Spatial Distribution and Hierarchical Behaviour of Cattle Using a Virtual Fence System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Animals
2.2. The Nofence© System
Analysis of GPS Accuracy
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Analysis of GPS Locations
3.2. Analysis of Spatial Distribution
4. Discussion
4.1. Accuracy of GPS Locations
4.2. Pattern in Spatial Distribution
4.3. Method Considerations
4.4. Alternative Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Reference | Collar Serial Number |
---|---|
Cow01 | 73798 |
90894 | |
Cow02 | 73882 |
Cow03 | 73957 |
Cow04 | 73985 |
Cow05 | 74042 |
Cow06 | 82461 |
Cow07 | 82463 |
Cow08 | 82513 |
Cow09 | 82573 |
Cow10 | 82587 |
Cow11 | 84878 |
Cow12 | 89446 |
Cow13 | 89481 |
Cow14 | 89495 |
Cow15 | 90747 |
Cow16 | 90754 |
Cow17 | 90876 |
Appendix C
Number of Observations | |
---|---|
Cow01 | 4212 |
Cow02 | 4272 |
Cow03 | 4187 |
Cow04 | 4276 |
Cow05 | 4238 |
Cow06 | 4291 |
Cow07 | 4340 |
Cow08 | 4382 |
Cow09 | 4297 |
Cow10 | 4706 |
Cow11 | 4219 |
Cow12 | 4308 |
Cow13 | 4314 |
Cow14 | 4193 |
Cow15 | 4057 |
Cow16 | 4180 |
Cow17 | 4297 |
Total | 72,769 |
Appendix D
Appendix E
Pair | p-Value |
---|---|
Sample 1–Sample 2 | 0.628 |
Sample 1–Sample 3 | 0.468 |
Sample 1–Sample 4 | 0.814 |
Sample 1–Sample 5 | 0.533 |
Sample 1–Sample 6 | 0.978 |
Sample 1–Sample 7 | 0.440 |
Sample 1–Sample 8 | 0.570 |
Sample 1–Sample 9 | 0.436 |
Sample 1–Sample 10 | 0.690 |
Sample 2–Sample 3 | 0.813 |
Sample 2–Sample 4 | 0.800 |
Sample 2–Sample 5 | 0.900 |
Sample 2–Sample 6 | 0.656 |
Sample 2–Sample 7 | 0.783 |
Sample 2–Sample 8 | 0.942 |
Sample 2–Sample 9 | 0.785 |
Sample 2–Sample 10 | 0.929 |
Sample 3–Sample 4 | 0.606 |
Sample 3–Sample 5 | 0.886 |
Sample 3–Sample 6 | 0.478 |
Sample 3–Sample 7 | 0.958 |
Sample 3–Sample 8 | 0.849 |
Sample 3–Sample 9 | 0.997 |
Sample 3–Sample 10 | 0.722 |
Sample 4–Sample 5 | 0.715 |
Sample 4–Sample 6 | 0.812 |
Sample 4–Sample 7 | 0.591 |
Sample 4–Sample 8 | 0.749 |
Sample 4–Sample 9 | 0.599 |
Sample 4–Sample 10 | 0.878 |
Sample 5–Sample 6 | 0.543 |
Sample 5–Sample 7 | 0.864 |
Sample 5–Sample 8 | 0.964 |
Sample 5–Sample 9 | 0.857 |
Sample 5–Sample 10 | 0.834 |
Sample 6–Sample 7 | 0.475 |
Sample 6–Sample 8 | 0.579 |
Sample 6–Sample 9 | 0.436 |
Sample 6–Sample 10 | 0.690 |
Sample 7–Sample 8 | 0.819 |
Sample 7–Sample 9 | 0.975 |
Sample 7–Sample 10 | 0.715 |
Sample 8–Sample 9 | 0.827 |
Sample 8–Sample 10 | 0.869 |
Sample 9–Sample 10 | 0.704 |
Appendix F
Pair | p-Value |
---|---|
Original–Sample 1 | |
Original–Sample 2 | |
Original–Sample 3 | |
Original–Sample 4 | |
Original–Sample 5 | |
Original–Sample 6 | |
Original–Sample 7 | |
Original–Sample 8 | |
Original–Sample 9 | |
Original–Sample 10 |
Appendix G
Original data (non-randomised) | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA | ||||||||||||||||
Randomized data 1 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA | ||||||||||||||||
Randomized data 2 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA | ||||||||||||||||
Randomized data 3 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA | ||||||||||||||||
Randomized data 4 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA | ||||||||||||||||
Randomized data 5 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | 5.63 × 10−2 | |||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | 5.63 × 10−2 | NA | |||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA | ||||||||||||||||
Randomized data 6 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | 5.39 × 10−2 | |||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | |||||||||||||||||
Cow17 | 5.39 × 10−2 | NA | |||||||||||||||
Randomized data 7 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA | ||||||||||||||||
Randomized data 8 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA | ||||||||||||||||
Randomized data 9 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA | ||||||||||||||||
Randomized data 10 | |||||||||||||||||
Cow01 | Cow02 | Cow03 | Cow04 | Cow05 | Cow06 | Cow07 | Cow08 | Cow09 | Cow10 | Cow11 | Cow12 | Cow13 | Cow14 | Cow15 | Cow16 | Cow17 | |
Cow01 | NA | ||||||||||||||||
Cow02 | NA | ||||||||||||||||
Cow03 | NA | ||||||||||||||||
Cow04 | NA | ||||||||||||||||
Cow05 | NA | ||||||||||||||||
Cow06 | NA | ||||||||||||||||
Cow07 | NA | ||||||||||||||||
Cow08 | NA | ||||||||||||||||
Cow09 | NA | ||||||||||||||||
Cow10 | NA | ||||||||||||||||
Cow11 | NA | ||||||||||||||||
Cow12 | NA | ||||||||||||||||
Cow13 | NA | ||||||||||||||||
Cow14 | NA | ||||||||||||||||
Cow15 | NA | ||||||||||||||||
Cow16 | NA | ||||||||||||||||
Cow17 | NA |
Appendix H
Appendix I
References
- Pereira, H.M.; Navarro, L.M. Rewildning European Landscapes; Springer: Berlin/Heidelberg, Germany, 2015; Volume 1, pp. 3–17. [Google Scholar] [CrossRef]
- European Commission. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives; Publications Office of the European Union, The European Commission: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Carver, S.; Convery, I.; Hawkins, S.; Beyers, R.; Eagle, A.; Kun, Z.; Maanen, E.V.; Cao, Y.; Fisher, M.; Edwards, S.R.; et al. Guiding principles for rewilding. Conserv. Biol. 2021, 35, 1882–1893. [Google Scholar] [CrossRef] [PubMed]
- Fløjgaard, C.; Buttenschøn, R.M.; Byriel, D.B.; Clausen, K.K.; Gottlieb, L.; Kanstrup, N.; Strandberg, B.; Ejrnæs, R. Biodiversitetseffekter af Rewilding; DCE: Nationalt Center for Miljø og Energi, of Aarhus Universitet, Institut for Bioscience and København Universitet, Institut for Geovidenskab og Naturforvaltning: Roskilde, Denmark, 2021; p. 124. [Google Scholar]
- Hayward, M.W.; Kerley, G.I.H. Fencing for conservation Restriction of evolutionary potential or a riposte to threatening processes. Biol. Conserv. 2009, 142, 1–13. [Google Scholar] [CrossRef]
- Boone, R.B.; Hobbs, N.T. Lines around fragments effects of fencing on large herbivores. Afr. J. Range Forage Sci. 2009, 21, 147–158. [Google Scholar] [CrossRef]
- Harrington, J.L. Characteristics of Ungulate Behavior and Mortality Associated with Wire Fences. Master’s Thesis, Utah State University, Logan, UT, USA, 2006; pp. 1295–1305. [Google Scholar] [CrossRef]
- Jachowski, D.S.; Slotow, R.; Millspaugh, J.J. Good virtual fences make good neighbors. opportunities for conservation. Virtual fencing for conservation. Anim. Conserv. 2014, 17, 187–196. [Google Scholar] [CrossRef]
- MacDonald, A.M.; Jones, P.F.; Hanlon, J.A.; Martin, B.H.; Jakes, A.F. How did the deer cross the fence An evaluation of wildlife-friendlier fence modifications to facilitate deer movement. Front. Conserv. Sci. 2022, 3, 991765. [Google Scholar] [CrossRef]
- Umstatter, C. The evolution of virtual fences A review. Comput. Electron. Agric. 2011, 75, 10–22. [Google Scholar] [CrossRef]
- Osipova, L.; Okello, M.M.; Njumbi, S.J.; Ngene, S.; Western, D.; Hayward, M.W.; Balkenhol, N. Fencing solves human-wildlife conflict locally but shifts problems elsewhere. A case study using functional connectivity modelling of the African elephant. Appl. Ecol. 2018, 55, 2673–2684. [Google Scholar] [CrossRef]
- Lee, C.; Henshall, J.M.; Wark, T.J.; Crossman, C.C.; Reed, M.T.; Brewer, H.G.; O’Grady, J.; Fisher, A.D. Associative learning by cattle to enable effective and ethical virtual fences. Appl. Anim. Behav. Sci. 2009, 119, 15–22. [Google Scholar] [CrossRef]
- Lomax, S.; Colusso, P.; Clark, C.E.F. Does Virtual Fencing Work for Grazing Dairy Cattle. Animals 2019, 9, 429. [Google Scholar] [CrossRef]
- Aaser, M.F.; Staahltoft, S.K.; Korsgaard, A.H.; Trige-Esbensen, A.; Alstrup, A.K.O.; Sonne, C.; Bruhn, D.; Frikke, J.; Linder, A.C. Is Virtual Fencing an Effective Way of Enclosing Cattle. Personality, Herd Behaviour and Welfare. Animals 2022, 12, 842. [Google Scholar] [CrossRef]
- Hamidi, D.; Grinnell, N.; Komainda, M.; Riesch, F.; Horn, J.; Ammer, S.; Traulsen, I.; Palme, R.; Hamidi, M.; Isselstein, J. Heifers don’t care no evidence of negative impact on animal welfare of growing heifers when using virtual fences compared to physical fences for grazing. Animal 2022, 16, 100614. [Google Scholar] [CrossRef] [PubMed]
- Staahltoft, S.K.; Aaser, M.F.; Jensen, J.N.S.; Zadran, I.; Sørensen, E.B.; Nielsen, A.E.; Alstrup, A.K.O.; Bruhn, D.; Linder, A.C.; Sonne, C.; et al. The Effectiveness of Virtual Fencing of Bull Calves in a Holistic Grazing System. Animals 2023, 13, 917. [Google Scholar] [CrossRef] [PubMed]
- Vik, J.; Melås, A.M.; Stræte, E.P.; Søraa, R.A. Balanced readiness level assessment (BRLa): A tool for exploring new and emerging technologies. Technol. Forecast. Soc. Chang. 2021, 169, 120854. [Google Scholar] [CrossRef]
- Tzanidakis, C.; Tzamaloukas, O.; Simitzis, P.; Panagakis, P. Precision Livestock Farming Applications (PLF) for Grazing Animals. Agriculture 2023, 13, 288. [Google Scholar] [CrossRef]
- Arave, C.W.; Albright, J.L. Cattle Behavior. J. Dairy Sci. 1981, 64, 1318–1329. [Google Scholar] [CrossRef] [PubMed]
- Sowell, B.F.; Mosley, J.C.; Bowman, J.G.P. Social behavior of grazing beef cattle Implication. J. Anim. Sci. 2000, 77, 1–6. [Google Scholar] [CrossRef]
- Gibbons, J.M.; Lawrence, A.B.; Haskell, M.J. Measuring sociability in dairy cows. Appl. Anim. Behav. 2010, 122, 84–91. [Google Scholar] [CrossRef]
- Šárová, R.; Špinka, M.; Panamá, J.L.A.; Šimecek, P. Graded leadership by dominant animals in a herd of female beef cattle on pasture. Anim. Behav. 2010, 79, 1037–1045. [Google Scholar] [CrossRef]
- Sato, S. Leadership during actual grazing in a small herd of cattle. Appl. Anim. Ethol. 1982, 8, 53–65. [Google Scholar] [CrossRef]
- Kondo, S.; Sekine, J.; Okubo, M.; Asahida, Y. The Effect of Group Size and Space Allowance on. Appl. Anim. Behav. Sci. 1989, 24, 127–135. [Google Scholar] [CrossRef]
- Kondo, S.; Saito, M.; Miyashita, H.; Nishino, S.; Asahida, Y. Spatial and social behavior of a beef-cattle group on grazing pasture and in dry-lot. Hokkaido Univ. Collect. Sch. Acad. Pap. HUSCAP 1990, 14, 99–105. [Google Scholar]
- Sonne, C.; Alstrup, A.K.O.; Pertoldi, C.; Frikke, J.; Linder, A.C.; Styrishave, B. Cortisol in Manure from Cattle Enclosed with Nofence Virtual Fencing. Animals 2022, 12, 3017. [Google Scholar] [CrossRef] [PubMed]
- Eftang, S.; Vas, J.; Holand, Ø.; Bøe, K.E. Goats are able to adapt to virtual fencing; A field study in commercial goat herds on Norwegian farms. Appl. Anim. Behav. Sci. 2022, 256, 105755. [Google Scholar] [CrossRef]
- Hamidi, D.; Grinnell, N.A.; Komainda, M.; Wilms, L.; Riesch, F.; Horn, J.; Hamidi, M.; Traulsen, I.; Isselstein, J. Training cattle for virtual fencing: Different approaches to determine learning success. Appl. Anim. Behav. Sci. 2024, 273, 106220. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System (Version 3.28.10); QGIS Association: Zurich, Switzerland, 2023. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing (Version 4.3.2); R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Grolemund, G.; Wickham, H. Dates and Times Made Easy with lubridate. J. Stat. Softw. 2011, 40, 1–25. [Google Scholar] [CrossRef]
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling. In R Package Version 3.6-26; CRAN: Vienna, Austria, 2023. [Google Scholar] [CrossRef]
- Komsta, L.; Novomestky, F. moments: Moments, Cumulants, Skewness, Kurtosis and Related Tests. In R Package Version 0.14.1; CRAN: Vienna, Austria, 2022. [Google Scholar] [CrossRef]
- Signorell, A. DescTools: Tools for Descriptive Statistics. In R Package Version 0.99.54; CRAN: Vienna, Austria, 2024. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; CRAN: Vienna, Austria, 2016. [Google Scholar] [CrossRef]
- Field, A.P. Kendall’s coefficient of concordance. Encycl. Stat. Behav. Sci. 2005, 2, 1010–1011. [Google Scholar]
- Tibbetts, E.A.; Pardo-Sanchez, J.; Weise, C. The establishment and maintenance of dominance hierarchies. Philos. Trans. R. Soc. Biol. Sci. 2022, 377, 20200450. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, A.J.; Foster, M.J.; Daigle, C.L. Social dominance in beef cattle—A scoping review. Appl. Anim. Behav. Sci. 2021, 241, 105390. [Google Scholar] [CrossRef]
- Gabrieli, R.; Malkinson, D. Social organization and fitness response in grazing beef cows—Understanding through interactions and activity measuring. Appl. Anim. Behav. Sci. 2022, 254, 105723. [Google Scholar] [CrossRef]
- Richeson, J.T.; Lawrence, T.E.; White, B.J. Using advanced technologies to quantify beef cattle behavior. Transl. Anim. Sci. 2018, 2, 223–229. [Google Scholar] [CrossRef]
- White, B.J.; Goehl, D.R.; Amrine, D.E.; Booker, C.; Wildman, B.; Perrett, T. Bayesian evaluation of clinical diagnostic test characteristics of visual observations and remote monitoring to diagnose bovine respiratory disease in beef calves. Prev. Vet. Med. 2016, 126, 74–80. [Google Scholar] [CrossRef] [PubMed]
Skewness | Kurtosis | Peak x-Value | Peak y-Value | |
---|---|---|---|---|
(Rank) | (%) | |||
Cow01 | 1.33 | 5.09 | 6.12 | 24.22 |
Cow02 | 0.31 | 2.22 | 8.73 | 19.67 |
Cow03 | 0.25 | 2.97 | 7.55 | 23.33 |
Cow04 | −0.29 | 2.44 | 8.23 | 17.25 |
Cow05 | 0.09 | 2.07 | 6.50 | 16.07 |
Cow06 | 1.07 | 5.09 | 6.86 | 24.81 |
Cow07 | 0.67 | 2.56 | 6.84 | 20.35 |
Cow08 | 0.57 | 2.77 | 8.88 | 21.86 |
Cow09 | −0.33 | 2.33 | 10.30 | 17.86 |
Cow10 | 0.27 | 2.46 | 8.44 | 19.50 |
Cow11 | −0.21 | 2.16 | 10.30 | 19.50 |
Cow12 | 0.68 | 3.92 | 8.66 | 23.13 |
Cow13 | −0.05 | 2.95 | 8.51 | 18.35 |
Cow14 | 0.58 | 2.60 | 7.55 | 17.33 |
Cow15 | 0.99 | 4.53 | 8.13 | 18.78 |
Cow16 | −0.12 | 1.91 | 10.71 | 16.34 |
Cow17 | 0.30 | 2.92 | 8.55 | 19.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lund, S.M.; Jacobsen, J.H.; Nielsen, M.G.; Friis, M.R.; Nielsen, N.H.; Mortensen, N.Ø.; Skibsted, R.C.; Aaser, M.F.; Staahltoft, S.K.; Bruhn, D.; et al. Spatial Distribution and Hierarchical Behaviour of Cattle Using a Virtual Fence System. Animals 2024, 14, 2121. https://doi.org/10.3390/ani14142121
Lund SM, Jacobsen JH, Nielsen MG, Friis MR, Nielsen NH, Mortensen NØ, Skibsted RC, Aaser MF, Staahltoft SK, Bruhn D, et al. Spatial Distribution and Hierarchical Behaviour of Cattle Using a Virtual Fence System. Animals. 2024; 14(14):2121. https://doi.org/10.3390/ani14142121
Chicago/Turabian StyleLund, Silje Marquardsen, Johanne Holm Jacobsen, Maria Gytkjær Nielsen, Marie Ribergaard Friis, Natalie Hvid Nielsen, Nina Østerhaab Mortensen, Regitze Cushion Skibsted, Magnus Fjord Aaser, Søren Krabbe Staahltoft, Dan Bruhn, and et al. 2024. "Spatial Distribution and Hierarchical Behaviour of Cattle Using a Virtual Fence System" Animals 14, no. 14: 2121. https://doi.org/10.3390/ani14142121
APA StyleLund, S. M., Jacobsen, J. H., Nielsen, M. G., Friis, M. R., Nielsen, N. H., Mortensen, N. Ø., Skibsted, R. C., Aaser, M. F., Staahltoft, S. K., Bruhn, D., Sonne, C., Alstrup, A. K. O., Frikke, J., & Pertoldi, C. (2024). Spatial Distribution and Hierarchical Behaviour of Cattle Using a Virtual Fence System. Animals, 14(14), 2121. https://doi.org/10.3390/ani14142121