Fermentation of Plant-Based Feeds with Lactobacillus acidophilus Improves the Survival and Intestinal Health of Juvenile Nile Tilapia (Oreochromis niloticus) Reared in a Biofloc System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Selection of Microorganisms and Their Purity
2.3. Experimental Feeds
2.4. Characterization of Fermented Feed
2.5. Animals and Facilities
2.6. BFT System Maintenance
2.7. Water Quality
2.8. Fish Performance
2.9. Intestinal Microorganism Count
2.10. Intestinal Histomorphometry
2.11. Biochemical Analyses
2.12. Statistical Analyses
3. Results
3.1. Characterization of the Fermented Feed
3.2. Leaching Rate and Shelf Life
3.3. Microorganism Count in the Water
3.4. Fish Performance
3.5. Intestinal Microorganism Count
3.6. Intestinal Histomorphometry
3.7. Intestinal Enzymatic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture—Towards Blue Transformation; World Health Organization: Rome, Italy, 2022; p. 266. [Google Scholar] [CrossRef]
- Luthada-Raswiswi, R.; Mukaratirwa, S.; O’brien, G. Animal protein sources as a substitute for fishmeal in aquaculture diets: A systematic review and meta-analysis. Appl. Sci. 2021, 11, 3854. [Google Scholar] [CrossRef]
- Jannathulla, R.; Rajaram, V.; Kalanjiam, R.; Ambasankar, K.; Muralidhar, M.; Dayal, J.S. Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res. 2019, 50, 3493–3506. [Google Scholar] [CrossRef]
- Li, B.; Su, L.; Sun, Y.; Huang, H.; Deng, J.; Cao, Z. Evaluation of cottonseed meal as an alternative to fish meal in diet for juvenile asian red-tailed catfish Hemibagrus wyckioides. Aquac. Nutr. 2023, 2023, 1741724. [Google Scholar] [CrossRef] [PubMed]
- Macusi, E.D.; Cayacay, M.A.; Borazon, E.Q.; Sales, A.C.; Habib, A.; Fadli, N.; Santos, M.D. Protein fishmeal replacement in aquaculture: A systematic review and implications on growth and adoption viability. Sustainability 2023, 15, 12500. [Google Scholar] [CrossRef]
- Mugwanya, M.; Dawood, M.A.O.; Kimera, F.; Sewilam, H. Replacement of fish meal with fermented plant proteins in the aquafeed industry: A systematic review and meta-analysis. Rev. Aquac. 2023, 15, 62–88. [Google Scholar] [CrossRef]
- Agboola, J.O.; Chikwati, E.M.; Hansen, J.Ø.; Kortner, T.M.; Mydland, L.T.; Krogdahl, Å.; Djordjevic, B.; Schrama, J.W.; Øverland, M. A meta-analysis to determine factors associated with the severity of enteritis in Atlantic salmon (Salmo salar) fed soybean meal-based diets. Aquaculture 2022, 555, 738214. [Google Scholar] [CrossRef]
- Daniel, N. A review on replacing fish meal in aqua feeds using plant protein sources. Int. J. Fish. Aquat. Stud. 2018, 6, 164–179. [Google Scholar]
- Bonaldo, A.; Di Marco, P.; Petochi, T.; Marino, G.; Parma, L.; Fontanillas, R.; Koppe, W.; Mongile, F.; Finoia, M.G.; Gatta, P.P. Feeding turbot juveniles Psetta maxima L. with increasing dietary plant protein levels affects growth performance and fish welfare. Aquac. Nutr. 2015, 21, 401–413. [Google Scholar] [CrossRef]
- Lin, S.; Luo, L. Effects of different levels of soybean meal inclusion in replacement for fish meal on growth, digestive enzymes and transaminase activities in practical diets for juvenile tilapia, Oreochromis niloticus × O. aureus. Anim. Feed Sci. Technol. 2011, 168, 80–87. [Google Scholar] [CrossRef]
- Goda, A.M.; El-Haroun, E.R.; Chowdhury, K. Effect of totally or partially replacing fish meal by alternative protein sources on growth of African catfish Clarias gariepinus (Burchell, 1822) reared in concrete tanks. Aquac. Res. 2007, 38, 279–287. [Google Scholar] [CrossRef]
- He, M.; Li, X.; Poolsawat, L.; Guo, Z.; Yao, W.; Zhang, C.; Leng, X. Effects of fish meal replaced by fermented soybean meal on growth performance, intestinal histology and microbiota of largemouth bass (Micropterus salmoides). Aquac. Nutr. 2020, 26, 1058–1071. [Google Scholar] [CrossRef]
- He, M.; Yu, Y.; Li, X.; Poolsawat, L.; Yang, P.; Bian, Y.; Guo, Z.; Leng, X. An evaluation of replacing fish meal with fermented soybean meal in the diets of largemouth bass (Micropterus salmoides): Growth, nutrition utilization and intestinal histology. Aquac. Res. 2020, 51, 4302–4314. [Google Scholar] [CrossRef]
- Rahimnejad, S.; Zhang, J.-J.; Wang, L.; Sun, Y.; Zhang, C. Evaluation of Bacillus pumillus SE5 fermented soybean meal as a fish meal replacer in spotted seabass (Lateolabrax maculatus) feed. Aquaculture 2021, 531, 735975. [Google Scholar] [CrossRef]
- Prabu, E.; Rajagopalsamy, C.B.T.; Ahilan, B.; Santhakumar, R.; Jeevagan, J.M.; Renuhadevi, M. An overview of anti-nutritional factors in fish feed ingredients and their effects in fish. J. Aquacul. Trop. 2017, 32, 149–167. [Google Scholar]
- Desai, A.R.; Links, M.G.; Collins, S.A.; Mansfield, G.S.; Drew, M.D.; Kessel, A.G.V.; Hill, J.E. Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture 2012, 350, 134–142. [Google Scholar] [CrossRef]
- Abedin, M.M.; Chourasia, R.; Phukon, L.C.; Sarkar, P.; Ray, R.C.; Singh, S.P.; Rai, A.K. Lactic acid bacteria in the functional food industry: Biotechnological properties and potential applications. Crit. Rev. Food Sci. Nutr. 2023, 5, 1–19. [Google Scholar] [CrossRef]
- Mukherjee, R.; Chakraborty, R.; Dutta, A. Role of fermentation in improving nutritional quality of soybean meal—A review. Asian-Australas. Anim. Sci. 2016, 29, 1523–1529. [Google Scholar] [CrossRef]
- Chen, J.N.; Huang, X.H.; Zheng, J.; Sun, Y.H.; Dong, X.P.; Zhou, D.Y.; Zhu, B.W.; Qin, L. Comprehensive metabolomic and lipidomic profiling of the seasonal variation of blue mussels (Mytilus edulis L.): Free amino acids, 5′-nucleotides, and lipids. LWT 2021, 149, 111835. [Google Scholar] [CrossRef]
- Ojokoh, A.O.; Yimin, W. Effect of fermentation on chemical composition and nutritional quality of extruded and fermented soya products. Int. J. Food Eng. 2011, 7, 2011. [Google Scholar] [CrossRef]
- Kesarcodi-Watson, A.; Kaspar, H.; Lategan, M.J.; Gibson, L. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture 2008, 274, 1–14. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Yousefi, S.; Doan, H.V.; Ashouri, G.; Gioacchini, G.; Maradonna, F.; Carnevali, O. Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and symbiotic. Rev. Fish. Sci. Aquac. 2020, 29, 198–217. [Google Scholar] [CrossRef]
- Reddy, G.; Altaf, M.; Naveena, B.J.; Venkateshwar, M.; Kumar, E.V. Amylolytic bacterial lactic acid fermentation—A review. Biotechnol. Adv. 2008, 26, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Food Safety Aspects of Cell-Based Food; World Health Organization: Rome, Italy, 2023; p. 146. [Google Scholar] [CrossRef]
- Leeuwendaal, N.K.; Stanton, C.; O’Toole, P.W.; Beresford, T.P. Fermented foods, health and the gut microbiome. Nutrients 2022, 14, 1527. [Google Scholar] [CrossRef]
- Hayek, S.A.; Ibrahim, S.A. Current limitations and challenges with lactic acid bacteria: A review. Food Nutr. Sci. 2013, 4, 73–87. [Google Scholar] [CrossRef]
- Anjum, N.; Maqsood, S.; Masud, T.; Ahmad, A.; Sohail, A.; Momin, A. Lactobacillus acidophilus: Characterization of the species and application in food production. Crit. Rev. Food Sci. Nutr. 2014, 54, 1241–1251. [Google Scholar] [CrossRef]
- Nayak, S.K. Probiotics and immunity: A fish perspective. Fish Shellfish Immunol. 2010, 29, 2–14. [Google Scholar] [CrossRef]
- Kos, B.; Beganović, J.; Pavunc, A.L.; Habjanič, S.M.; Šušković, J. Antimicrobial activity–the most important property of probiotic and starter lactic acid bacteria. Food Technol. Biotechnol. 2010, 48, 296–307. [Google Scholar]
- Choi, D.G.; He, M.; Fang, H.; Wang, X.L.; Li, X.Q.; Leng, X.J. Replacement of fish meal with two fermented soybean meals in diets for rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2020, 26, 37–46. [Google Scholar] [CrossRef]
- Xu, C.; Liu, W.; Zhang, D.; Liu, J.; Zheng, X.; Zhang, C.; Yao, J.; Zhu, C.; Chi, C. Effects of partial fish meal replacement with two fermented soybean meals on the growth of and protein metabolism in the Chinese mitten crab (Eriocheir sinensis). Aquac. Rep. 2020, 17, 100328. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B.; Zhou, H.; Wang, X.; Xionge, P.; Wang, X.; Mai, K.; He, G. Beneficial influences of dietary Aspergillus awamori fermented soybean meal on oxidative homoeostasis and inflammatory response in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2019, 93, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhao, P.-F.; Lin, S.-M.; Tang, R.-J.; Chen, Y.-J.; Luo, L. Partial substitution of soybean meal with fermented soybean residue in diets for juvenile largemouth bass, Micropterus salmoides. Aquac. Nutr. 2018, 24, 1213–1222. [Google Scholar] [CrossRef]
- Da Cunha, L.; Besen, K.P.; De Oliveira, N.S.; Delziovo, F.R.; Gomes, R.; Da Cruz, J.M.; Picoli, F.; Gisbert, E.; Skoronski, E.; Fabregat, T.E.H.P. Fermented soybean meal can partially replace fishmeal and improve the intestinal condition of goldfish juveniles reared in a biofloc system. Aquac. Res. 2022, 53, 6803–6815. [Google Scholar] [CrossRef]
- Li, C.; Zhang, B.; Liu, C.; Zhou, H.; Wang, X.; Mai, K.; He, G. Effects of dietary raw or Enterococcus faecium fermented soybean meal on growth, antioxidant status, intestinal microbiota, morphology, and inflammatory responses in turbot (Scophthalmus maximus L.). Fish Shellfish Immunol. 2020, 100, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Ismail, T.; Hegazi, E.; Nassef, E.; El-Din, M.T.S.; Dawood, M.A.O.; Abdo, S.E.; Gewaily, M.S. Gut immune-related gene expression, histomorphometry and hematoimmunological assays in Nile tilapia (Oreochromis niloticus) fed Aspergillus oryzae fermented olive cake. Fish Shellfish Immunol. 2021, 117, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Shiu, Y.-L.; Hsieh, S.-L.; Guei, W.-C.; Tsai, Y.-T.; Chiu, C.-H.; Liu, C.-H. Using Bacillus subtilis E20-fermented soybean meal as replacement for fish meal in the diet of orange spotted grouper (Epinephelus coioides, Hamilton). Aquac. Res. 2015, 46, 1403–1416. [Google Scholar] [CrossRef]
- Picoli, F.; de Oliveira Marques, S.; De Oliveira, A.D.; Nunes, C.G.; Serafini, S.; Klein, B.; De Oliveira, N.S.; Dos Santos, N.N.O.; Zampar, A.; de Alcantara Lopes, D.L.; et al. Mixed culture microorganisms fermented soybean meal improves productive performance and intestinal health of Nile tilapia (Oreochromis niloticus) juveniles fed plant-based diets in a biofloc system. Aquac. Res. 2022, 53, 4233–4245. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Soltan, M.A.; Abdel-Moez, A.M. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Technol. 2015, 201, 89–98. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. Tilapia Culture, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019; p. 358. [Google Scholar]
- Yu, Y.-B.; Choi, J.-H.; Lee, J.-H.; Jo, A.-H.; Lee, K.M.; Kim, J.-H. Biofloc technology in fish aquaculture: A review. Antioxidants 2023, 12, 398. [Google Scholar] [CrossRef]
- Azim, M.E.; Little, D.C. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 2008, 283, 29–35. [Google Scholar] [CrossRef]
- Hargreaves, J.A. Biofloc Production Systems for Aquaculture; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2013; Volume 4503, pp. 1–11. [Google Scholar]
- Avnimelech, Y.; De-Schryver, P.; Emmereciano, M.; Kuhn, D.; Ray, A.; Taw, N. Biofloc Technology. A Practical Guidebook, 3rd ed.; The World Aquaculture Society: Baton Rouge, LA, USA, 2009; p. 182. [Google Scholar]
- Santaella, S.T.; do Socorro Vale, M.; Almeida, C.C.; de Araújo Cavalcante, W.; Nunes, A.J.P.; De Sousa, O.V.; De Carvalho, F.C.T.; Leitão, R.C. Biofloc production in activated sludge system treating shrimp farming effluent. Eng. Sanit. Ambient. 2018, 23, 1143–1152. [Google Scholar] [CrossRef]
- Jamal, M.T.; Broom, M.; Al-Mur, B.A.; Al-Harbi, M.; Ghandourah, M.; Al-Otaibi, A.; Haque, M.F. Biofloc technology: Emerging microbial biotechnology for the improvement of aquaculture productivity. Pol. J. Microbiol. 2020, 69, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Cardona, E.; Gueguen, Y.; Magré, K.; Lorgeoux, B.; Piquemal, D.; Pierrat, F.; Noguier, F.; Saulnier, D. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiol. 2016, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Avnimelech, Y. Bio-filters: The need for an new comprehensive approach. Aquac. Eng. 2008, 34, 172–178. [Google Scholar] [CrossRef]
- Miao, S.; Mills, S.; Stanton, C.; Fitzgerald, G.F.; Roos, Y.; Ross, R.P. Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Sci. Technol. 2008, 88, 19–30. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; Drunkler, D.A. Microencapsulação de Lactobacillus acidophilus: Curva de crescimento e influência da ativação da cultura sobre a viabilidade celular. In Proceedings of the XII Latin American Congress on Food Microbiology and Hygiene, Blucher Food Science Proceedings, São Paulo, Brazil, 12–15 October 2014; Blucher: São Paulo, Brazil, 2014; Volume 1, pp. 591–592. [Google Scholar] [CrossRef]
- Hafedh, Y.S.A. Effects of dietary protein on growth and body composition of Nile tilapia, Oreochromis niloticus L. Aquac. Res. 1999, 30, 385–393. [Google Scholar] [CrossRef]
- El-Saidy, D.M.S.D.; Gaber, M.M.A. Complete replacement of fish meal by soybean meal with dietary L-lysine supplementation for Nile tilapia Oreochromis niloticus (L.) fingerlings. J. World Aquac. Soc. 2002, 33, 297–306. [Google Scholar] [CrossRef]
- Santiago, C.B.; Lovell, R.T. Amino acid requirements for growth of Nile tilapia. J. Nutr. 1988, 118, 1540–1546. [Google Scholar] [CrossRef]
- Azarm, H.M.; Lee, S.M. Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream Acanthopagrus schlegeli. Aquac. Res. 2014, 45, 994–1003. [Google Scholar] [CrossRef]
- Parapouli, M.; Vasileiadis, A.; Afendra, A.-S.; Hatziloukas, E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020, 6, 1–31. [Google Scholar] [CrossRef]
- Cavalcante, R.B.; Telli, G.S.; Tachibana, L.; de Carla Dias, D.; Oshiro, E.; Natori, M.M.; Da Silva, W.F.; Ranzani-Paiva, M.J. Probiotics, prebiotics and synbiotics for Nile tilapia: Growth performance and protection against Aeromonas hydrophila infection. Aquac. Rep. 2020, 17, 10034. [Google Scholar] [CrossRef]
- Bomfim, V.B. Produção e Extração de Exopolissacarídeos de Cepas de Lactobacillus spp. Potencialmente Probióticas. Master’s Thesis, Universidade Federal de Paraíba, João Pessoa, Paraíba, Brazil, 2019. Available online: https://repositorio.ufpb.br/jspui/handle/123456789/18556 (accessed on 27 September 2019).
- Kaktcham, P.M.; Temgoua, J.-B.; Zambou, F.N.; Diaz-Ruiz, G.; Wacher, C.; de Lourdes Pérez-Chabela, M. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria. World J Microbiol Biotechnol. 2017, 33, 32. [Google Scholar] [CrossRef] [PubMed]
- Zenebon, O.; Pascuet, N.S.; Tiglea, P. Métodos Físico-Químicos Para Análises de Alimentos, 1st ed.; Instituto Adolfo Lutz: São Paulo, Brazil, 2008; p. 1020. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis. In The Association of Official Analytical Chemists, 17th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- White, J.; Hart, R.; Fry, J. An evaluation of the waters pico-tag system for the amino-acid-analysis of food materials. J. Automat. Chem. 1986, 8, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Lucas, B.; Sotelo, A. Effect of different alkalies, temperature and hydrolysis times on tryptophan determination of pure proteins and of food. Anal. Biochem. 1980, 109, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yu, E.; Xie, J.; Yu, D.; Li, Z.; Luo, W.; Qiu, L.; Zheng, Z. Effect of C/N ratio on water quality in zero-water exchange tanks and the biofloc supplementation in feed on the growth performance of crucian carp, Carassius auratus. Aquaculture 2015, 443, 98–104. [Google Scholar] [CrossRef]
- Widanarni, W.; Wahjuningrum, D.; Puspita, F. Aplikasi bakteri probiotik melalui pakan buatan untuk meningkatkan kinerja pertumbuhan udang windu (Penaeus monodon). J. Sains Terap. 2012, 2, 19–29. [Google Scholar] [CrossRef]
- De Schryver, P.; Crab, R.; Defoirdt, T.; Boon, N.; Verstraete, W. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture 2008, 277, 125–137. [Google Scholar] [CrossRef]
- Gaona, C.A.P.; da Paz Serra, F.; Furtado, P.S.; Poersch, L.H.; Wasielesky, W., Jr. Effect of different total suspended solids concentrations on the growth performance of Litopenaeus vannamei in a BFT system. Aquac. Eng. 2016, 72, 65–69. [Google Scholar] [CrossRef]
- Deswati, D.; Safni, S.; Khairiyah, K.; Yani, E.; Yusuf, Y.; Pardi, H. Biofloc technology: Water quality (pH, temperature, DO, COD, BOD) in a flood & drain aquaponic system. Int. J. Environ. Anal. Chem. 2022, 102, 6835–6844. [Google Scholar] [CrossRef]
- Silva, V.F. Produção Integrada de Camarão-Branco-do-Pacífico e Tilápia-do-Nilo em Bioflocos Suplementados ou não com Microalga e Ração Para Peixes. Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil, 2020. Available online: https://repositorio.ufsc.br/bitstream/handle/123456789/219378/PAQI0602-D.pdf?sequence=-1&isAllowed=y (accessed on 14 January 2021).
- De Mello, H.; Moraes, J.R.E.; Niza, I.G.; De Moraes, F.R.; Ozório, R.O.A.; Shimada, M.T.; Engracia Filho, J.R.; Claudiano, G.S. Efeitos benéficos de probióticos no intestino de juvenis de tilápia-do-Nilo. Pesq. Vet. Bras. 2013, 33, 724–730. [Google Scholar] [CrossRef]
- García-Careño, F.L.; Haard, N.F. Characterization of proteinase classes in lanostilla (Pleuroncodes planipes) and crayfish (Pacifastacus astacus) extracts. J. Food Biochem. 1993, 17, 97–113. [Google Scholar] [CrossRef]
- Métais, P.; Bieth, J. Détermination de l’a-amylase. Ann. Biol. Clin. 1968, 26, 133–142. [Google Scholar]
- Rick, W.; Stegbauer, H.P. Alpha-Amylase: Measurement of reducing groups. In Methods of Enzymatic Analysis, 2nd ed.; Bergermeyer, H.U., Gawehn, K., Eds.; Academic Press: New York, NY, USA, 1974; Volume 2, pp. 885–915. [Google Scholar] [CrossRef]
- Brabcová, J.; Prchalová, D.; Demianová, Z.; Bučánková, A.; Vogel, H.; Valterová, I.; Pichová, I.; Zarevúcka, M. Characterization of neutral lipase BT-1 isolated from the labial gland of Bombus terrestris males. PLoS ONE 2013, 8, e80066. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase. In Methods in Enzymatic Analysis; Bergmeyer, H.V., Ed.; Academic Press Inc.: New York, NY, USA, 1974; pp. 674–684. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jacoby, W.B. Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Carlberg, I.; Mannervik, B. Purification and characterization of the flavoenzyme glucathione reductase from rat liver. J. Biol. Chem. 1975, 250, 5475–5480. [Google Scholar] [CrossRef]
- Mccord, J.M.; Fridovich, I. Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 1969, 244, 6049–6055. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism characteristics of lactic acid bacteria and the expanding applications in food industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Dulf, E.-H.; Vodnar, D.C.; Danku, A.; Martău, A.G.; Teleky, B.-E.; Dulf, F.V.; Ramadan, M.F.; Crisan, O. Mathematical modeling and optimization of Lactobacillus species single and co-culture fermentation processes in wheat and soy dough mixtures. Front. Bioeng. Biotechnol. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- De Oliveira, N.S.; Ha, N.; Da Cunha, L.; Cipriani, L.A.; Thaler Neto, A.; Skoronski, E.; Gisbert, E.; Fabregat, T.E.H.P. Fermentation of soybean meal with lactobacillus acidophilus allows greater inclusion of vegetable protein in the diet and can reduce vibrionacea in the intestine of the South American Catfish (Rhamdia quelen). Animals 2022, 12, 690. [Google Scholar] [CrossRef]
- Degeest, B.; Vaningelgem, F.; De Vuyst, L. Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria. Int. Dairy J. 2001, 11, 747–757. [Google Scholar] [CrossRef]
- Clark, E.D.B. Protein refolding for industrial processes. Curr. Opin. Biotechnol. 2001, 12, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Ma, H.; He, R.; Huang, L.; Zhu, S.; Ding, Q.; Luo, L. Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. LWT 2017, 86, 1–7. [Google Scholar] [CrossRef]
- Deza, M.A.C.; De Olmos, A.R.; Garro, M.S. Solid state fermentation to obtain vegetable products bio-enriched with isoflavone aglycones using lactic cultures. Rev. Argent. Microbiol. 2019, 51, 201–207. [Google Scholar] [CrossRef]
- Venegas-Ortega, M.G.; Flores-Gallegos, A.C.; Martínez-Hernández, J.L.; Aguilar, C.N.; Nevárez-Moorillón, G.V. Production of bioactive peptides from lactic acid bacteria: A sustainable approach for healthier foods. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1039–1051. [Google Scholar] [CrossRef]
- De Jesus, C.S.A.; Ruth, V.G.E.; Daniel, S.F.R.; Sharma, A. Biotechnological alternatives for the utilization of dairy industry waste products. Adv. Biosci. Biotechnol. 2015, 6, 223. [Google Scholar] [CrossRef]
- Asri, N.M.; Muhialdin, B.J.; Zarei, M.; Saari, N. Low molecular weight peptides generated from palm kernel cake via solid state lacto-fermentation extend the shelf life of bread. LWT 2020, 134, 110206. [Google Scholar] [CrossRef]
- Yang, A.; Zuo, L.; Cheng, Y.; Wu, Z.; Li, X.; Tong, P.; Chen, H. Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms. Food Funct. 2018, 9, 1899–1909. [Google Scholar] [CrossRef]
- Frias, J.; Song, Y.S.; Martínez-Villaluenga, C.; De Mejia, E.G.; Vidal-Valverde, C. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. 2008, 56, 99–105. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C.; Zdolec, N. Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods. BioMed Res. Int. 2018, 2018, 9361614. [Google Scholar] [CrossRef]
- Elayaraja, S.; Annamalai, N.; Mayavu, P.; Balasubramanian, T. Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pac. J. Trop. Biomed. 2014, 4, S305–S311. [Google Scholar] [CrossRef] [PubMed]
- Corbo, M.R.; Bevilacqua, A.; Campaniello, D.; D’amato, D.; Speranza, B.; Sinigaglia, M. Prolonging microbial shelf life of foods through the use of natural compounds and non-thermal approaches—A review. Int. J. Food Sci. Technol. 2009, 44, 223–241. [Google Scholar] [CrossRef]
- Shi, C.; Knøchel, S. Susceptibility of dairy associated molds towards microbial metabolites with focus on the response to diacetyl. Food Control 2021, 121, 107573. [Google Scholar] [CrossRef]
- Mohammadi, G.; Adorian, T.J.; Rafiee, G. Beneficial effects of Bacillus subtilis on water quality, growth, immune responses, endotoxemia and protection against lipopolysaccharide-induced damages in Oreochromis niloticus under biofloc technology system. Aquac. Nutr. 2020, 26, 1476–1492. [Google Scholar] [CrossRef]
- Alp, D.; Kuleaşan, H. Determination of competition and adhesion abilities of lactic acid bacteria against gut pathogens in a whole-tissue model. Biosci. Microbiota Food Health 2020, 39, 250–258. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Abakari, G.; Tan, H.; Wenchang, L.I.U.; Luo, G. Effects of different probiotics (Bacillus subtilis) addition strategies on a culture of Litopenaeus vannamei in biofloc technology (BFT) aquaculture system. Aquaculture 2023, 566, 739216. [Google Scholar] [CrossRef]
- Song, X.; Ye, H.; Jin, F.; Li, H.; Kim, Y.-S.; Xiao, J.; Guo, Z. Effects of fermented soybean meal and guanosine 5’-monophosphate on growth, intestinal health and anti-stress capability of Penaeus vannamei in low fish meal diet. Aquaculture 2022, 548, 737591. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; He, R.; Xu, W.; Mai, K.; He, G. Effects of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture 2016, 464, 87–94. [Google Scholar] [CrossRef]
- Plaipetch, P.; Yakupitiyage, A. Effect of replacing soybean meal with yeast-fermented canola meal on growth and nutrient retention of Nile tilapia, Oreochromis niloticus (Linnaeus 1758). Aquac. Res. 2014, 45, 1744–1753. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, P.; Kong, Q.; Deng, Y.; Zhang, W.; Xu, G.; Tang, H. Effects of co-fermented feed using Lactobacillus acidophilus, Limosilactobacillus reuteri and Lactiplantibacillus plantarum on growth, antioxidant capacity, fatty acids and gut microbiota of largemouth bass (Micropterus salmoides). Fishes 2023, 8, 433. [Google Scholar] [CrossRef]
- Ringø, E.; Van Doan, H.; Lee, S.H.; Soltani, M.; Hoseinifar, S.H.; Harikrishnan, R.; Song, S.K. Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. J. Appl. Microbiol. 2020, 129, 116–136. [Google Scholar] [CrossRef] [PubMed]
- Wuertz, S.; Schroeder, A.; Wanka, K.M. Probiotics in fish nutrition—Long-standing household remedy or native nutraceuticals? Water 2021, 13, 1348. [Google Scholar] [CrossRef]
- Duc, P.M.; Tu, T.L.C.; Ahn, C.T.; Tuan, T.N.; Onoda, S.; Hien, T.T.T. Effects of heat-killed Lactobacillus plantarum L-137 on growth performance, feed utilization, immune response, and survival rate in red tilapia (Oreochromis sp.). Sci. Technol. Asia 2022, 27, 199–208. [Google Scholar]
- Khunrang, T.; Pooljun, C.; Wutisutimeethavee, S.; Direkbusarakom, S. Effects of mixed probiotic (Lactobacillus sp. and Saccharomyces cerevisiae) on the growth performance and immune gene expression of tilapia (Oreochromis niloticus) after Streptococcus agalactiae vaccination. Aquac. Res. 2021, 52, 3882–3889. [Google Scholar] [CrossRef]
- Villamil, L.; Reyes, C.; Martínez-Silva, M.A. In vivo and in vitro assessment of Lactobacillus acidophilus as probiotic for tilapia (Oreochromis niloticus, Perciformes: Cichlidae) culture improvement. Aquac. Res. 2014, 45, 1116–1125. [Google Scholar] [CrossRef]
- Makwinja, R.; Geremew, A. Roles and requirements of trace elements in tilapia nutrition. Egypt. J. Aquat. Res. 2020, 46, 281–287. [Google Scholar] [CrossRef]
- Zulhisyam, A.K.; Kabir, M.A.; Munir, M.B.; Wei, L.S. Using of fermented soy pulp as an edible coating material on fish feed pellet in African catfish (Clarias gariepinus) production. Aquac. Aquar. Conserv. Legis. 2020, 13, 296–308. [Google Scholar]
- Yang, H.; Bian, Y.; Huang, L.; Lan, Q.; Ma, L.; Li, X.; Leng, X. Effects of replacing fish meal with fermented soybean meal on the growth performance, intestinal microbiota, morphology and disease resistance of largemouth bass (Micropterus salmoides). Aquac. Rep. 2022, 22, 100954. [Google Scholar] [CrossRef]
- Hymowitz, T. Anti-nutritional factors in soybeans: Genetics and breeding. In World Soybean Research Conference III; CRC Press: Boca Raton, FL, USA, 2022; pp. 368–373. [Google Scholar]
- Jingting, Y.; Danting, G.; Chun, K.; Min, J.; Xueming, H. Effect of soybean antigenic protein on feed palatability of fishmeal replaced diets for obscure puffer (Takifugu fasciatus) and the alternation of diet preference by domestication. Aquac. Rep. 2020, 17, 100332. [Google Scholar] [CrossRef]
- Zhao, X.; Han, Y.; Li, Y.; Liu, D.; Sun, M.; Zhao, Y.; Chunmei, L.; Li, D.; Yang, Z.; Huang, L.; et al. Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J. 2015, 82, 245–255. [Google Scholar] [CrossRef]
- Bajpai, S.; Sharma, A.; Gupta, M.N. Removal and recovery of antinutritional factors from soybean flour. Food Chem. 2005, 89, 497–501. [Google Scholar] [CrossRef]
- Debnath, S.; Saikia, S.K. Absorption of protein in teleosts: A review. Fish Physiol. Biochem. 2021, 47, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Bhutia, Y.D.; Ganapathy, V. Protein digestion and absorption. In Physiology of the Gastrointestinal Tract, 6th ed.; Academic press Inc.: New York, NY, USA, 2018; pp. 1063–1086. [Google Scholar] [CrossRef]
- Egerton, S.; Culloty, S.; Whooley, J.; Stanton, C.; Ross, R.P. The gut microbiota of marine fish. Front. Microbiol. 2018, 9, 873. [Google Scholar] [CrossRef] [PubMed]
- Turner, K.; Solanki, N.; Salouha, H.O.; Avidor-Reiss, T. Atypical centriolar composition correlates with internal fertilization in fish. Cells 2022, 11, 758. [Google Scholar] [CrossRef] [PubMed]
- Freire, T.T.; Silva, A.L.T.; Ferreira, B.K.O.; Dos Santos, T.M. Bactérias ácido lácticas suas características e importância: Revisão. Res. Soc. Dev. 2021, 10, 1–19. [Google Scholar] [CrossRef]
- Naiel, M.A.E.; Farag, M.R.; Gewida, A.G.A.; Elnakeeb, M.; Amer, M.S.; Alagawany, M. Using lactic acid bacteria as an immunostimulants in cultured shrimp with special reference to Lactobacillus spp. Aquac. Int. 2021, 29, 219–231. [Google Scholar] [CrossRef]
- Zhou, Z.; Ringø, E.; Olsen, R.E.; Song, S.K. Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: A review. Aquac. Nutr. 2018, 24, 644–665. [Google Scholar] [CrossRef]
- Jeyakumar, E.; Lawrence, R. Microbial fermentation for reduction of antinutritional factors. In Current Developments in Biotechnology and Bioengineering; Rai, A.K., Singh, S.P., Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 239–260. [Google Scholar] [CrossRef]
- Pirarat, N.; Pinpimai, K.; Endo, M.; Katagiri, T.; Ponpornpisit, A.; Chansue, N.; Maita, M. Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res. Vet. Sci. 2011, 91, e92–e97. [Google Scholar] [CrossRef]
- Honorato, C.A.; Assano, M.; Da Cruz, C.; Carneiro, D.J.; Machado, M.R.F. Histologia do intestino de tilápia do Nilo alimentados com dietas contendo diferentes fontes de proteína. Nucl. Anim. 2013, 5, 103–112. [Google Scholar] [CrossRef]
- Ramos, M.A.; Batista, S.; Pires, M.A.; Silva, A.P.; Pereira, L.F.; Saavedra, M.J.; Ozório, R.O.A.; Rema, P. Dietary probiotic supplementation improves growth and the intestinal morphology of Nile tilapia. Animal 2017, 11, 1259–1269. [Google Scholar] [CrossRef]
- Ruiz, M.L. Diferentes Concentrações de Lactobacillus plantarum em Dietas Para Tilápia-Do-Nilo. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil, 2016. [Google Scholar]
- Dawood, M.A.O. Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. Rev. Aquac. 2021, 13, 642–663. [Google Scholar] [CrossRef]
- Lee, S.M.; Azarm, H.M.; Chang, K.H. Effects of dietary inclusion of fermented soybean meal on growth, body composition, antioxidant enzyme activity and disease resistance of rockfish (Sebastes schlegeli). Aquaculture 2016, 459, 110–116. [Google Scholar] [CrossRef]
- Li, C.; Tian, Y.; Wang, L.; Zhang, B.; Ma, Q. Effects of replacing fishmeal by raw or Lactobacillus acidophilus-fermented soybean meal on growth, intestinal digestive and immune-related enzyme activities, morphology, and microbiota in turbot (Scophthalmus maximus L.). Aquac. Nutr. 2022, 2022, 2643235. [Google Scholar] [CrossRef]
- Singh, P.; Krishnaswamy, K. Sustainable zero-waste processing system for soybeans and soy by-product valorization. Trends Food Sci. Technol. 2022, 128, 331–344. [Google Scholar] [CrossRef]
- Wang, J.; Mai, K.; Ai, Q. Conventional soybean meal as fishmeal alternative in diets of Japanese Seabass (Lateolabrax japonicus): Effects of functional additives on growth, immunity, antioxidant capacity and disease resistance. Antioxidants 2022, 11, 951. [Google Scholar] [CrossRef]
(%) Ingredient | CFM | CPB |
---|---|---|
Soybean meal | 42.0 | 65.0 |
Fishmeal | 21.7 | - |
Corn | 19.5 | 20.0 |
Wheat bran | 13.0 | 13.0 |
Soybean oil | 3.0 | 1.0 |
Premix * | 0.5 | 0.5 |
DL-methionine | 0.30 | 0.5 |
Total (%) | 100 | 100 |
Calculated composition | ||
DM (%) | 89.21 | 88.15 |
CP (%) | 33.64 | 33.83 |
GE (kcal kg−1) | 4116.07 | 4131.11 |
EE (%) | 7.34 | 5.03 |
CF (%) | 4.87 | 6.41 |
MM (%) | 11.16 | 4.90 |
CFM | CPB | FPB6 | FPB18 | |
---|---|---|---|---|
Dry matter (%) | 95.39 ± 0.08 | 94.78 ± 0.02 | 94.78 ± 0.07 | 93.84 ± 0.19 |
Mineral material (%) | 12.8 ± 0.06 | 5.48 ± 0.04 | 5.42 ± 0.01 | 5.47 ± 0.11 |
Crude protein (%) | 34.14 ± 1.90 | 36.89 ± 1.94 | 35.88 ± 1.92 | 36.57 ± 1.93 |
Ether extract (%) | 3.7 ± 3.42 | 5.77 ± 0.09 | 3.64 ± 2.92 | 4.07 ± 1.71 |
Amino Acid (%) | CFM | CPB | FPB6 | FPB18 |
---|---|---|---|---|
Essential amino acids | ||||
Arginine | 1.99 | 2.35 | 2.38 | 2.35 |
Phenylalanine | 1.44 | 1.87 | 1.78 | 1.74 |
Histidine | 0.75 | 0.94 | 0.90 | 0.90 |
Isoleucine | 1.38 | 1.72 | 1.66 | 1.63 |
Leucine | 2.43 | 3.00 | 2.89 | 2.89 |
Lysine | 2.08 | 2.50 | 2.28 | 2.14 |
Methionine | 0.73 | 0.83 | 0.90 | 0.80 |
Valine | 1.58 | 1.80 | 1.74 | 1.73 |
Threonine | 1.04 | 1.28 | 1.27 | 1.24 |
Non-essential amino acids | ||||
Aspartic acid | 3.22 | 3.87 | 4.03 | 3.96 |
Glutamic acid | 5.47 | 6.52 | 6.63 | 6.62 |
Alanine | 1.76 | 1.71 | 1.69 | 1.71 |
Cystine | 0.35 | 0.46 | 0.54 | 0.57 |
Glycine | 2.27 | 1.56 | 1.58 | 1.59 |
Hydroxyproline | 0.46 | 0.09 | 0.09 | 0.10 |
Proline | 1.93 | 1.98 | 1.93 | 1.93 |
Serine | 1.42 | 1.66 | 1.70 | 1.69 |
Taurine | 0.07 | <0.01 | <0.01 | <0.01 |
Tyrosine | 1.05 | 1.27 | 1.11 | 1.22 |
Sum of amino acids | 31.43 | 35.42 | 35.09 | 34.81 |
CFM | CPB | FPB6 | FPB18 | |
---|---|---|---|---|
1 min | 13.90 ± 2.62 a | 14.02 ± 7.16 a | 25.04 ± 4.89 b | 10.89 ± 1.06 a |
3 min | 20.80 ± 9.00 a | 13.51 ± 2.99 a | 38.6 ± 7.92 b | 16.59 ± 4.05 a |
CFM | CPB | FPB6 | FPB18 | |
---|---|---|---|---|
Lactic acid bacteria | ||||
0 days | nd | nd | 5.77 ± 0.43 | 5.45 ± 0.30 |
7 days | nd | nd | 5.64 ± 0.54 | 5.33 ± 0.43 |
15 days | nd | nd | 5.66 ± 0.59 | 5.06 ± 0.43 |
30 days | nd | nd | 6.63 ± 0.45 | 5.28 ± 0.41 |
60 days | nd | nd | 4.39 ± 0.56 | 4.21 ± 0.13 |
Molds and yeasts | ||||
0 days | 6.29 ± 0.52 d | 6.09 ± 0.65 c | 4.89 ± 1.26 a | 4.65 ± 0.56 b |
7 days | 6.53 ± 0.47 d | 6.07 ± 0.10 c | 5.35 ± 0.71 a | 5.45 ± 0.03 b |
15 days | 5.39 ± 0.12 d | 5.44 ± 0.38 c | 3.81 ± 0.16 b | 3.07 ± 1.09 a |
30 days | 6.64 ± 0.57 d | 6.61 ± 0.86 c | 5.85 ± 0.13 b | 4.50 ± 0.70 a |
60 days | 5.78 ± 0.74 d | 5.61 ± 0.13 c | 4.47 ± 0.24 a | 4.73 ± 0.16 b |
CFM | CPB | FPB6 | FPB18 | |
---|---|---|---|---|
LAB | ||||
0 days | 4.36 ± 0.48 | 4.36 ± 0.48 | 4.36 ± 0.48 | 4.36 ± 0.48 |
7 days | 4.05 ± 0.14 | 4.09 ± 0.31 | 4.38 ± 0.22 | 4.47 ± 0.10 |
15 days | 3.46 ± 0.91 | 3.54 ± 0.62 | 4.06 ± 0.04 | 4.31 ± 0.66 |
30 days | 3.68 ± 0.19 | 3.42 ± 0.75 | 4.21± 0.07 | 4.29 ± 0.66 |
60 days | 5.60 ± 0.21 b | 5.51± 0.72 b | 6.55 ± 0.06 ab | 6.65 ± 0.10 a |
Heterotrophic bacteria | ||||
0 days | 4.74 ± 1.73 | 4.74 ± 1.73 | 4.74 ± 1.73 | 4.74 ± 1.73 |
7 days | 6.38 ± 0.04 | 5.87 ± 0.94 | 6.08 ± 0.01 | 6.00 ± 0.76 |
15 days | 6.24 ± 0.28 | 6.33 ± 0.66 | 6.35 ± 0.96 | 6.56 ± 0.26 |
30 days | 6.20 ± 0.06 | 5.98 ± 0.53 | 6.57 ± 0.13 | 6.27 ± 0.27 |
60 days | 6.02 ± 0.11 | 5.78 ± 0.13 | 6.62 ± 0.15 | 6.34 ± 0.20 |
Vibrio sp. | ||||
0 days | 5.25 ± 0.16 | 5.25 ± 0.16 | 5.25 ± 0.16 | 5.25 ± 0.16 |
7 days | 5.35 ± 0.56 | 5.24 ± 0.72 | 4.91 ± 0.38 | 4.17 ± 0.32 |
30 days | 6.93 ± 0.48 | 6.73 ± 0.50 | 5.71 ± 1.01 | 5.85 ± 0.66 |
60 days | 6.89 ± 0.39 b | 6.45 ± 0.42 ab | 4.89 ± 1.38 a | 5.49 ± 0.45 ab |
CFM | CPB | FPB6 | FPB18 | |
---|---|---|---|---|
Weight gain (g) | 34.84 ± 7.10 a | 22.28 ± 3.18 b | 23.44 ± 0.89 b | 20.87 ± 1.59 b |
Feed consumption (g per fish) | 27.50 ± 3.03 a | 20.42 ± 1.71 b | 30.47 ±1.61 a | 28.76 ± 3.14 a |
Feed conversion | 0.81 ± 0.16 a | 0.84 ± 0.02 a | 1.28 ± 0.03 b | 1.38 ± 0.13 b |
HIS (%) | 2.11 ± 0.49 | 1.70 ± 0.32 | 1.95 ± 0.48 | 1.68 ± 0.35 |
CFM | CPB | FPB6 | FPB18 | |
---|---|---|---|---|
LAB | ||||
30 days | 3.86 ± 0.09 a | 3.81 ± 0.39 b | 4.39 ± 0.56 a | 4.08 ± 0.56 a |
60 days | 6.18 ± 0.60 a | 5.63 ± 0.85 b | 6.26 ± 0.69 a | 6.44 ± 0.30 a |
Heterotrophic bacteria | ||||
30 days | 6.51 ± 0.63 | 6.05 ± 0.36 | 5.94 ± 0.4 | 5.75 ± 0.59 |
60 days | 5.25 ± 0.89 b | 5.82 ± 0.36 b | 6.37 ± 0.33 a | 6.00 ± 0.66 b |
Vibrio. sp. | ||||
30 days | 5.45 ± 0.23 | 5.41 ± 0.31 | 5.23 ± 0.41 | 4.14 ± 1.56 |
60 days | 6.80 ± 0.55 b | 6.60 ± 0.75 b | 5.12 ± 0.70 a | 5.30 ± 1.04 a |
Villus | CFM | CPB | FPB6 | FPB18 |
---|---|---|---|---|
Height (μm) | 385.87 ± 38.39 a | 268.90 ± 18.19 b | 442.60 ± 42.94 a | 396.17 ± 30.42 a |
Width (μm) | 96.86 ± 3.70 | 86.78 ± 8.38 | 95.73 ± 21.18 | 96.3 2± 7.09 |
Thickness (μm) | 47.15 ± 3.51 | 40.43 ± 4.50 | 43.46 ± 6.26 | 42.84 ± 7.12 |
GCs (u.) | 8.69 ± 2.24 b | 8.01 ± 2.46 b | 16.15 ± 3.75 a | 13.82 ± 3.18 ab |
Enzyme | CFM | CPB | FPB6 | FPB18 |
---|---|---|---|---|
Amylase | 1.57 ± 1.47 | 2.09 ± 1.09 | 1.68 ± 0.47 | 2.81 ± 0.12 |
Lipase | 3.53 ± 0.26 | 3.11 ± 0.33 | 2.58 ± 0.88 | 2.83 ± 0.96 |
Total alkaline proteases | 1.09 ± 0.24 | 0.79 ± 0.30 | 1.04 ± 0.21 | 0.95 ± 0.19 |
CFM | CPB | FPB6 | FPB18 | |
---|---|---|---|---|
Soluble protein | 7.21 ± 2.33 | 6.98 ± 2.03 | 9.04 ± 2.73 | 7.90 ± 2.09 |
Gluthatione reductase | 26.11 ± 8.04 | 26.77 ± 5.07 | 21.01 ± 4.51 | 23.22 ± 5.51 |
Gluthatione peroxidase | 151.48 ± 68.31 | 147.26 ± 59.75 | 128.95 ± 56.83 | 121.32 ± 51.26 |
Catalase | 6.52 ± 9.14 | 8.82 ± 3.77 | 7.06 ± 3.37 | 6.98 ± 2.90 |
SOD | 98.43 ± 0.74 | 98.70 ± 1.50 | 99.91 ± 2.01 | 98.75 ± 2.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neves, N.O.D.S.; De Dea Lindner, J.; Stockhausen, L.; Delziovo, F.R.; Bender, M.; Serzedello, L.; Cipriani, L.A.; Ha, N.; Skoronski, E.; Gisbert, E.; et al. Fermentation of Plant-Based Feeds with Lactobacillus acidophilus Improves the Survival and Intestinal Health of Juvenile Nile Tilapia (Oreochromis niloticus) Reared in a Biofloc System. Animals 2024, 14, 332. https://doi.org/10.3390/ani14020332
Neves NODS, De Dea Lindner J, Stockhausen L, Delziovo FR, Bender M, Serzedello L, Cipriani LA, Ha N, Skoronski E, Gisbert E, et al. Fermentation of Plant-Based Feeds with Lactobacillus acidophilus Improves the Survival and Intestinal Health of Juvenile Nile Tilapia (Oreochromis niloticus) Reared in a Biofloc System. Animals. 2024; 14(2):332. https://doi.org/10.3390/ani14020332
Chicago/Turabian StyleNeves, Nataly Oliveira Dos Santos, Juliano De Dea Lindner, Larissa Stockhausen, Fernanda Regina Delziovo, Mariana Bender, Letícia Serzedello, Luiz Augusto Cipriani, Natalia Ha, Everton Skoronski, Enric Gisbert, and et al. 2024. "Fermentation of Plant-Based Feeds with Lactobacillus acidophilus Improves the Survival and Intestinal Health of Juvenile Nile Tilapia (Oreochromis niloticus) Reared in a Biofloc System" Animals 14, no. 2: 332. https://doi.org/10.3390/ani14020332
APA StyleNeves, N. O. D. S., De Dea Lindner, J., Stockhausen, L., Delziovo, F. R., Bender, M., Serzedello, L., Cipriani, L. A., Ha, N., Skoronski, E., Gisbert, E., Sanahuja, I., & Perez Fabregat, T. E. H. (2024). Fermentation of Plant-Based Feeds with Lactobacillus acidophilus Improves the Survival and Intestinal Health of Juvenile Nile Tilapia (Oreochromis niloticus) Reared in a Biofloc System. Animals, 14(2), 332. https://doi.org/10.3390/ani14020332