, E. Can human disturbance promote nestedness? A case study with breeding birds in urban habitat fragments. Oecologia 2002, 131, 269–278. [Google Scholar] [CrossRef]
- Chase, J.M.; Knight, T.M. Scale-dependent effect sizes of ecological drivers on biodiversity: Why standardised sampling is not enough. Ecol. Lett. 2013, 16, 17–26. [Google Scholar] [CrossRef]
- Chase, J.M.; McGill, B.J.; McGlinn, D.J.; May, F.; Blowes, S.A.; Xiao, X.; Knight, T.M.; Purschke, O.; Gotelli, N.J. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 2018, 21, 1737–1751. [Google Scholar] [CrossRef]
- Turner, M.G.; Dale, V.H.; Gardner, R.H. Predicting across scales: Theory development and testing. Landsc. Ecol. 1989, 3, 245–252. [Google Scholar] [CrossRef]
- Wiens, J.A. Spatial scaling in ecology. Funct. Ecol. 1989, 3, 385–397. [Google Scholar] [CrossRef]
- Menegotto, A.; Dambros, C.S.; Netto, S.A. The scale-dependent effect of environmental filters on species turnover and nestedness in an estuarine benthic community. Ecology 2019, 100, e02721. [Google Scholar] [CrossRef]
- Azeria, E.T.; Kolasa, J. Nestedness, niche metrics and temporal dynamics of a metacommunity in a dynamic natural model system. Oikos 2008, 117, 1006–1019. [Google Scholar] [CrossRef]
- Drakare, S.; Lennon, J.J.; Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 2006, 9, 215–227. [Google Scholar] [CrossRef]
- McGill, B.J. Matters of scale. Science 2010, 328, 575–576. [Google Scholar] [CrossRef]
- Qin, B. City profile: Chengdu. Cities 2015, 43, 18–27. [Google Scholar] [CrossRef]
- Li, Y.; Zhan, J.; Zhang, F.; Zhang, M.; Chen, D. The study on ecological sustainable development in Chengdu. Phys. Chem. Earth 2017, 101, 112–120. [Google Scholar] [CrossRef]
- Sinsch, U. Migration and orientation in anuran amphibians. Ethol. Ecol. Evol. 1990, 2, 65–79. [Google Scholar] [CrossRef]
- Kovar, R.; Brabec, M.; Vita, R.; Bocek, R. Spring migration distances of some Central European amphibian species. Amphib. Reptil. 2009, 30, 367–378. [Google Scholar] [CrossRef]
- Aissat, L. Nestedness pattern and the influence of geographical factors on Algerian island breeding birds. Int. J. Environ. Stud. 2020, 77, 547–554. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, S. Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals. Sci. Rep. 2017, 7, 44305. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Jiang, J.; Nielsen, S.E.; He, F. Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Divers. Distrib. 2017, 23, 146–157. [Google Scholar] [CrossRef]
- Liao, Z.; Peng, S.; Chen, Y. Half-millennium evidence suggests that extinction debts of global vertebrates started in the Second Industrial Revolution. Commun. Biol. 2022, 5, 1311. [Google Scholar] [CrossRef]
- Almeida-Neto, M.; Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Modell. Softw. 2011, 26, 173–178. [Google Scholar] [CrossRef]
- Britton, N.; Neto, M.A.; Corso, G. Which matrices show perfect nestedness or the absence of nestedness? An analytical study on the performance of NODF and WNODF. Biomath 2015, 4, 1512171. [Google Scholar] [CrossRef]
- Felix, G.M.; Pinheiro, R.B.P.; Poulin, R.; Krasnov, B.R.; de Mello, M.A.R. The compound topology of a continent-wide interaction network explained by an integrative hypothesis of specialization. bioRxiv 2017. [Google Scholar] [CrossRef]
- Ulrich, W.; Gotelli, N.J. Null model analysis of species nestedness patterns. Ecology 2007, 88, 1824–1831. [Google Scholar] [CrossRef]
- Chen, Y. MBI: An R package for calculating multiple-site beta diversity indices. Comput. Ecol. Softw. 2013, 3, 26–32. [Google Scholar]
- Frick, W.F.; Hayes, J.P.; Heady III, P.A. Nestedness of desert bat assemblages: Species composition patterns in insular and terrestrial landscapes. Oecologia 2009, 158, 687–697. [Google Scholar] [CrossRef]
- Coleman, B.D.; Mares, M.A.; Willig, M.R.; Hsieh, Y.H. Randomness, area, and species richness. Ecology 1982, 63, 1121–1133. [Google Scholar] [CrossRef]
- Rodríguez, S.; Galán, P.; Martínez-Abraín, A. Nestedness patterns of Amphibian assemblages in Northwestern Iberia along an Altitudinal gradient: Implications for conservation. Herpetologica 2023, 79, 79–90. [Google Scholar] [CrossRef]
- Hecnar, S.J.; M’Closkey, R.T. Patterns of nestedness and species association in a pond-dwelling amphibian fauna. Oikos 1997, 80, 371–381. [Google Scholar] [CrossRef]
- Fu, H.; Yuan, G.; Jeppesen, E.; Ge, D.; Li, W.; Zou, D.; Huang, Z.; Wu, A.; Liu, Q. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 2019, 687, 206–217. [Google Scholar] [CrossRef]
- Almeida-Gomes, M.; Vieira, M.V.; Rocha, C.F.D.; Melo, A.S. Habitat amount drives the functional diversity and nestedness of anuran communities in an Atlantic Forest fragmented landscape. Biotropica 2019, 51, 874–884. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.P.; Ding, P. Nested species subsets of amphibians and reptiles in Thousand Island Lake. Zool. Res. 2012, 33, 439–446. [Google Scholar] [CrossRef]
- Yiming, L.; Niemelä, J.; Dianmo, L. Nested distribution of amphibians in the Zhoushan archipelago, China: Can selective extinction cause nested subsets of species? Oecologia 1998, 113, 557–564. [Google Scholar] [CrossRef]
- Calmé, S.; Desrochers, A. Nested bird and micro-habitat assemblages in a peatland archipelago. Oecologia 1999, 118, 361–370. [Google Scholar] [CrossRef]
- Dondina, O.; Orioli, V.; Tirozzi, P.; Bani, L. Long-term dynamic of nestedness in bird assemblages inhabiting fragmented landscapes. Landsc. Ecol. 2022, 37, 1543–1558. [Google Scholar] [CrossRef]
- Meyer, C.F.J.; Kalko, E.K.V. Bat assemblages on Neotropical land-bridge islands: Nested subsets and null model analyses of species co-occurrence patterns. Divers. Distrib. 2008, 14, 644–654. [Google Scholar] [CrossRef]
- Wang, P.; Sui, J.; Ding, X.; Wang, W.; Cao, X.; Zhao, H.; Wang, Y. Nested distribution patterns of bird assemblages and their influencing factors in Zhengzhou urban parks. Biodivers. Sci. 2024, 32, 23359. [Google Scholar] [CrossRef]
- Dardanelli, S.; Bellis, L.M. Nestedness structure of bird assemblages in a fragmented forest in Central Argentina: The role of selective extinction and colonization processes. Anim. Biodivers. Conserv. 2021, 44, 17–29. [Google Scholar] [CrossRef]
- Provete, D.B.; Gonçalves-Souza, T.; Garey, M.V.; Martins, I.A.; Rossa-Feres, D.D.C. Broad-scale spatial patterns of canopy cover and pond morphology affect the structure of a Neotropical amphibian metacommunity. Hydrobiologia 2014, 734, 69–79. [Google Scholar] [CrossRef]
- Cushman, S.A. Effects of habitat loss and fragmentation on amphibians: A review and prospectus. Biol. Conserv. 2006, 128, 231–240. [Google Scholar] [CrossRef]
- Chen, S.; Wang, Y. Nestedness pattern of insular community assemblages and its applications. Chin. J. Ecol. 2004, 23, 81–87. [Google Scholar] [CrossRef]
- Moore, J.E.; Swihart, R.K. Toward ecologically explicit null models of nestedness. Oecologia 2007, 152, 763–777. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Han, X.; Zhang, X.; Millien, V.; Wang, Y. Nestedness of butterfly assemblages in the Zhoushan Archipelago, China: Area effects, life-history traits and conservation implications. Biodivers. Conserv. 2017, 26, 1375–1392. [Google Scholar] [CrossRef]
- Gooriah, L.D.; Chase, J.M. Sampling effects drive the species–area relationship in lake zooplankton. Oikos 2020, 129, 124–132. [Google Scholar] [CrossRef]
- Gooriah, L.; Blowes, S.A.; Sagouis, A.; Schrader, J.; Karger, D.N.; Kreft, H.; Chase, J.M. Synthesis reveals that island species–area relationships emerge from processes beyond passive sampling. Glob. Ecol. Biogeogr. 2021, 30, 2119–2131. [Google Scholar] [CrossRef]
- Fleishman, E.; Murphy, D.D. Patterns and processes of nestedness in a Great Basin butterfly community. Oecologia 1999, 119, 133–139. [Google Scholar] [CrossRef]
- Bevilacqua, S.; Terlizzi, A. Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-diversity at varying depth in marine benthos. Divers. Distrib. 2020, 26, 743–757. [Google Scholar] [CrossRef]
- Hutchens, S.J.; DePerno, C.S. Efficacy of sampling techniques for determining species richness estimates of reptiles and amphibians. Wildl. Biol. 2009, 15, 113–122. [Google Scholar] [CrossRef]
Hypothesis | Definition | Main References |
---|---|---|
The selective extinction hypothesis | Species with large minimum area requirement will extinct first and the selective extinction of species will lead to nestedness. | [5,34] |
The selective colonization hypothesis | Species or populations are able to selectively colonize and reproduce in specific environments, emphasizing that species are adaptive and selective to their environments, and that species with greater dispersal capabilities are able to preferentially occupy more sites for survival. | [18] |
The passive sampling hypothesis | The possibility of sampling more the more abundant species. | [19] |
Habitat nestedness hypothesis | The nested nature of species distributions may be due to the preference of different species for specific habitat conditions. | [20] |
Human disturbance | In a fragmented landscape, with different levels of human disturbance and with species having different tolerance to disturbance, extinction would increase and colonization would decrease in highly disturbed fragments. These processes are expected to decrease the size of species subsets with increasing disturbance, giving rise to a nested pattern. | [21] |
Nestedness Analyses of Species Abundance | Anurans (Sample-Site) | Anurans (Sample-Region) | |||||||
---|---|---|---|---|---|---|---|---|---|
Observed | Expected | p | Observed | Expected | p | ||||
NODF | 54.77 | 17.22 | <0.001 | 66.92 | 26.99 | <0.001 | |||
NODFc | 58.18 | 12.03 | <0.001 | 82.24 | 15.49 | <0.001 | |||
NODFr | 47.6 | 13.7 | <0.001 | 69.82 | 24.82 | <0.001 | |||
WNODF | 28.85 | 54.43 | <0.001 | 37.31 | 57.64 | <0.001 | |||
WNODFc | 33.32 | 41.59 | <0.001 | 49.49 | 50.26 | <0.001 | |||
WNODFr | 19.43 | 45.72 | <0.001 | 39.61 | 56.24 | <0.001 | |||
Nestedness Analyses of Habitat | Habitat in Sample-Site (1 km) | Habitat in Sample-Site (2 km) | Habitat in Sample-Site (5 km) | ||||||
Observed | Expected | p | Observed | Expected | p | Observed | Expected | p | |
NODF | 80.74 | 79.20 | <0.001 | 83.44 | 83.13 | 0.22 | 72.86 | 73.34 | 0.988 |
NODFc | 81.09 | 80.06 | <0.001 | 82.22 | 82.21 | 0.52 | 72.65 | 72.84 | 0.842 |
NODFr | 79.88 | 77.37 | <0.001 | 86.03 | 85.08 | 0.12 | 73.31 | 74.40 | 0.999 |
Habitat in Regional Scale (1 km) | Habitat in Regional Scale (2 km) | Habitat in Regional Scale (5 km) | |||||||
Observed | Expected | p | Observed | Expected | p | Observed | Expected | p | |
NODF | 73.55 | 78.75 | <0.001 | 78.28 | 73.72 | <0.001 | 60.69 | 60.91 | 0.76 |
NODFc | 84.09 | 86.48 | <0.001 | 86.86 | 81.99 | <0.001 | 78.66 | 78.57 | 0.39 |
NODFr | 69.44 | 76.95 | <0.001 | 75.64 | 71.79 | <0.001 | 56.50 | 56.79 | 0.86 |
Sample-Sites | Sample-Regions | |||||||
---|---|---|---|---|---|---|---|---|
MNODF | MLCN | MNODF | MLCN | |||||
Coefficient | p | Coefficient | p | Coefficient | p | Coefficient | p | |
Area 1 km | 0.291 | 0.179 | 0.174 | 0.428 | −0.619 | 0.102 | −0.31 | 0.456 |
Area 2 km | 0.287 | 0.201 | 0.201 | 0.357 | −0.333 | 0.42 | −0.357 | 0.385 |
Area 5 km | 0.349 | 0.103 | 0.185 | 0.398 | −0.333 | 0.42 | −0.167 | 0.693 |
PROX 1 km | −0.2 | 0.361 | −0.296 | 0.17 | −0.548 | 0.16 | −0.571 | 0.139 |
PROX 2 km | −0.231 | 0.288 | −0.296 | 0.17 | −0.548 | 0.16 | −0.571 | 0.139 |
PROX 5 km | −0.208 | 0.34 | −0.321 | 0.135 | −0.548 | 0.16 | −0.571 | 0.139 |
CONC 1 km | −0.35 | 0.102 | 0.02 | 0.929 | 0.619 | 0.102 | 0.31 | 0.456 |
CONC 2 km | −0.357 | 0.095 | 0.013 | 0.955 | 0.452 | 0.26 | 0.19 | 0.651 |
CONC 5 km | −0.336 | 0.117 | −0.007 | 0.975 | −0.333 | 0.42 | 0.167 | 0.693 |
CONN 1 km | −0.277 | 0.201 | −0.467 | 0.025 | −0.214 | 0.61 | −0.405 | 0.32 |
CONN 2 km | −0.264 | 0.224 | −0.454 | 0.029 | −0.5 | 0.207 | −0.405 | 0.32 |
CONN 5 km | −0.246 | 0.258 | −0.49 | 0.018 | −0.571 | 0.139 | −0.143 | 0.736 |
DCC | 0.138 | 0.529 | 0.076 | 0.729 | −0.333 | 0.42 | 0.095 | 0.823 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Liu, X.; Chen, Y. Scale-Dependent Habitat Nestedness and Its Implications for Anuran Conservation in the Chengdu Region: A Multi-Extent Analysis. Animals 2024, 14, 2931. https://doi.org/10.3390/ani14202931
Shi X, Liu X, Chen Y. Scale-Dependent Habitat Nestedness and Its Implications for Anuran Conservation in the Chengdu Region: A Multi-Extent Analysis. Animals. 2024; 14(20):2931. https://doi.org/10.3390/ani14202931
Chicago/Turabian StyleShi, Xiaoqin, Xiaoke Liu, and Youhua Chen. 2024. "Scale-Dependent Habitat Nestedness and Its Implications for Anuran Conservation in the Chengdu Region: A Multi-Extent Analysis" Animals 14, no. 20: 2931. https://doi.org/10.3390/ani14202931
APA StyleShi, X., Liu, X., & Chen, Y. (2024). Scale-Dependent Habitat Nestedness and Its Implications for Anuran Conservation in the Chengdu Region: A Multi-Extent Analysis. Animals, 14(20), 2931. https://doi.org/10.3390/ani14202931